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Nearly Kähler manifolds were originally in-

troduced as the class W1 in the Gray-Hervella

classification of almost Hermitian manifolds.

More precisely, an almost Hermitian manifold

(M2n, g, J) is called nearly Kähler (NK) if

(∇XJ)(X) = 0

for every vector field X on M , where ∇ denotes

the Levi-Civita covariant derivative of g. A NK

manifold is called strict if (∇J)p 6= 0 for every

p ∈M .

Remark. In dimension 2n = 4, NK = Kähler.



Examples:

• Kähler manifolds.

• twistor spaces over positive QK manifolds,
endowed with the non-integrable almost com-
plex structure and with the metric rescaled
by a factor 2 on the fibres.

• naturally reductive 3-symmetric spaces G/H
where G is compact, H is the invariant
group of an automorphism σ of G of or-
der 3, g = h⊕ p, and p has a scalar product
such that for every X,Y, Z ∈ p:

〈[X,Y ]p, Z〉+ 〈[X,Z]p, Y 〉 = 0.

The almost complex structure is determined
by the endomorphism J of p satisfying

σ∗ = −
1

2
Idp +

√
3

2
J.



A product of NK manifolds is again NK. Con-

versely, the factors of the de Rham decompo-

sition of a NK manifold are NK.

Theorem. (Nagy 2002): Every simply con-

nected, complete, de Rham irreducible NK man-

ifold is either one of the above examples, or a

strict NK 6-manifold.

From now on, we restrict our attention to

strict NK 6-manifolds. These are interesting

for several reasons:



Properties of strict NK 6-manifolds:

• carry real Killing spinors  positive Ein-
stein; after rescaling the metric, one can
normalize them to having scalar curvature
30 (like the round S6).

• ∇J has constant norm  SU(3)-structure

• carry a connection with parallel and skew-
symmetric torsion

∇̃X = ∇X −
1

2
J ◦ ∇XJ

• the Riemannian cone (M×R∗+, t
2g+dt2) of

a normalized NK 6-manifold (M, g, ω) has
holonomy contained in G2, defined by the
positive 3-form

ϕ =
1

3
d(t3ω) =

1

3
t3dω + t2dt ∧ ω



Main problem: lack of examples.

3-symmetric spaces were classified by Gray.

In dimension 6:

• S6 = G2/SU(3)

• SU(2)× SU(2)× SU(2)/∆ ∼ S3 × S3

• Sp(2)/U(2) ∼ CP3

• SU(3)/U(1)×U(1) ∼ F (1,2).

Theorem. (Butruille 2004) These are all

homogeneous SNK 6-manifolds.



Foscolo and Haskins (2017): 2 new examples

(of cohomogeneity 1) on S6 and S3×S3, both

with isometry group SU(2)× SU(2).

Deformations of SNK 6-manifolds were stud-

ied by –, Nagy, Semmelmann (2008, 2010,

2011).

The moduli space is isomorphic to the space

of co-closed primitive (1,1)-forms which are

eigenforms of the Laplace operator for the eigen-

value 12.

Using representation theory one can com-

pute this space on the homogeneous exam-

ples. It vanishes except on F (1,2) where it

has dimension 8. However, these infinitesimal

deformations are obstructed (Foscolo 2017).



SU(3)-structures on SNK 6-manifolds

Let M6 be an oriented manifold. An SU(3)-

structure on M is a triple (g, J, ψ), where

• g is a Riemannian metric,

• J is a compatible almost complex structure

(i.e. ω := g(J ·, ·) is a 2-form),

• ψ = ψ+ + iψ− is a (3,0) complex volume

form satisfying

ψ+ ∧ ψ− = 4volg =
2

3
ω3.

It is possible to characterize SU(3)-structures

in terms of exterior forms only (Hitchin).



Lemma 1 A pair (ω, ψ+) ∈ C∞(Λ2M × Λ3M)

defines an SU(3)-structure on M provided that:

• ω3 6= 0 (i.e. ω is non-degenerate).

• ω ∧ ψ+ = 0.

• If K ∈ End(TM)⊗ Λ6M is defined by

K(X) := (Xyψ+)∧ψ+ ∈ Λ5M ' TM⊗Λ6M,

then trK2 = −1
6(ω3)2 ∈ (Λ6M)⊗2

• ω(X,K(X))/ω3 > 0 for every X 6= 0.

“Proof”: Define J := 6K/ω3, g(·, ·) := ω(·, J ·),

ψ− := −ψ+(J ·, ·, ·).



A normalized SNK structure (g, J, ω) on M6

 SU(3)-structure (g, J, ω, ψ+, ψ−) where

ψ+ := ∇ω, ψ− := −ψ+(J ·, ·, ·).

This satisfies the exterior differential systemdω = 3ψ+

dψ− = −2ω2.

Conversely, an SU(3)-structure satisfying this

system is a normalized SNK structure (Hitchin).

This is similar to the case of G2 structures,

where a stable 3-form is parallel if and only if

it is harmonic.



Toric NK 6-manifolds

An infinitesimal automorphism of a normal-
ized SNK 6-manifold (M, g, J, ω, ψ±) is a vector
field ξ whose flow preserves the whole struc-
ture (enough to have Lξω = 0 = Lξψ+).

Lemma. rk(aut(M, g, J)) ≤ 3.

If equality holds, (M, g, J) is called toric. The
only homogeneous example is S3 × S3.

Assume that (M, g, J) is toric and let ξ1, ξ2, ξ3

be a basis of a Cartan subalgebra of aut(M, g, J).

Lemma. The vector fields

ξ1, ξ2, ξ3, Jξ1, Jξ2, Jξ3

are linearly independent on a dense open subset
M0 of M .

 dual basis {θ1, θ2, θ3, γ1, γ2, γ3} of Λ1M0.



Define the functions

µij := ω(ξi, ξj), ε := ψ−(ξ1, ξ2, ξ3).

The Cartan formula and

dω = 3ψ+

dψ− = −2ω2  

dµij = d(ξjyξiyω) = −ξjyd(ξiyω)

= ξjyξiydω = −3ξiyξjyψ
+.

Similarly,

dε = d(ξ3yξ2yξ1yψ
−) = −ξ3yξ2yξ1ydψ

−

= 2ξ3yξ2yξ1yω
2.

Remarks:

1. ψ+(ξ1, ξ2, ξ3) = 0 on M .

2. ε does not vanish on M0.



It follows that the map µ : M → Λ2R3 ∼=
so(3) defined by

µ :=

 0 µ12 µ13
µ21 0 µ23
µ31 µ32 0


is the multi-moment map of the strong geom-

etry (M,ψ+) defined by Madsen and Swann

(and studied further by Dixon in the particular

case where M = S3 × S3).

Similarly, the function ε is the multi-moment

map associated to the stable closed 4-form

dψ−.



Consider the symmetric 3× 3 matrix

C := (Cij) = (g(ξi, ξj)).

In terms of the basis {θ1, θ2, θ3, γ1, γ2, γ3} of
Λ1M0 we can write

ψ+ = ε(γ123 − θ12 ∧ γ3 − θ31 ∧ γ2 − θ23 ∧ γ1),

ψ− = ε(θ123 − γ12 ∧ θ3 − γ31 ∧ θ2 − γ23 ∧ θ1),

where γ123 = γ1 ∧ γ2 ∧ γ3 etc. Similarly,

ω =
∑

1≤i<j≤3

µij(θ
ij + γij) +

3∑
i,j=1

Cijθ
i ∧ γj

The normalization condition

ψ+ ∧ ψ− =
2

3
ω3

translates into

det(C) = ε2 +
3∑

i,j=1

Cijyiyj,

where

y1 := µ23, y2 := µ31, y3 := µ12.



The previous formula dµij = −3ξiyξjyψ
+can

be restated as

dyi = −3εγi, i = 1,2,3.

Similarly, dε = 2ξ3yξ2yξ1yω
2 is equivalent to

dε = 4
3∑

i,j=1

Cijyiγ
j.

Remark also that ξjydθ
i = 0  explicit

expression of dθi in terms of γj, yj, ε and C.

Let U := M0/T
3 be the set of orbits of the

T3-action generated by the vector fields ξi.

All invariant functions and basic forms de-
scend to U  yi, ε, γ

i, Cij, etc. Since ε
does not vanish on M0  {yi} define a lo-
cal coordinate system on U .

Key point: The system

dω = 3ψ+

dψ− = −2ω2

 ∃ϕ on U such that Hess(ϕ) = C in the
coordinates {yi}.



Let us introduce the operator ∂r of radial

differentiation, acting on functions on U by

∂rf :=
3∑
i=1

yi
∂f

∂yi
.

Claim: The function ϕ can be chosen in

such a way that

ε2 =
8

3
(ϕ− ∂rϕ).

Proof: It is enough to show that the exterior

derivatives of the two terms coincide. Since

∂(∂rϕ)

∂yj
=

3∑
i=1

∂2ϕ

∂yi∂yj
yi +

∂ϕ

∂yj
,

we get:

d(∂rϕ− ϕ) =
3∑

i,j=1

Cijyidyj = −3
3∑

i,j=1

Cijyiεγ
j

= −
3

4
εdε = −

3

8
d(ε2).



On the other hand,

∂2
rϕ = ∂r(

3∑
i=1

yi
∂f

∂yi
) =

3∑
i,j=1

Cijyiyj + ∂rϕ.

Summing up, the previous relation

det(C) = ε2 +
3∑

i,j=1

Cijyiyj

becomes:

det(Hess(ϕ)) = 8
3ϕ−

11
3 ∂rϕ+ ∂2

rϕ.

This Monge-Ampère equation is enough to

recover (locally) the full structure of the toric

SNK manifold provided some positivity con-

straints hold.



The inverse construction

We will show that a solution ϕ of

det(Hess(ϕ)) =
8

3
ϕ−

11

3
∂rϕ+ ∂2

rϕ

on some open set U ⊂ R3 defines a toric SNK

structure on U0 × T3, where U0 is some open

subset of U .

Let y1, y2, y3 be the standard coordinates on

U and let µ be the 3×3 skew-symmetric matrix

µ :=

 0 y3 −y2
−y3 0 y1
y2 −y1 0

 .
Define the 6× 6 symmetric matrix

D :=

(
Hess(ϕ) −µ

µ Hess(ϕ)

)
.

Let U0 ⊂ U denote the open subset

U0 := {x ∈ U | ϕ(x)− ∂rϕ(x) > 0 and D > 0}.



Note that the matrix D is positive definite

if and only if C := Hess(ϕ) > 0 and 〈µa, b〉2 <
〈Ca, a〉〈Cb, b〉 for all (a, b) ∈ (R3 × R3) \ (0,0).

On U0 we define a positive function ε by

ε2 =
8

3
(ϕ− ∂rϕ),

and 1-forms γi by dyi = −3εγi.

We pull-back ε, yi, and γi to U0 × T3 and

define θi on U0×T3 as connection forms whose

curvature is given by the explicit expression of

dθi in the direct construction in terms of C, ε,

yi, and γi.

It remains to check that ω and ψ± defined by

the previous expressions form indeed an SU(3)-

structure on U0 × T3.



Example

Let K := SU2 with Lie algebra k = su2 and
G := K ×K ×K with Lie algebra g = k⊕ k⊕ k.
We consider the 6-dimensional manifold M =
G/K, where K is diagonally embedded in G.
The tangent space of M at o = eK can be
identified with

p = {(X,Y, Z) ∈ k⊕ k⊕ k |X + Y + Z = 0}.
The Killing form B on su2 induces a scalar
product on g by

|(X,Y, Z)|2 := B(X,X) +B(Y, Y ) +B(Z,Z)

which defines a 3-symmetric nearly Kähler met-
ric g on M = S3 × S3.

The G-automorphism σ of order 3 defined by
σ(a1, a2, a3) = (a2, a3, a1) induces a canonical
almost complex structure on the 3-symmetric
space M by the relation

σ =
−Id +

√
3J

2
on p.



J(X,Y, Z) = 2√
3

(Y, Z,X) + 1√
3

(X,Y, Z).

Let ξ be a unit vector in su2 with respect

to B. The right-invariant vector fields on G

generated by the elements

ξ̃1 = (ξ,0,0), ξ̃2 = (0, ξ,0), ξ̃3 = (0,0, ξ)

of g, define three commuting Killing vector

fields ξ1, ξ2, ξ3 on M .

Let us compute g(ξ1, Jξ2) at some point aK ∈
M , where a = (a1, a2, a3) is some element of

G. By the definition of J we have

g(ξ1, Jξ2)aK =
1√
3
B(a−1

1 ξa1, a
−1
2 ξa2).

We introduce the functions y1, y2, y3 : G → R
defined by

yi(a1, a2, a3) =
1√
3
B(a−1

j ξaj, a
−1
k ξak),



for every permutation (i, j, k) of (1,2,3).

A similar computation yields

Cij := g(ξi, ξj)aK = 2δij +
1√
3
yk(a).

The function ϕ in the coordinates yi such

that Hess(ϕ) = C is determined by

ϕ(y1, y2, y3) = y2
1 + y2

2 + y2
3 +

1√
3
y1y2y3 + h,

up to some affine function h in the coordinates

yi. On the other hand, since

det(C) = −
2

3
(y2

1 + y2
2 + y2

3) +
2

3
√

3
y1y2y3 + 8,

the above function ϕ satisfies the Monge–Ampère

equation

det(Hess(ϕ)) =
8

3
ϕ−

11

3
∂rϕ+ ∂2

rϕ

for h = 3.



Radial solutions

We search here radial solutions to the Monge–
Ampère equation on (some open subset of) R3

with coordinates y1, y2, y3.

Write ϕ(y1, y2, y3) := x(r
2

2 ) where x is a func-
tion of one real variable and r2 = y2

1 + y2
2 + y2

3.
A direct computation yields

Hess(ϕ) =

y
2
1x
′′+ x′ y1y2x

′′ y1y3x
′′

y1y2x
′′ y2

2x
′′+ x′ y2y3x

′′

y1y3x
′′ y2y3x

′′ y2
3x
′′+ x′


=x′Id + x′′(

r2

2
)V · tV

where V :=

y1
y2
y3

. In particular,

det Hess(ϕ) = (x′)2x′′r2 + (x′)3

∂rϕ = r2x′, ∂2
rϕ = r4x′′+ 2r2x′,

whence after making the substitution t := r2

2
we get:



Proposition 1 Radial solutions to the Monge-

Ampère equation are given by solutions of the

second order ODE

x′′ = F (t, x, x′)

where F (t, p, q) := 8p−(10tq+3q3)
6(q2t−2t2)

.

To decide which solutions of this equation yield

genuine Riemannian metrics in dimension six,

we observe that

Proposition 2 For any radial solution ϕ = x(r
2

2 ),

the set

U0 := {x ∈ U | ϕ(x)− ∂rϕ(x) > 0 and D > 0}.

defined above is given by

U0 = {t > 0 | x(t) > 2tx′(t) > 2t
√

2t}.



Remark 1 The solutions of the above ODE of

the form x = ktl with k, l ∈ R are x1,2 = ±2
√

2
9 t

3
2

and x3 = kt
1
2, corresponding to

ϕ1,2 = ±
r3

9
, ϕ3 =

k√
2
r.

However, they do not satisfy the positivity re-

quirements from Proposition 2.

Admissible solutions can be obtained by solving

the Cauchy problem with initial data

(t0, x(t0), x′(t0)) ∈ S

where

S := {(t, p, q) ∈ R3 : t > 0, p > 2tq > 2t
√

2t}.


