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Nearly Kahler manifolds were originally in-
troduced as the class W; in the Gray-Hervella
classification of almost Hermitian manifolds.

More precisely, an almost Hermitian manifold
(M?2" g, J) is called nearly Kahler (NK) if

(VxJ)(X) =0

for every vector field X on M, where V denotes
the Levi-Civita covariant derivative of g. A NK
manifold is called strict if (VJ)p %= 0 for every
peE M.

Remark. In dimension 2n = 4, NK = Kahler.



Examples:

e Kahler manifolds.

e twistor spaces over positive QK manifolds,
endowed with the non-integrable almost com-
plex structure and with the metric rescaled
by a factor 2 on the fibres.

e naturally reductive 3-symmetric spaces G/H
where G is compact, H is the invariant
group of an automorphism o of G of or-
der 3, g =P p, and p has a scalar product
such that for every X,Y, Z € p:

<[X7 Y]P7Z> + <[X7 Z]P7Y> = 0.

The almost complex structure is determined
by the endomorphism J of p satisfying

1 V3
— _T1d, 4+ V27
o e T



A product of NK manifolds is again NK. Con-
versely, the factors of the de Rham decompo-
sition of a NK manifold are NK.

Theorem. (Nagy 2002): Every simply con-
nected, complete, de Rham irreducible NK man-
ifold is either one of the above examples, or a
strict NK 6-manifold.

From now on, we restrict our attention to
strict NK 6-manifolds. These are interesting
for several reasons:



Properties of strict NK 6-manifolds:

e carry real Killing spinors ~» positive Ein-
stein; after rescaling the metric, one can
normalize them to having scalar curvature
30 (like the round S°).

e VJ has constant norm ~» SU(3)-structure

e carry a connection with parallel and skew-
symmetric torsion

~ 1
VX:VX—EJOVXJ

e the Riemannian cone (M xR%_,t?g+dt?) of
a normalized NK 6-manifold (M, g,w) has
holonomy contained in Gy, defined by the
positive 3-form

1 1
= gd(tg’w) = §t3dw + t2dt A w



Main problem: lack of examples.

3-symmetric spaces were classified by Gray.
In dimension 6:

e S° = Gy/SU(3)

e SU(2) x SU(2) x SU(2)/aA ~ S3x S3

e Sp(2)/U(2) ~ CP3

e SU(3)/U(1) x U(1) ~ F(1,2).

Theorem. (Butruille 2004) These are all
homogeneous SNK 6-manifolds.



Foscolo and Haskins (2017): 2 new examples
(of cohomogeneity 1) on S® and S3 x S3, both
with isometry group SU(2) x SU(2).

Deformations of SNK 6-manifolds were stud-
ied by — Nagy, Semmelmann (2008, 2010,
2011).

The moduli space is isomorphic to the space
of co-closed primitive (1,1)-forms which are
eigenforms of the Laplace operator for the eigen-
value 12.

Using representation theory one can com-
pute this space on the homogeneous exam-
ples. It vanishes except on F(1,2) where it
has dimension 8. However, these infinitesimal
deformations are obstructed (Foscolo 2017).



SU(3)-structures on SNK 6-manifolds

Let M° be an oriented manifold. An SU(3)-
structure on M is a triple (g, J,v), where

e g is a Riemannian metric,

e J is a compatible almost complex structure
(i.,e. w:=g(J-,-) is a 2-form),

o ¢y = T 4 iy~ is a (3,0) complex volume
form satisfying

2
YT A~ = 4voly = §w3.

It is possible to characterize SU(3)-structures
in terms of exterior forms only (Hitchin).



Lemma 1 A pair (w,vT) € C®(A2M x A3M)
defines an SU(3)-structure on M provided that:

e w3 £ 0 (i.e. w is non-degenerate).
e wAYT =0.

o If K € End(TM) ® A°M is defined by
K(X) = (X4 )ApT e A°M ~ TMeASM,
then trk? = —¢(w3)? € (ASM)®?2

e w(X,K(X))/w3>0 for every X # 0.

“Proof”: Define J := 6K/w>, g(-,-) :=w(:, J"),
Y=y,




A normalized SNK structure (g, J,w) on M?®
~  SU(3)-structure (g, J,w, ¥t ,19~) where

YT 1= Vo, W= =T (T, ).

This satisfies the exterior differential system

dw = 3¢T
diyp~ = —2w?.

Conversely, an SU(3)-structure satisfying this
system is a normalized SNK structure (Hitchin).

This is similar to the case of G, structures,
where a stable 3-form is parallel if and only if
it is harmonic.



Toric NK 6-manifolds

An infinitesimal automorphism of a normal-
ized SNK 6-manifold (M, g, J,w, ) is a vector
field & whose flow preserves the whole struc-
ture (enough to have Lew = 0 = LepT).

Lemma. rk(aut(M,g,J)) < 3.

If equality holds, (M, g, J) is called toric. The
only homogeneous example is S3 x S3.

Assume that (M, g, J) is toric and let £1,&9, &3
be a basis of a Cartan subalgebra of aut(M, g, J).

Lemma. The vector fields

517 527 53) JSla J£27 J£3

are linearly independent on a dense open subset
MO of M.

~ dual basis {61,62,03,~1,42,~3} of AL M.



Define the functions

Mij = w(g’wé])a € .= ¢_(£17£27€3)°

— +
The Cartan formula and dw = 3y 5
dy™ = —2w
dupi; = d(§a6aw) = —€;.d(&w)
&€ 0dw = —3¢,.6; T

Similarly,
de = d(&3282261007 ) = —€32€00612dyY ™
253452451_«,02.
Remarks:

1. YT (€1,62,€3) =0 on M.

2. ¢ does not vanish on Mjy.



It follows that the map u : M — A°R3 =
s50(3) defined by

0O w12 w13
pi=|p21 O o3
p31 32 O
IS the multi-moment map of the strong geom-
etry (M,y7T) defined by Madsen and Swann
(and studied further by Dixon in the particular
case where M = S3 x S3).

Similarly, the function ¢ is the multi-moment
map associated to the stable closed 4-form

dep—.



Consider the symmetric 3 x 3 matrix

C = (Cy) = (9(&,&5))-
In terms of the basis {61,602,63,~1, 42, ~3} of
ALMy we can write

¢+ — 6(’)/123 _ 912 A ’Y3 _ 931 A ,)/2 . 923 A ,Yl),

b = (0123 _ 412 7 93 _ 31 A 92 _ 423 5 g1y,
where ~123 = 41 A 42 A ~3 etc. Similarly,

PR P 3 . .
w= Y  pi (07 +47)+ Y Cyo" Ay
1<i<5<3 i,j=1
The normalization condition
2
v AT = 203
3
translates into
3
det(C) =2+ Y Cyjuiy;,
i,j=1
where

Yyi .= HU23, Y2 .= K31, Y3 .= Ki12.



The previous formula du;; = —3¢;.¢; ¢ can
be restated as

dy; = —3e~’, i=1,2 3.
Similarly, de = 2€3.£5.€1_w? is equivalent to
3
de =4 Z C’wyﬂ]
i =1

Remark also that £;.d6* = 0 ~ explicit
expression of df® in terms of ~;, y;, € and C.

Let U := Mgy/T3 be the set of orbits of the
T3-action generated by the vector fields ;.

All invariant functions and basic forms de-
scend to U~ y;, ¢, 7%, C;;, etc. Since ¢
does not vanish on Mg ~ {y;} define a lo-
cal coordinate system on U.

dw = 3¢y

dyp~ = —2w?
~ dp on U such that Hess(y) = C in the
coordinates {y;}.

Key point: The system {



Let us introduce the operator 0, of radial
differentiation, acting on functions on U by

3.9
orf = Yi—.
" z;l Zayi

Claim: The function ¢ can be chosen in
such a way that

8
e? = 5(90 — Orp).

Proof: It is enough to show that the exterior
derivatives of the two terms coincide. Since

o(0 3. 92 o
(TSO):Z ° .+ 9%
9y i=19Y0y;"  Oy;
we get:
3 3 |
dOre —¢) = Y Ciydy;=-3 > Cijyiey’

1,7=1 1,7=1

3 3
= —Zede = —=d(e?).
4 3



On the other hand,

, 3. of 3
Oro=0r(>_viz—) = > Ciyiy; + Orep.
i=1 i =1

Summing up, the previous relation

3
det(C) =+ > Cijyy;
,7=1

becomes:

det(Hess(v)) = S¢ — L2000 + 92¢.

This Monge-Ampeére equation is enough to
recover (locally) the full structure of the toric
SNK manifold provided some positivity con-
straints hold.



T he inverse construction

We will show that a solution ¢ of

8 11
det(Hess(p)) = _p — O + 9

on some open set U C R3 defines a toric SNK
structure on Uy x T3, where Uy is some open
subset of U.

Let y1,y>,y3 be the standard coordinates on
U and let u be the 3 x 3 skew-symmetric matrix

0O y3 —u
pi=1-yz3 0 yi
y —-vy1 O
Define the 6 x 6 symmetric matrix
p.— (Hess(p)  —n
o T Hess(y) ) -
Let Ug C U denote the open subset

Ug:={x €U | p(x)—0rp(x) >0 and D > 0}.



Note that the matrix D is positive definite
if and only if C := Hess(p) > 0 and (ua,b)? <
(Ca,a)(Cb,b) for all (a,b) € (R3 x R3)\ (0,0).

On Ugp we define a positive function ¢ by

8
62 — 5(90 T 87“90)7

and 1-forms ~* by dy; = —3e~".

We pull-back ¢, y;, and ~; to Uy x T3 and
define 0; on Uy x T3 as connection forms whose
curvature is given by the explicit expression of
df; in the direct construction in terms of C, ¢,

Yi, and ;.

It remains to check that w and ¥* defined by
the previous expressions form indeed an SU(3)-
structure on Ug x T3.



Example

Let K := SU» with Lie algebra ¢ = su, and
G .= K x K x K with Lie algebra g=tpt o ¢.
We consider the 6-dimensional manifold M =
G/K, where K is diagonally embedded in G.
The tangent space of M at o = eK can be
identified with

p={(X,Y,2)ctotot|X+Y + Z =0}

The Killing form B on su, induces a scalar
product on g by

(X,Y,2)|° :=B(X,X)+ B(Y,Y)+ B(Z, 2)

which defines a 3-symmetric nearly Kahler met-
ric g on M = 83 x S3.

The G-automorphism o of order 3 defined by
o(a1,a2,a3) = (ap,a3,a1) induces a canonical
almost complex structure on the 3-symmetric
space M by the relation

_ —Id+4++3J
- 2

o on p.



J(X,Y,Z) = %(Y, Z,X) + %(X, Y, 7).

Let & be a unit vector in suy with respect
to B. The right-invariant vector fields on G
generated by the elements

g]. — (S? O? 0)7 52 — (0757 O)? 53 — (07 076)

of g, define three commuting Killing vector
fields &1, &2, &3 on M.

Let us compute g(&1, J€>) at some point aK €
M, where a = (a1,a5,a3) is some element of
G. By the definition of J we have

1 _1 _1
9(€1,JE2)ak = 7§B(a1 fay,ay "Ean).
We introduce the functions y1,y2,y3 : G =& R
defined by

1 _ _
yi(a1,a2,a3) = 7§B(aj ‘taj, a; teay),



for every permutation (4,7,k) of (1,2,3).

A similar computation yields

Cz] — g(g’ng)aK — 252] + \/§yk(a>

The function ¢ in the coordinates y; such
that Hess(yp) = C' is determined by

1
w(y1,Y2,¥3) = v5 +v3 + 935 + 3Y1v2y3 + h,
up to some affine function h in the coordinates

y;- On the other hand, since

det(C) = —=
et(C) = (yl +y5 4+ y3) + 3\fy1y2y3 + 8,

the above function ¢ satisfies the Monge—Ampeére
equation

8 11
det(Hess(p)) = _p — O + 97y

3
for h = 3.



Radial solutions

We search here radial solutions to the Monge—
Ampere equation on (some open subset of) R3
with coordinates y1, yo,y3.

Write p(y1,¥2,%3) ‘= (5 ) vvhere a: is a func-
tion of one real variable and r? =y? 4+ y5 + 3.
A direct computation vields

yiz" + 2 yryor”  yry3x”
Hess(¢) = | wyiyoz” w32 + o ?2/2y3$”
y1y3z”  yoyzx’  yza” + 4

742
= 2'Id + :1:”(5)‘/ Ay

Y1
where V := [ y> |. In particular,

Y3
det Hess(p) = (a:’)Q:c”rz + (z))3
Orp = r2 :I: @Qcp = iy + 2r2x’

whence after making the substitution ¢t := 5
we get:



Proposition 1 Radial solutions to the Monge-
Ampeéere equation are given by solutions of the
second order ODE

! = F(t,z,2")

.__ 8p—(10tg+3¢3
Where F(tapa q) . — p6((q2t_q;;2)q )

To decide which solutions of this equation yield
genuine Riemannian metrics in dimension SiX,
we observe that

Proposition 2 For any radial solution ¢ = m(g),
the set

Ug:={x €U | o(x)—0rp(x) >0 and D > 0}.
defined above is given by

Uo={t >0 | z(t) > 2tz'(t) > 2tV 2t}.



Remark 1 The solutions of the above ODE o3f
the form z = kt! with k,l € R are Tl = i%@i

1
and x3 = kt2, corresponding to
r3 k
—, = —T.
9 Y3 NG
However, they do not satisfy the positivity re-
quirements from Proposition 2.

P12 ==*

Admissible solutions can be obtained by solving
the Cauchy problem with initial data

(to,z(to),x'(tg)) € S
where

S:={(t,p,q) eR3:¢t>0, p> 2tq > 2tV2t}.



