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Abstract. In this work we provide a complete characterization of left-invariant sym-
metric Killing tensors on almost abelian Lie groups endowed with a left-invariant Rie-
mannian metric. We show in particular that all such tensors are decomposable, in the
sense that they can be expressed as a polynomial in the Killing vector fields and the
Riemannian metric.

1. Introduction

On a Riemannian manifold (M, g), a symmetric p-tensor K ∈ Γ(Symp(TM)) is said to
be Killing if it is constant along geodesics, in the sense that for every geodesic γ : I → M ,
the function (γ′)p⌟(K ◦ γ) is constant on I. Equivalently, K is Killing if and only if its
covariant derivative with respect to the Levi-Civita connection ∇ of g satisfies

(∇XK)(X,X, . . . , , X) = 0,

for every X ∈ X(M). For p = 1, one recovers the definition of Killing vector fields on M .
Symmetric Killing tensors were first investigated for their applications in physics, where

their relevance arose in the study of integrable systems: indeed, symmetric Killing tensors
generate first integrals of the equations of motion. More recently, they have become a
topic of interest in their own right, as in [8, 18], and their conformal generalizations have
been explored in connection with inverse problems, see [6, 17].

The simplest symmetric Killing tensors on a given Riemannian manifold are parallel
tensors (in particular, the metric) and Killing vector fields. A way of producing symmet-
ric Killing tensors is as polynomials (i.e. sum of symmetric products) in these elementary
symmetric Killing tensors. Then, a natural question arises: on a given Riemannian man-
ifold, can every symmetric Killing tensor be produced by this method? This is referred
to as the decomposability problem. Some cases for which the answer to this question is
positive were provided by [19, 20], where it is shown that on spaces of constant sectional
curvature, every symmetric Killing tensor can be written as a polynomial in Killing vector
fields. On the contrary in [11, 13] it is shown that some specific metrics on surfaces carry
indecomposable symmetric Killing 2-tensors. However, the question is still open in higher
degrees: there is no example of Riemannian surface carrying indecomposable symmetric
Killing p-tensors for p ≥ 3.
The papers [8, 18] contain a suitable formalism to deal with Killing tensors, and their

conformal generalizations. This formalism was applied by the last two named authors
to study left-invariant symmetric Killing 2-tensors on 2-step nilpotent Lie groups. More
precisely, in [2] it is shown that on every 2-step nilpotent Lie group of dimension ≤ 7,
every left-invariant symmetric Killing 2-tensor is decomposable. Moreover, the upper
bound on the dimension is sharp since there exist 2-step nilpotent Lie groups carrying
families of indecomposable symmetric Killing 2-tensors in every dimension ≥ 8. First
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integrals of the geodesic flow on Lie groups endowed with left-invariant metrics, and on
their compact quotients by lattices, have been studied by several authors [1, 4, 10, 15, 16].

The goal of this paper is to study left-invariant symmetric Killing tensors on a different
class of solvable Lie groups, namely the almost abelian ones. Recall that a Lie group is
called almost abelian if its Lie algebra contains a codimension one abelian ideal. The
structure of their Lie algebras, which are called almost abelian as well, is encoded in an
endomorphism D ∈ gl(n) (see Section 4 for details). Since the symmetric Killing tensors
under study are left-invariant, we consider them as linear tensors on the Lie algebra.

In Theorem 4.5, we provide a characterization of left-invariant symmetric Killing p-
tensors, for p ≥ 0, that depends on the endomorphismD. We rely on this characterization
to prove the main result of our paper, which is Theorem 5.2: any left-invariant symmetric
Killing tensor on an almost abelian Lie group is decomposable, that is, it can be written
as a polynomial in the metric and Killing vector fields.

The paper concludes with a discussion of almost abelian Lie groups admitting a left-
invariant metric of constant (non-positive) sectional curvature. The curvature constraint
implies that every symmetric Killing tensor is a polynomial in Killing vector fields by
[19, 20]. We are mainly interested in determining if the Killing vector fields that are
linked to the algebraic structure, like left- and right-invariant Killing vector fields, are
enough to generate all left-invariant Killing tensors. We show that this is the case for
zero curvature in Proposition 6.2, but fails to be true otherwise (see Theorem 6.4).
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2. Preliminaries

Let V be an n-dimensional real vector space equipped with an inner product g. For
p ≥ 1, the space of symmetric p-tensors on V , denoted by Symp(V ), is the vector subspace
of the p-th tensor product V ⊗p of V spanned by elements of the form

v1 · . . . · vp :=
∑
σ∈Sp

vσ(1) ⊗ . . .⊗ vσ(p), with vi ∈ V, i = 1, . . . , p.

We may also denote v · . . . · v ∈ Symp(V ) simply by vp. The inner product g on V can be
extended to Symp(V ) by setting:

(1) g(v1 · . . . · vp, u1 · . . . · up) :=
∑
σ∈Sp

g(v1, uσ(1)) . . . g(vp, uσ(p)).

If {ei}1≤i≤n is an orthonormal basis of V , the family {ei1 · . . . · eip |1 ≤ i1 ≤ . . . ≤ ip ≤ n}
is an orthogonal (but not orthonormal) basis of Symp(V ).
Using the metric g, we identify V and its dual V ∗ and, more generally, Symp(V ) with

Symp(V ∗). Also, any symmetric p-linear map T from V p to R can be identified with the
following element in Symp(V )

1
p!

∑
1≤i1≤...≤ip≤n

T (ei1 , . . . , eip) ei1 · . . . · eip .

Under this identification, g corresponds to 1
2
L, where L :=

∑
1≤i≤n ei · ei ∈ Sym2(V ).
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Let us denote by End(V ) the set of endomorphism of V and by EndS(V ) and EndA(V )
its subspaces of symmetric and skew-symmetric endomorphisms with respect to g. Then
the linear map

(2) End(V ) → Sym2(V ), E 7→ SE := 1
2

∑
1≤j≤n

Eej · ej,

is an orthogonal projector and has EndA(V ) as kernel. In particular, denoting by E∗ the
adjoint map of E with respect to g, we have SE = SE∗ , since E −E∗ is skew-symmetric.
Also, when restricted to EndS(V ), this map becomes an isomorphism whose inverse takes
ei · ej to the endomorphism x ∈ V 7→ g(x, ei)ej + g(x, ej)ei, for all i, j = 1, . . . , n.
Let us denote Sym•(V ) := ⊔p≥0Sym

p(V ). Any E ∈ End(V ) can be extended to a
derivation of Sym•(V ), preserving Symp(V ) for all p ≥ 0, as follows (we also denote by
E this extension): For p = 0, we have Sym0(V ) = R and E is the zero map. For p ≥ 1,
take an homogeneous element v1 · . . . · vp ∈ Symp(V ), and set

(3) E(v1 · . . . · vp) :=
∑
1≤i≤p

E(vi) · v1 · . . . · v̂i · . . . · vp,

and extend it linearly to the whole space Symp(V ). It is straightforward to check that
E(A ·B) = E(A) ·B + A · E(B) for all A,B ∈ Sym•(V ).
The following properties will be useful and follow by direct computations: for all E ∈

End(V ), F ∈ EndS(V ),

(4) E(g) = 2SE, E(SF ) = 2SEF .

Let (M, g) be a n-dimensional connected Riemannian manifold with Levi-Civita con-
nection ∇ and let {ei}1≤i≤n be a local orthonormal frame. A symmetric p-tensor on M
is a section of the bundle Symp(TM).

Definition 2.1. The Killing operator d of M is the linear map defined as

(5)
d : Γ(SympTM) → Γ(Symp+1TM)

K 7→ d(K) :=
∑

1≤i≤n ei · ∇eiK.

One can easily check that d(K) does not depend on the choice of the local orthonormal
frame. In addition, d satisfies the Leibniz rule: d(R · S) = d(R) · S + R · d(S) for any
R, S symmetric tensors on M [8, Lemma 2.1].

With respect to this operator, we define the central notion of this paper, the symmetric
Killing tensors on (M, g).

Definition 2.2. A symmetric Killing p-tensor K on M , with p ≥ 0, is a section of the
bundle Symp(TM) such that d(K) = 0. The set of all these tensors is a denoted by
K p(M), and we further set K (M) := ⊔p≥0K p(M).

It is clear from (5) that the Riemannian metric and, more generally, any parallel tensor
on M is a Killing tensor. Also, since d satisfies the Leibniz rule, every symmetric product
of Killing tensors lies again in K (M). This motivates the following definition that is
adapted from the ones given by [2, 7].

Definition 2.3. (1) Let (M, g) be a Riemannian manifold. The metric tensor and
the Killing vector fields, i.e. the elements of the set {g} ∪ K 1(M), are called
primitive Killing tensors of M .

(2) A symmetric Killing p-tensor K ∈ K p(M), p ≥ 1, is said to be decomposable if
it is a polynomial in the primitive Killing tensors, i.e. if K ∈ R[g,K 1(M)].
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Remark 2.4. In order to show that a symmetric Killing tensor K has the decomposable
expression P ∈ R[g,K 1(M)], it is enough to show that both tensors coincide in a non-
empty open set of M . Indeed, it is well known that if a symmetric Killing tensor vanishes
in a non-empty open set of a connected manifold, then it must vanish identically on M
[12, Theorem 7]. Applying this result to K − P , proves the claim.

3. Left-invariant symmetric Killing tensors on Lie groups

Along this section, G is a connected Lie group endowed with a left-invariant Riemann-
ian metric g. In addition, we denote with g the Lie algebra of G, which carries an inner
product, also denoted by g, induced by evaluating the Riemannian metric at the identity
e ∈ G. We fix an orthonormal basis {ei}ni=1 of g. Below, we study the Killing condition
for left-invariant symmetric tensors on G.

The left and right translations on G by an element a ∈ G are denoted, respectively, by

La : u ∈ G 7→ au ∈ G, and Ra : u ∈ G 7→ ua ∈ G.

We may also consider the conjugation by a defined as the composition Ia := La ◦ Ra−1

Clearly, each of these maps is a diffeomorphism. Left-invariance of g is equivalent to La

being an isometry of (G, g) for all a ∈ G.

Definition 3.1. A (k, l)-tensor field S defined onG is said to be left-invariant if it satisfies
(La)∗S = S, for all a ∈ G, where (La)∗ denotes the push-forward induced by La.

With this notion, the space of left-invariant (k, l)-tensor fields on G is identified with
the space of (k, l)-linear tensors in g, namely, with elements of g⊗k⊗(g∗)⊗l. In particular,
left-invariant symmetric p-tensors on G are identified with Symp(g), and we denote by
K p(g) ⊂ Symp(g) the subspace corresponding to left-invariant symmetric tensors on G
satisfying the Killing equation of the Definition 2.2.

We denote by ∇ the Levi-Civita connection corresponding to (G, g). For left-invariant
vector fields X and Y on G, ∇YX is again left-invariant; thus, through the above iden-
tification, ∇YX has a corresponding element in g, denoted by ∇yx, for x, y the values of
the vector fields X, Y at the identity of G. Koszul’s formula implies

(6) ∇yx = 1
2

(
adyx− ad∗

yx− ad∗
xy
)
, for all x, y ∈ g.

One can easily show that for a left-invariant symmetric p-tensor K on G, d(K) defined
in (5) is also left-invariant. Then, d(K) has a corresponding element in Symp+1(g) and
we can consider the restriction of the map (5) on left-invariant symmetric tensors as a
map from Symp(g) to Symp+1(g).

In the context above, the following proposition gives an algebraic expression for the
Killing operator when restricted to left-invariant tensor fields, and thus identified with
the symmetric product in the Lie algebra.

Proposition 3.2. For any K ∈ Symp(g),

(7) d(K) =
∑

1≤j≤n

ej · adej(K),

where adej acts on K as described in (3).

Proof. We proceed by induction. For p = 1, Koszul’s formula and (2) give

d(x) =
∑

1≤i≤n

ei · ∇eix = −1
2

∑
1≤i≤n

ei ·
(
adxei + ad∗

ei
x+ ad∗

xei
)
=
∑

1≤i≤n

ei · adeix
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where the last equality holds since∑
1≤i≤n

ei · ad∗
xei =

∑
1≤i,j≤n

ei · ej g(ad∗
xei, ej) =

∑
1≤i,j≤n

ei · ej g(ei, adxej) =
∑

1≤j≤n

adxej · ej,

and the sum of the middle terms vanishes.
Now, suppose (7) holds for symmetric tensors of degree ≤ p. Then, applying the

Leibniz rule for d and adej and the inductive hypothesis, we get for every x ∈ g and
K ∈ Symp(g):∑
1≤j≤n

ej ·adej(x ·K) =
∑

1≤j≤n

ej · (adej(x) ·K+x ·adej(K)) = d(x) ·K+x ·d(K) = d(x ·K).

The formula thus holds for tensors in Symp+1(g) of the type x · K with x ∈ g and
K ∈ Symp(g), so by linearity it holds on Symp+1(g). □

The previous proposition allows us to characterize symmetric Killing tensors of degrees
1 and 2.

Corollary 3.3. (1) For every x ∈ g, d(x) = −2Sadx.
(2) Given K ∈ Sym2(g) a symmetric 2-tensor, one has

K ∈ K 2(g) if and only if
∑

1≤i≤n

ei · Sadei◦K = 0,

where, on the right hand side, K is viewed as a symmetric endomorphism of g.

Proof. The first assertion follows directly from (2) and (7) (see also [3, Section 2.2]). For
the second item, let K ∈ Sym2(g). Proposition 3.2 and (4) imply

d(K) =
∑

1≤i≤n

ei · adei(K) = 2
∑

1≤i≤n

ei · Sadei◦K ,

where K is viewed as an element in EndS(g) in the last equation. This proves our
claim. □

For every (k, l)-tensor field S defined on G, we consider the map

(8) u ∈ G 7→ (Lu−1)∗Su ∈ g⊗k ⊗ (g∗)⊗l.

In particular, S is left-invariant if and only if this map is constant. The composition of
this map with the exponential map of G defines the function

(9)
ΩS : g → G → g⊗k ⊗ (g∗)⊗l

w 7→ exp(w) 7→ (Lexp(−w))∗Sexp(w).

In particular, for every symmetric product of vector fields, one has

(10) ΩX1·...·Xk
(w) = ΩX1(w) · . . . · ΩXk

(w), for all w ∈ g, Xi vector fields on G.

We denote by Iso(G, g) the isometry group of (G, g), i.e., the set of diffeomorphisms
f : G → G satisfying f ∗g = g. The isometry group has a natural Lie group structure
and its Lie algebra is isomorphic to the Lie algebra of complete Killing vector fields on
the manifold G. Since homogeneous manifolds are complete, Lie(Iso(G, g)) encodes all
the information about Killing vector fields on our Riemannian manifold (G, g).
It is clear that G is a Lie subgroup of Iso(G, g) by considering the map a ∈ G 7→ La ∈

Iso(G). At the Lie algebra level, this injection defines a map g 7→ K 1(G) that can be
described as follows: for each x ∈ g, we consider the vector field ξx ∈ K 1(G) generated
by right-translations of x. Namely, for any u ∈ G, (ξx)u = (Ru)∗x = (Lu)∗Ad(u

−1)x.
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Using this expression for u = exp(w) ∈ exp(g) we get an expression for the map Ωξx

defined in (9), which becomes

(11) Ωξx(w) = Ad(exp(−w))x = e−ad(w)x = x − [w, x] + 1
2
[w, [w, x]] − . . . ∈ g.

Note that the left-invariant vector field induced by x ∈ g is Killing if and only if adx is a
skew-symmetric map of g, due to Corollary 3.3(1).

Denote by Auto(G) the set of Lie group automorphisms of G which are isometries with
respect to g. It also has a Lie a group structure and, when G is simply connected, it is
isomorphic to Auto(g), the Lie group of automorphism of g which are linear isometries.
The Lie algebra of the latter is the following

Dera(g) := {T ∈ so(g): T [x, y] = [Tx, y] + [x, Ty] for all x, y ∈ g}.
We now describe the procedure to induce Killing vector fields on G from elements

in Dera(g). For T ∈ Dera(g), etT ∈ Auto(g) for all t ∈ R. If G is simply connected,
then for each t there exists an isometry ft of (G, g) such that (ft)∗e = etT . Therefore,

(ξT )u = d
dt

∣∣∣
t=0

ft(u) is a Killing vector field which we call induced by T ; note that ft is the

flow of ξT . If G is not simply connected, and G = G̃/Γ for G̃ its universal cover and Γ
a central discrete subgroup, the Killing vector field ξT of G̃ descends to G if and only if
ft(γ) = γ for all t ∈ R and γ ∈ Γ (i.e. ξT vanishes at each point of Γ). In this case, we
also denote by ξT the induced Killing vector field on G and by ft its flow.
Let ξT be a Killing vector field induced by T ∈ Dera(g) on G. Considering u ∈ G of

the form u = exp(w), w ∈ g, canonical computations give

(ξT )exp(w) = (exp)∗w(Tw).

By [9, Theorem 1.7, Ch. II], (exp)∗w = (Lexp(w))∗e

(
1−e−adx

adx

)
. Using this expression, the

map (9) corresponding to the vector field ξT becomes

(12) ΩT (w) = T (w)− 1
2
adwT (w) +

1
6
ad2

wT (w)− . . . .

For further details in the above computations, we refer the reader to [2, Section 2].
The Killing vector fields mentioned above take into account the algebraic structure of

the Lie group G. We thus introduce the following definition.

Definition 3.4. On a Lie group (G, g) endowed with a left-invariant metric, Killing
vector fields that are right- or left-invariant, induced by skew-symmetric derivations and
linear combination of these, are called algebraic Killing tensors.

It is worth mentioning that, in general, Lie groups with left-invariant metrics possess
Killing vector fields which are not algebraic (see, for instance, [5]). However, there exist
classes of Lie groups for which ξx and ξT , for x ∈ g and T ∈ Dera(g), span the vector
space of Killing fields such as, for instance, the nilpontent and simply connected ones
[22].

Let S be a (k, l)-tensor field on G. If S is left invariant, then ΩS is constant in g.
However, if ΩS is constant, we only get the identity Sexp(w) = (Lexp(w))∗Se for the image
of the exponential map. The following result shows that if S is a symmetric Killing
p-tensor, the last identity is enough to conclude that S is left-invariant.

Proposition 3.5. On a connected Lie group G, a symmetric Killing p-tensor S is left
invariant if and only if ΩS is a constant function.

Proof. Let S be a symmetric Killing p-tensor. As pointed out above, if S is left-invariant
then ΩS is constant. For the converse, assume ΩS is constant and set K the left-invariant
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symmetric p-tensor whose value at e is ΩS(0) = Se. Therefore, if V is an open neigh-
borhood of e and U is open in g such that exp : U → V is a diffeomorphism, we have
S|V = K|V . Indeed, for x ∈ V , x = expw for some w ∈ U and

Sx = (Lexpw)∗ΩS(w) = (Lexpw)∗Se = Kx,

where we used the definitions of ΩS and K.
Moreover, since S is Killing in G, K is Killing in V and thus, by using left-translations

(which are isometries), we get that K is a Killing p-tensor in G. By Remark 2.4, K = S
and thus S is left-invariant. □

4. Symmetric Killing tensors in the almost abelian context

In this section, we describe the left-invarint symmetric Killing tensors on connected
almost abelian Lie groups, by a correspondence with their Lie algebras.

Definition 4.1. A Lie algebra is called almost abelian if it has an abelian ideal of
codimension 1.

Let g be an (n + 1)-dimensional almost abelian Lie algebra with an inner product g,
and let h an abelian ideal of g with codimension 1. We fix b ∈ g satisfying g(b, b) = 1
and b ⊥ h. Since h is an ideal, it is preserved by adb, and we denote

(13)
D := adb|h : h → h

h 7→ D(h) = [b, h].

It is easy to show that the Lie algebra g is isomorphic to the semidirect product of Rb and
h via the representation ρ : Rb → Der(h) such that ρ(b) = D. We denote this semidirect
product as Rb⋉D h and we write g = Rb⋉Dh from now on; this is the presentation of the
almost abelian Lie algebras with which we will be working.

We now fix an orthonormal basis {h1, . . . , hn} of h. Recall that, in Section 2, we set
L = 2g which verifies L ∈ K (g). We define the symmetric 2-tensor Lh :=

∑
1≤i≤n h

2
i ∈

Sym2(h), and we thus get L = b2 + Lh. For the next result, we consider D both as an
endomorphism of h and also as an endomorphism of g, extending it by zero on b.

Proposition 4.2. (1) d(b) = −2SD = −1
2
D(Lh). In particular, b ∈ K 1(g) if and

only if D is skew-symmetric.
(2) For every K ∈ Symp(h), d(K) = b ·D(K). In particular, K ∈ K p(g) if and only

if D(K) = 0.

Proof. By Corollary 3.3(1), d(b) = −2Sadb = −2SD = −
∑

1≤j≤nD(hj) · hj = −1
2
D(Lh).

Now, let K ∈ Symp(h); by Proposition 3.2, d(K) = b · adb(K) +
∑

1≤j≤n hj · adhj
K.

Since K is a symmetric tensor in h, which is abelian, adhj
K = 0 for all j, so (2) fol-

lows. The rest of the proof is immediate since being Killing is equivalent to d(K) = 0. □

The following proposition provides a useful presentation of symmetric tensors on g,
when interpreted as homogeneous polynomials in b.

Lemma 4.3. For every K ∈ Symp(g), there exist unique symmetric tensors
αi ∈ Symp−2i−1(h), βi ∈ Symp−2i(h), i = 1, . . . , ⌊p

2
⌋, such that

(14) K =
∑

0≤i≤⌊p
2
⌋

Li · qi,

where qi := αi · b+ βi. By convention we set Sym−1(h) := 0.
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Proof. We first show uniqueness. Assume that (14) holds. Then, for every s = 1, . . . , ⌊p
2
⌋,∑

0≤i≤s−1 L
i · qi is the reminder of the division of K by Ls in R[h1, . . . , hn][b]. So q0 is

unique and, since multiplication by L is injective, all qi are uniquely determined.
To show existence, we proceed by induction. For p = 0, K ∈ Sym0(g) = R. We have

to write K = L0 · q0 with q0 = β0 ∈ R, since α0 ∈ Sym−1(h) = 0. But L0 = 1, so β0 := K
satisfies (14).

For p = 1, K ∈ Sym1(g) = g and we have to write K = L0 · q0 = q0 with q0 = α0b+ β0

with α0 ∈ R and β0 ∈ Sym1(g). Since g = Rb ⊕ h and K ∈ g, there exist α0 ∈ R and
β0 ∈ h such that K = α0b+ β0.
Assume that the statement holds for symmetric tensors of degree p− 2 ≥ 0. Let K ∈

Symp(g). We apply the division algorithm in R[h1, . . . , hn][b] to write K = L ·Q+ q0,
where Q ∈ Symp−2(g) and the remainder q0 has degree at most 1 in b. By the induction
hypothesis, for i = 0, . . . , ⌊p−2

2
⌋ there exist α′

i ∈ Sym(h)p−2i−3, β′
i ∈ Sym(h)p−2i−2 such

that
Q =

∑
0≤i≤⌊p−2

2
⌋

Li · q′i,

where q′i = α′
ib+ β′

i. Therefore,

K = L ·

( ∑
0≤i≤⌊p−2

2
⌋

Li · q′i

)
+ q0 =

∑
0≤i≤⌊p

2
⌋−1

Li+1 · q′i + q0

=
∑

1≤j≤⌊p
2
⌋

Lj · q′j−1 + L0 · q0 =
∑

0≤j≤⌊p
2
⌋

Lj · qj,

where qj := q′j−1 for 1 ≤ j ≤ ⌊p
2
⌋. Dividing q0 by b we get α0 ∈ R, β0 ∈ h such that

q0 = α0b + β0; in addition we take αi := α′
i−1 and βi := β′

i−1 for 1 ≤ i ≤ ⌊p
2
⌋, and the

result follows. □

Consider K ∈ Symp(g) and write it as in Lemma 4.3. From now on, we denote r := ⌊p
2
⌋

for convenience. Then, we can write K as follows

(15) K =
∑
0≤i≤r

Li ·(αi ·b+βi) = Ko+Ke, where Ko := b·
∑
0≤i≤r

Li ·αi, K
e :=

∑
0≤i≤r

Li ·βi.

Notice that Ko and Ke have odd and even degree in b, respectively.

Proposition 4.4. In the notation above, K is Killing if and only if Ko and Ke are
Killing.

Proof. Considering K as in (15), and recalling that d(L) = 0, we use Proposition 4.2 to
compute d(K):

d(K) = d(Ko) + d(Ke)

=

(
− 2SD ·

∑
0≤i≤r

Li · αi + b ·
∑
0≤i≤r

Li · b ·D(αi)

)
+

( ∑
0≤i≤r

Li · b ·D(βi)

)
.

Since SD = 1
4
D(Lh) ∈ Sym2(h), we have that d(Ko) has even degree in b, while d(Ke)

only odd degree in b. Therefore, d(K) = 0 if and only if d(Ko) = 0 and d(Ke) = 0. □

Theorem 4.5. Let K = Ko +Ke ∈ Symp(g) as above. Then

(1) Ke is Killing if and only if βi is Killing for all i = 0, . . . , r.
(2) If D is skew-symmetric, Ko is Killing if and only if αi is Killing for all i = 0, . . . , r.
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(3) If D is not skew-symmetric, Ko is Killing if and only if Ko = 0.

Proof. (1) We have d(Ke) =
∑

0≤i≤r L
i · b ·D(βi), and by the uniqueness guaranteed by

Lemma 4.3 (since ⌊p
2
⌋ ≤ ⌊p+1

2
⌋), we have

d(Ke) =
∑
0≤i≤r

Li · b ·D(βi) = 0 ⇔ D(βi) = 0 ∀i = 0, . . . , r.

(2) If D is skew-symmetric we have that d(b) = 0 by Proposition 4.2(1), so d(Ko) =∑
0≤i≤r L

i ·b2 ·D(αi), and againKo is Killing if and only ifD(αi) = 0 for every i = 0, . . . , r.

(3) Assume now that D is not skew-symmetric, so SD is a non-zero element in Sym2(h).
We have the following expression for d(Ko):

d(Ko) =
∑
0≤i≤r

Li ·
(
b2 ·D(αi)− 2αi · SD

)
=

∑
0≤i≤r

Li ·
(
(L− Lh) ·D(αi)− 2αi · SD

)
=

∑
0≤i≤r

Li+1 ·D(αi)−
∑
0≤i≤r

Li · Lh ·D(αi)− 2
∑
0≤i≤r

Li · αi · SD.

Therefore,

d(Ko) = Lr+1 ·D(αr) +
∑
1≤i≤r

Li ·
(
D(αi−1)− Lh ·D(αi)− 2αi · SD

)
+ L0 ·

(
− 2α0 · SD − Lh ·D(α0)

)
.

Notice that D(αr) = 0, since either p is even and αr ∈ Sym−1(h) = 0 or p is odd and
αr ∈ Sym0(h) = R.

Therefore

d(Ko) =
∑
1≤i≤r

Li ·
(
D(αi−1)− Lh ·D(αi)− 2αi · SD

)
+ L0 ·

(
− 2α0 · SD − Lh ·D(α0)

)
.

Again, by the uniqueness of the decomposition, d(Ko) = 0 implies that each coefficient
of Li must be zero. Then, the above equality is equivalent to the system

(16)

{
0 = 2SD · α0 +D(α0) · Lh

D(αi) = 2SD · αi+1 +D(αi+1) · Lh, i = 0, . . . , r − 1.

We claim that the system (16) is equivalent to

(17)

{
α0 =

∑r
i=1(−1)αi · Li

h

D(αk) = 2SD ·
∑r

i=k+1 αi · Li−k−1
h , k = 0, . . . , r.

In fact, a simple induction argument using the second equation in (16) gives the second
equation in (17). In particular, D(α0) = 2SD ·

∑r
i=1 αi · Li−1

h and using this in the first
equation of (16) gives

0 = 2SD · α0 + 2SD ·

(
r∑

i=1

αi · Li−1
h

)
· Lh = 2SD ·

(
r∑

i=0

αi · Li−1
h

)
,
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which implies the first equation of (17) since SD ̸= 0. Finally, one can easily check that
(17) implies (16), thus proving our claim.

Next we show that (17) implies

(18) αk =
r∑

i=k+1

ck(i)αi · Li−k
h with ck(i) < 0, for all k = 0, . . . , r, i = k + 1, . . . r.

We proceed by induction. For k = 0 this holds due to the first equation in (17). Assume
that (18) is valid for some k ≤ r − 1. Then, applying D to (18) and using the fact that
D acts as a derivation on tensors, we get

D(αk) =
r∑

i=k+1

ck(i)D(αi) · Li−k
h +

r∑
i=k+1

ck(i)αi ·D(Li−k
h )

= 2SD ·

(
r∑

i=k+1

r∑
j=i+1

ck(i)αj · Lj−k−1
h + 2

r∑
i=k+1

ck(i)(i− k)αi · Li−k−1
h

)

= 2SD ·

(
r∑

j=k+2

j−1∑
i=k+1

ck(i)αj · Lj−k−1
h + 2

r∑
i=k+1

ck(i)(i− k)αi · Li−k−1
h

)

= 2SD ·

(
r∑

j=k+2

Mj(k)αj · Lj−k−1
h + 2

r∑
j=k+1

ck(j)(j − k)αj · Lj−k−1
h

)
,

where Mj(k) =
∑j−1

i=k+1 ck(i), j = k + 2, . . . r and, in the second equality, we use the

second equation in (17) and D(Li−k
h ) = 4(i− k)SD · Li−k−1

h (which follows from a simple
induction).

On the other hand, D(αk) = 2SD ·
∑r

j=k+1 αj · Li−k−1
h by (17), so we obtain

(19)
r∑

j=k+2

Mj(k)αj · Lj−k−1
h + 2

r∑
j=k+1

ck(j)(j − k)αj · Li−k−1
h =

r∑
j=k+1

αj · Lj−k−1
h ,

and, since ck(k + 1) < 0, we can isolate αk+1 as

(20) αk+1 =
r∑

j=k+2

1−Mj(k)− 2ck(j)(j − k)

(2ck(k + 1)− 1)
αj · Lj−k−1

h .

Therefore, αk+1 =
∑r

j=k+2 ck+1(j)αjL
j−k
h where

ck+1(j) =
1−Mj(k)− 2ck(j)(j − k)

(2ck(k + 1)− 1)
, j = k + 2, . . . , r.

By induction hypothesis ck(j) < 0 for all i = k + 1, . . . , r, so 2ck(k + 1) − 1 < 0,

Mj(k) =
∑j−1

i=k+1 ck(i) < 0 so 1 − Mj(k) − 2ck(j)(j − k)) > 0 for all j = k + 2, . . . , r.
Hence ck+1(j) < 0 for all j = k + 2, . . . , r as we wanted to show.
Finally, it remains to prove that (18) implies αk = 0 for all k = 0, . . . , r. This follows

immediately by using recursively that equation, indeed, (18) for k = r implies αr = 0.
The same equation for k = r − 1 gives αr−1 = cr−1(r)αr · Lh = 0, and so on. Therefore
αk = 0 for all k = 0, . . . , r which gives K◦ = 0. □

In the next example, we describe the decomposition in Lemma 4.3 and the characteri-
zation of the Killing condition in Theorem 4.5 for the particular case p = 2.
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Example 4.6. Consider K an element in Sym2(g) written in the orthonormal basis
{b, h1, . . . , hn} of g as

K = λb2 + v · b+
∑

1≤i≤j≤n

aijhi · hj,

for some λ, aij ∈ R, i, j = 1, . . . , n and v ∈ h. Setting β0 :=
∑

1≤i≤j≤n(aij − λδij)hi · hj,
α0 := v and β1 := λ we get the decomposition as in Lemma 4.3:

(21) K = L · β1 + α0 · b+ β0.

In this case, the odd and even parts of K are, respectively, Ko = α0 · b and Ke =
L · β1 + β0. By Proposition 4.4 and Theorem 4.5, K is Killing if and only if β1, α0 and
β0 are Killing. Since these are symmetric tensors in h, the Killing condition is equivalent
to being annihilated by D due to Corollary 2(2). That is:

• β1 ∈ R, then D(β1) = 0 automatically, as mentioned in Section 2;
• α0 ∈ h, then D(α0) = 0 if and only if α0 ∈ Ker(D);
• Viewing β0 as a symmetric endomorphism of h, by (4) we have D(β0) = 2SD◦β0 .
Then D(β0) = 0 if and only if D ◦ β0 is a skew-symmetric endomorphism of h.

Therefore, K in (21) is a symmetric Killing 2-tensor in g if and only if α0 ∈ Ker(D) and
D ◦ β0 is skew-symmetric.

5. Decomposability

Wemaintain the notation of the previous section so that g denotes an (n+1)-dimensional
almost abelian Lie algebra, which is isomorphic to g = Rb⋉Dh, where h is an abelian
ideal and D = adb|h. We fix an orthonormal basis {h1, . . . , hn} of h with respect to the
inner product g, and let G be a connected Lie group with Lie algebra g.

In this section, we address the problem of decomposability of left-invariant symmet-
ric Killing tensors defined on G, in terms of Definition 2.3. Recall that left-invariant
symmetric p-tensors on G are identified with elements on Symp(g).

We start by describing the Killing vector fields inG via their associated function defined
in (9). For each hi in the fixed basis, we compute Ωξhi

, where ξhi
is the right-invariant

vector field induced by hi as in (11). For w = γb + h ∈ g, γ ∈ R and h ∈ h, one has
adj

w(hi) = γjDj(hi) for all j ≥ 0, i = 1, . . . , n. Indeed:

adw(hi) = [γb+ h, hi] = γD(hi)

and, assuming the equality holds for j, we have

adj+1
w (hi) = [w, adj

w(hi)] = [γb+ h, γjDj(hi)] = γj+1Dj+1(hi).

Using this expression in (11), we get for all i = 1, . . . , n,

(22) Ωξhi
(γb+ h) = e−adw(hi) =

∑
k≥0

(−γ)k

k!
Dk(hi) = e−γD(hi).

Similarly, adn
w(b) = −γn−1Dn(h) and then

(23) Ωξb(γb+ h) = b+
∑
k≥1

(−γ)k−1

k!
Dk(h).

We will now investigate skew-symmetric derivations of g. Given T ∈ so(g), we define
v := T (b) and T h = prhT |h, the projection to h of the restriction T |h of T to h. Then
g(b, T (b)) = 0 implies v ∈ h and we can write

(24) T (γb+ h) = γT (b) + T (h) = γv + g(b, T (h))b+ T h(h) = γv − g(v, h)b+ T h(h).
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Using the notation

(v ∧ w)(x) := g(v, x)w − g(w, x)v, ∀v, w, x ∈ g,

the above relation reads T = b ∧ v + T h. Straightforward computations show that T is a
derivation of the Lie algebra g if and only if

(25)


[
T h, D

]
= 0

ImD ⊂ v⊥ ∩ h
|v|2D(v⊥) = 0

Notice that D2 ̸= 0 implies v = 0 due to the last two equations.
In addition, following and inductive argument, one can show

(26) adk
wT (w) = Dk(γk+1v + γkT h(h) + γk−1g(v, h)h), ∀w = γb+ h ∈ g, n ≥ 1.

Using this formula, the function ΩT defined in (12) has the following expression:

(27) ΩT (γb+ h) = γv + T h(h)− g(v, h)b− 1
2
D(γ2v + γT h(h) + g(v, h)h)

+
∑
k≥2

(−1)k

(k+1)!
Dk(γk+1v + γkT h(h) + γk−1g(v, h)h).

In terms of Lie group actions, GL(g) acts on Symp(g) as follows: for A ∈ GL(g) and
v1 · . . . · vp ∈ Symp(g),

(28) A(v1 · . . . · vp) = A(v1) · . . . · A(vp).
We claim that for any D ∈ gl(g), K ∈ Symp(g) and γ ∈ R, the action of e−γD ∈ GL(g)

on K satisfies

e−γD(K) =
∑
j≥0

(−γ)j

j!
Dj(K) = K − γD(K) + γ2

2
D2(K)− . . . ,

where D(K) is the action of D on K given in (3).
Indeed, the action of e−γD ∈ GL(g) on a symmetric 2-tensor v1 · v2 ∈ Sym2(g) verifies

e−γD(v1 · v2)
(28)
= e−γD(v1) · e−γD(v2)

=
(∑

i≥0

(−1)i

i!
γiDi(v1)

)
·
(∑

j≥0

(−1)j

j!
γjDj(v2)

)
=

∑
t≥0

(−1)tγt
∑
i,j≥0
i+j=t

1
i!j!

Di(v1) ·Dj(v2)

=
∑
t≥0

(−1)tγt 1
t!
Dt(v1 · v2)

= v1 · v2 − γD(v1 · v2) + γ2

2
D2(v1 · v2)− . . . .

Our claim follows from an inductive argument for symmetric p-tensors.
The following result shows that any left-invariant symmetric Killing tensor K on g that

verifies K ∈ Symp(h) is decomposable. More precisely:

Proposition 5.1. Let K ∈ Symp(h) ∩ K p(g) written as above. Then, K can be written
as a polynomial in right-invariant vector fields of G.

Proof. Let K be a symmetric Killing p−tensor on g that verifies K ∈ Symp(h). For any
such tensor, we have

K = 1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)hi1 · . . . · hip .
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Using the components of K above, we define the following symmetric Killing p-tensor
on G

S := 1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)ξhi1
· . . . · ξhip

,

where ξhi
is the right-invariant Killing vector field induced by hi. Notice that, in principle,

S is not necessarily left-invariant. Next we show that this is in fact the case.
We consider the function ΩS defined in (9), and we evaluate it on an arbitrary element

γb+ h of g, where γ ∈ R and h ∈ h. We obtain:

ΩS(γb+ h) = 1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)Ωξhi1
·...·ξhip

(γb+ h)

= 1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)Ωξhi1
(γb+ h) · . . . · Ωξhip

(γb+ h)

= 1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)e
−γD(hi1 · . . . · hip)

= e−γD

(
1
p!

∑
1≤i1,...,ip≤n

K(hi1 , . . . hip)hi1 · . . . · hip

)
= e−γD(K) = K,

where the last equality holds since K ∈ Symp(h) is Killing in g and thus D(K) = 0 by
Proposition 4.2(2).

This shows that ΩS is constant in g and equal to the the symmetric p-tensor K.
Therefore, by Proposition 3.5, the tensor field S on G is left-invariant. Since it coincides
with K at e, we obtain that S is equal to the (left-invariant) tensor field K on G, and
thus K is a polynomial in right-invariant vector fields in G as claimed. □

We now prove our main result: every left-invariant symmetric Killing tensor on an
almost abelian Lie group is decomposable.

Theorem 5.2. Let G be an almost abelian Lie group, equipped with a left-invariant
Riemannian metric. Then, every left-invariant symmetric Killing p-tensor on G is a
polynomial in the metric and right- and left-invariant Killing vector fields.

Proof. Denote by g the Lie algebra of G. Consider K ∈ K p(g) written K = Ko +Ke as
in (15):

K = Ko +Ke, where Ko := b ·
∑

0≤i≤⌊p
2
⌋

Li · αi, K
e :=

∑
0≤i≤⌊p

2
⌋

Li · βi,

with αi ∈ Symp−2i−1(h) and βi ∈ Symp−2i(h). Since K is Killing, αi and βi are Killing
for every 0 ≤ i ≤ ⌊p

2
⌋, by Proposition 4.4 and Theorem 4.5.

By Proposition 5.1, for each i = 0, . . . ⌊p
2
⌋, αi and βi can be written as a linear com-

bination of symmetric products of Killing vector fields. Since L = 2g ∈ K (g) we get
directly that Ke is decomposable. We claim that Ko is decomposable as well.
Indeed, when D is not skew-symmetric then Ko = 0 by Theorem 4.5, so the claim

holds trivially. For D skew-symmetric, the left-invariant vector field determined by b is
a Killing vector field by Proposition 4.2, and thus Ko is a polynomial in L and Killing
vector fields, i.e. it is decomposable in terms of Definition 2.3. □
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6. Constant sectional curvature

In this section, we focus on connected almost abelian Lie groups endowed with left-
invariant metrics that have constant sectional curvature. Almost abelian Lie groups are
in particular solvable, so the Riemannian manifolds under consideration are either flat or
negatively curved space forms.

The motivation to study this particular case is the well known result of Thompson and
Takeuchi [19, 20]: on a connected Riemannian manifold of constant sectional curvature,
any symmetric Killing p-tensor can be written as a polynomial in Killing vector fields.

Our aim is to analyze whether it is possible to refine Thompson and Takeuchi’s result
for almost abelian Lie groups with constant sectional curvature, in terms of their alge-
braic structure, i.e. using their algebraic Killing vector fields (see Definition 3.4). More
precisely, we ask the following:

Question 6.1. Let (G, g) be a connected almost abelian Lie group with a left-invariant
metric of constant sectional curvature. Is every left-invariant Killing p-tensor on G a
polynomial in algebraic Killing vector fields?

Note that if the answer is affirmative for a connected Lie group, then it is so also for
its universal cover.

Let (G, g) be a connected almost abelian Lie group endowed with a left-invariant Rie-
mannian metric, and let g = Rb⋉D h be its Lie algebra, where D = adb|h. We maintain
the notation of the previous sections. Then, (G, g) has constant sectional curvature if and
only if D = λId+A, where A is a skew-symmetric endomorphism of h (see [14, Theorem
1.5] and [21, Theorem 4.2]). Moreover, it is flat if and only if λ = 0.

Proposition 6.2. If (G, g) is flat then every left-invariant symmetric Killing p-tensor
can be written as a polynomial in left- and right-invariant Killing vector fields.

Proof. If (G, g) is flat, then D is skew-symmetric by the results cited above. Therefore,
the left-invariant vector field on G induced by b is Killing due to Corollary 3.3(1) and
Lh = b2 −L is also a symmetric Killing tensor. This implies, by Proposition 5.1, that Lh

is a polynomial in right-invariant Killing vector fields. From Theorem 5.2, we obtain that
every left-invariant symmetric Killing tensor K is a polynomial in left- and right-invariant
Killing vector fields. □

This proposition answers by the affirmative Question 6.1. For constant non-zero scalar
curvature, the situation is different as we shall see next. First of all, there are no non-
trivial left-invariant Killing vector fields in this case.

Lemma 6.3. If (G, g) has constant non-zero curvature, then no non-zero left-invariant
vector field is a Killing vector field.

Proof. The curvature hypothesis implies that D = λId + A with λ ̸= 0 and A skew-
symmetric. In particular D is invertible. Assuming that x = γb+ h ∈ g, with γ ∈ R and
h ∈ h, determines a left-invariant Killing vector field, we obtain

0 = d(x) = γd(b) + d(h) = −γ
2
D(Lh) + b · D(h) ⇔

{
D(h) = 0
γ
2
D(Lh) = 0

⇔
{

h = 0
γ = 0

.

It then follows that x = 0. □

Consequently, in the case of constant non-zero curvature, Question 6.1 is reduced to
whether any left-invariant Killing tensor can be written as a polynomial in Killing vector
fields that are either right-invariant or induced by skew-symmetric derivations. We will
show that the answer is negative in this case:
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Theorem 6.4. If (G, g) has constant non-zero sectional curvature, then the metric can-
not be expressed as a polynomial in right-invariant vector fields and Killing vector fields
induced by skew-symmetric derivations.

Proof. First notice that for any T = b ∧ v + T h ∈ Dera(g), we must have v = 0 and
[T h, D] = 0, due to (25).

Assume that the metric can be expressed as a degree 2 polynomial in the algebraic
Killing vector fields of G. Then there exist real constants Ai,j, Bi,j and Ci,j and skew-

symmetric derivations {Ti = T h
i }1≤i≤m ⊂ Dera(g) such that

(29) L = A0,0ξb · ξb +
∑

1≤i≤n

A0,iξb · ξhi
+

∑
1≤i≤j≤n

Ai,jξhi
· ξhj

+
∑

1≤i≤m

B0,iξb · ξTi

+
∑

1≤i≤n
1≤j≤m

Bi,jξhi
· ξTj

+
∑

1≤i≤j≤m

Ci,jξTi
· ξTj

.

Recall that for every x ∈ g and T ∈ Dera(g), ξx denotes the left-invariant vector field
on G induced by x and ξT is the Killing vector field induced by T (see Section 3). We
are going to compute ΩL(γb+ h), for γ ∈ R and h ∈ h, using the right hand side of this
equality, which has to coincide with L, since the metric is left-invariant. By linearity of
Ω and (10), we compute ΩL using the formulas (22), (23) and (27) (for v = 0), which
gives

ΩTi
(γb+ h) = T h

i (h)−
γ
2
DT h

i (h) +
γ2

3!
D2T h

i (h)− . . . .

For γ = 0 and h = 0, one has

b2 + Lh = ΩL(0) = A0,0b · b+
∑

1≤i≤n

A0,ib · hi +
∑

1≤i≤j≤n

Ai,jhi · hj.

This implies Ai,j = δi,j, for all 0 ≤ i ≤ j ≤ n, where δi,j = 1 if i = j and zero otherwise.
Now, for h = 0 and arbitrary γ we get

ΩL(γb) = b2 + e−γD(Lh) = b2 + Lh − γD(Lh) +
γ2

2
D2(Lh)− . . . .

The above expression is equal to L if and only ifD(Lh) = 0. By the conditionD(Lh) = 4SD

of Proposition 4.2, it would then imply that D is skew-symmetric and thus λ = 0, which
contradicts the curvature assumption. Therefore, L cannot be written as in (29). □

The last theorem implies, by Takeuchi and Thompson’s result, that negatively curved
almost abelian Lie groups carry Killing vector fields that are not algebraic:

Corollary 6.5. The Lie algebra of Killing vector fields of a connected almost abelian Lie
group with left-invariant metric of constant non-zero sectional curvature contains strictly
the vector space spanned by Killing vector fields induced by skew-symmetric derivations
and by right-translations.

At the Lie group level, this corollary has implications on the structure of the isometry
group. For instance, if G is simply connected, the group H := Auto(G) ⋉ G is a Lie
subgroup of Iso(G, g) where, for f ∈ Auto(G) and u ∈ G, the action of f on Lu is Lf(u).
The Lie algebra of H is the semidirect product Dera(g)⋉g, and is the span of the Killing
vector fields that are induced by right-translations of elements in g or by skew-symmetric
derivations as described in Section 3. Corollary 6.5 in particular implies that H is strictly
contained in Iso(G, g) when G is simply connected almost abelian with constant non-zero
curvature.
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A. Moroianu: Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay,
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