
Submersion constructions for
geometries with parallel skew

torsion
Andrei Moroianu∗†, Paul Schwahn∗
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§1 Introduction
The tangent bundle of every Riemannian manifold carries a unique torsion-free metric

connection, the so-called Levi-Civita connection. This is the main tool in studying
general Riemannian metrics. However, in the presence of additional geometric structure
like nearly Kähler, Sasaki, 3-Sasaki, homogeneous, etc., it appears that specific metric
connections with torsion preserving the given structure are better adapted in order to
gather relevant information.

In their foundational paper [12], Cleyton and Swann studied geometries with torsion,
defined by a metric connection ∇τ whose torsion τ is totally skew-symmetric and par-
allel with respect to the connection itself, as is the case in all aforementioned special
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geometric contexts. Of course, one tacitly assumes that the torsion is non-vanishing,
since otherwise the problem is empty. One remarkable result that they obtain is the fol-
lowing (except in dimension 3 which was overlooked): when the infinitesimal holonomy
representation of the connection ∇τ is irreducible, then either the manifold is Ambrose–
Singer (i.e. the curvature is parallel as well, and the manifold is, up to regularity, locally
modelled on a naturally reductive homogeneous space), or the manifold is nearly Kähler
in dimension 6, or nearly parallel G2 in dimension 7.

In the case of Riemannian (torsion-free) geometries, the de Rham decomposition the-
orem allows to understand a geometry with reducible holonomy representation (at least
locally) as a product of irreducible factors corresponding to the summands of the holon-
omy representation. This is no longer the case in the presence of torsion, where even for
a reducible holonomy representation, the torsion tensor may have “mixed” components
which prevent the manifold from locally splitting as a product.

A systematic study of the general (holonomy-reducible) case was undertaken in [13].
The main contribution there is the introduction of the so called standard decomposition
of the tangent bundle of a geometry with parallel skew torsion, in horizontal and vertical
summands. An irreducible component of the holonomy representation is called horizon-
tal if there exists a non-trivial element of the holonomy group acting trivially on all
other irreducible components, and vertical otherwise. The point is that with respect to
this decomposition of the tangent bundle TM = V ⊕ H, the torsion form has vanishing
projection onto Λ2V ⊗ H, and this, in turn, ensures the existence of a local Rieman-
nian submersion with totally geodesic fibres tangent to V from M to some other local
geometry with torsion of smaller dimension. Moreover the fibres are Ambrose–Singer
manifolds, and the “mixed” part of the torsion coincides with one of the O’Neill tensors,
which is the obstruction for the submersion to be of product form.

Using this construction, geometries with torsion where characterized in [13] in terms
of so-called geometries with parallel curvature, and in the particular case where the
holonomy representation on V is trivial, a complete classification was obtained.

It turns out, however, that even on explicit geometries with torsion like Sasakian for
instance, the holonomy group is not easy to describe in general. It is therefore useful
sometimes to consider the decomposition of the tangent bundle as representation of other
groups larger than the holonomy group, like the stabilizer of the torsion form τ , or any
other group inbetween.

The necessity of considering more general splittings into parallel subbundles than
those used in the construction of the standard submersion was already pointed out in
[3] in the context of 3-(α, δ)-Sasaki manifolds. The crucial condition required for the
construction of the submersion is that the torsion form has no Λ2V ⊗ H-part, leading to
our definition of admissible splittings (Definition 3.1). We extend the notion of standard
decomposition from [13] to any intermediate algebra g with hol(∇τ ) ⊆ g ⊆ stab(τ) and
show that most results from [12] and [13] generalize to this setting. In particular, in
Theorem 4.4 we extend (and slightly correct and complete) Cleyton–Swann’s result on
geometries with torsion with irreducible holonomy representation to the case where the
tangent bundle is irreducible as representation of stab(τ) but possibly reducible with
respect to hol(∇τ ).
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An important question here is to classify the possible holonomies of ∇τ when the
stabilizer of the torsion is SU(3) or G2. The first group corresponds to so called strict
nearly Kähler manifolds in dimension six (also called Gray manifolds), and in the com-
plete case, a classification was obtained in [8] and [23]. We extend these results to the
non-complete (local) setting in Proposition 4.9 and Theorem 5.1. The combined results
read as follows:

1.1 Theorem. Let (M6, g, J) be a Gray manifold such that the holonomy algebra of
the canonical connection is properly contained in su(3). Then either (M, g, J) is locally
isomorphic to the homogeneous Gray manifold S3 ×S3 (see Rem. 2.7), or to the twistor
space over an anti-self-dual Einstein 4-manifold.

Similarly, when the stabilizer of the torsion is G2, which corresponds to nearly parallel
G2-structures, the classification of possible holonomies of ∇τ is obtained in Proposi-
tion 4.10 and Theorem 6.1. Again, we summarize the results:

1.2 Theorem. Let (M7, g, φ) be a nearly parallel G2-manifold such that the holonomy
algebra of the canonical connection is properly contained in g2. The either (M, g, φ)
is locally isomorphic to the Berger space SO(5)/ SO(3)irr (see Rem. 2.10), or it is a
3-(α, δ)-Sasaki manifold with δ = 5α, and φ is its canonical G2-structure (see [2]).

In the final section, we consider the case where the stabilizer of the torsion acts al-
most irreducibly on the tangent bundle (in the sense that it has only two irreducible
summands, one of which is 1-dimensional). In Theorem 7.1 we show that this charac-
terizes Sasakian geometry, and in Theorems 7.3 and 7.4 we classify the cases where the
holonomy group of ∇τ is strictly contained in the stabilizer of τ .

§2 Geometries with parallel skew torsion

§2.1 Notation
Before we begin, a few remarks on notation are in order. Let (V, g) be a finite-

dimensional Euclidean vector space. Throughout this article, we always identify V ∼= V ∗

using g; moreover, any 2-form α ∈ Λ2V ∼= so(V ) corresponds to a skew-symmetric
endomorphism via

g(α(X), Y ) = α(X, Y ), X, Y ∈ V.

In particular, (X ∧Y )Z = g(X,Z)Y − g(Y, Z)X for X, Y, Z ∈ V . Moreover, any 3-form
τ ∈ Λ3V corresponds to a (2, 1)-tensor by

g(τXY, Z) = τ(X, Y, Z), X, Y, Z ∈ V,

so that X ⌟ τ = τX ∈ so(V ).
Given an endomorphism A ∈ EndV , we denote with A∗ its action as a derivation on

tensor powers of V . In particular, on exterior forms,

A∗α =
∑

i

Aei ∧ (ei ⌟ α), α ∈ ΛkV, (2.1)
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where (ei) is some orthonormal basis of V . For 2-forms, we have the useful identity
α∗β = [α, β], α, β ∈ Λ2V ∼= so(V ). (2.2)

The notation thus introduced applies in particular to the tangent bundle TM and the
vector fields X(M) of any Riemannian manifold (M, g). Let moreover ∇g denote the
Levi-Civita connection of g, and Rg the Riemannian curvature tensor

Rg(X, Y ) = [∇g
X ,∇

g
Y ]Z − ∇g

[X,Y ], X, Y ∈ X(M).

§2.2 Skew torsion and decomposability
2.1 Definition. A geometry with parallel skew torsion (M, g, τ) is a Riemannian man-
ifold (M, g) together with a 3-form τ ∈ Ω3(M) which is parallel with respect to the
connection ∇τ := ∇g + τ . This connection is then a metric connection with parallel
skew-symmetric torsion T τ = 2τ .

The curvature Rτ of the connection ∇τ is related to the Riemannian curvature Rg by
Rg(X, Y ) = Rτ (X, Y ) + [τX , τY ] − 2ττXY , (2.3)

cf. [12, (2.2)].
Throughout the article, we will repeatedly pick an arbitrary point of M and isomet-

rically identify the tangent space at that point with Euclidean Rn. This allows us to
view O(n) as the group of isometries of the tangent space and consider various sub-
groups thereof. There are two subgroups which play a distinguished role in the study
of geometries with parallel skew torsion: the holonomy group Hol(∇τ ), which is con-
tained in O(n) because ∇τ is metric, as well as the stabilizer Stab(τ) in O(n). Note that
Hol(∇τ ) ⊂ Stab(τ) because ∇ττ = 0.

Their corresponding Lie algebras are denoted by hol(∇τ ) and stab(τ), respectively, and
subsequently abstractly viewed as subalgebras of so(n). Since all of our considerations
in this article are of a local nature, we will mostly argue on the level of Lie algebras.
2.2 Definition. A geometry with parallel skew torsion (M, g, τ) is called decomposable
if TM = T1 ⊕ T2 for nontrivial, orthogonal, ∇τ -parallel distributions T1, T2, such that
τ = τ1 + τ2 with τi ∈ Λ3Ti. Otherwise (M, g, τ) is called indecomposable.
2.3 Remark. By [13, Lem. 3.2], a geometry with parallel skew torsion is decomposable if
and only if it is locally isometric to a product of geometries with parallel skew torsion. In
the torsion-free or Riemannian case (τ = 0), we recover the local de Rham decomposition
theorem: decomposability is equivalent to reducibility of the holonomy representation.

However, a geometry with torsion may well have reducible holonomy representation
while being indecomposable. The extent to which this equivalence fails for geometries
with parallel skew torsion was investigated in [13], and we shall get back to precisely
this issue in §3. The discussion hinges critically on the torsion being parallel. All the
more remarkable is the following result by Dileo–Lotta [14]: if a connected Riemannian
manifold (M, g) carries a metric connection with (not necessarily parallel) skew torsion
whose holonomy representation is reducible, then (M, g) is locally a product, provided
the sectional curvature of g is nonpositive.
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§2.3 Some special cases
In order to sharpen our intuition and at same time present some of the situations that

will become important later on, let us review some well-known examples of geometries
with parallel skew torsion.

2.4 Naturally reductive spaces. Let (M = G/H,m) be a reductive homogeneous
space, that is, there is an Ad(H)-invariant splitting g = h⊕m. The reductive complement
m is canonically identified with the tangent space of M at the identity coset. Such a
manifold admits a canonical reductive connection ∇, which is the H-connection on the
principal bundle G → G/H whose horizontal distribution in TG consists of all left
translates of m ⊂ g. It has the notable property that all invariant tensors on M are
∇-parallel – in particular, its torsion T and curvature R are parallel, and given by

T (X, Y ) = −[X, Y ]m, R(X, Y )Z = −[[X, Y ]h, Z], X, Y, Z ∈ m,

where the subscripts denote projections to the respective subspaces.
If g is an invariant Riemannian metric on M , then (M,m, g) is called a naturally

reductive homogeneous space if

g([X, Y ]m, Z) + g(Y, [X,Z]m) = 0 ∀X, Y, Z ∈ m.

Equivalently, the torsion of ∇ is skew-symmetric with respect to g. By a famous theorem
of Ambrose–Singer, any complete, simply connected geometry with parallel skew torsion
(M, g, τ) and parallel curvature Rτ is a naturally reductive homogeneous space, and ∇τ

coincides with the canonical connection.
Motivated by this, we call a geometry with parallel skew torsion (M, g, τ) satisfying

∇τRτ = 0 a naturally reductive Ambrose–Singer manifold. Omitting the assumption of
completeness introduces a subtlety: an Ambrose–Singer manifold is locally isometric to
a homogeneous space if and only if it is regular in the sense of Tricerri [30], see also [10].

Let (M = G/H,m, g) be a naturally reductive homogeneous space, and assume that
G/H is almost effective, that is, the representation h → so(m) ∼= Λ2m is faithful. Since
∇ has parallel curvature, the Ambrose–Singer holonomy theorem implies that

hol(∇) = im(R : Λ2m → Λ2m) = [m,m]h ⊆ h, (2.4)

and moreoever this is an ideal in h.
In this spirit one may associate to any Ambrose–Singer manifold (M, g, τ) its transvec-

tion algebra g := h ⊕ m, where h := hol(∇τ ) = imR, m is the tangent space at some
point, and the missing part of the bracket on g is given by

[X, Y ] := (−Rτ (X, Y ),−T τ (X, Y )) ∈ g, X, Y ∈ m. (2.5)

Let G be the simply connected Lie group with Lie algebra g, and H ⊂ G the connected
subgroup with Lie algebra h. By [10, Prop. 3.1.21], if H is closed in G, then (M, g, τ) is
regular and locally isometric to the homogeneous space G/H.
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The naturally reductive spaces form a rich family, containing many interesting geo-
metric examples. For a detailed description of their structure, see [29]. We would like
to note here two particularly simple cases: first, isotropy irreducible spaces, i.e. homo-
geneous spaces G/H whose isotropy representation m is irreducible, and the invariant
metric is unique up to scale. These were classified by Wolf in 1968. If G/H is not a
symmetric space, then G is necessarily compact and simple [31, Thm. 1.1].

Second, and as a special case of the first, symmetric spaces of group type are the
(resp. compact and noncompact) symmetric spaces (K × K)/K and KC/K, where K
is a compact simple Lie group. These possess the notable property that the choice of
reductive complement m, and thus the canonical connection, is not unique. We illustrate
this for the space G/H = (K ×K)/K, where

g = k ⊕ k, h = diag(k) = {(X,X) |X ∈ k},
mt = {((t− 1)X, (t+ 1)X) |X ∈ k}

defines a one-parameter family of reductive decompositions g = h ⊕ mt. The associated
family of canonical connections ∇t has torsion and curvature given by

T t(X, Y ) = −2t[X, Y ], Rt(X, Y )Z = −(1 − t2)[[X, Y ], Z], X, Y, Z ∈ k,

under the identification k
∼→ m : X 7→ ((t − 1)X, (t + 1)X). In particular, ∇0 is the

Levi-Civita connection of any bi-invariant metric on K, while ∇±1 are flat connections
also called the Cartan (±)-connections on K.

2.5 Gray manifolds. A nearly Kähler manifold (M, g, J) is an almost Hermitian
manifold satisfying the condition

(∇g
XJ)X = 0 ∀X ∈ TM.

Any almost Hermitian manifold possesses a canonical Hermitian connection ∇ such that
g and J are ∇-parallel. It is given by

∇ = ∇g + τ, τXY = −1
2J(∇g

XJ)Y,

and its torsion is skew-symmetric if and only if (M, g, J) is nearly Kähler. This also
implies that the torsion of ∇ is parallel, i.e. (M, g, τ) is a geometry with parallel skew
torsion. Moreover τ is of type (3, 0) + (0, 3) with respect to J , that is

τX ◦ J + J ◦ τX = 0, X ∈ TM.

A structure result by Nagy states that any strict (i.e. non-Kähler) nearly Kähler mani-
fold locally splits as a product of factors which may be homogeneous, twistor spaces over
quaternion-Kähler manifolds, or 6-dimensional [23]. Strict nearly Kähler 6-manifolds
thus have a special status; they are also called Gray manifolds. Identifying the tangent
space with R6, the stabilizer of the torsion in so(6) is given by stab(τ) = su(3) for Gray
manifolds, since in this case τ is the real part of a complex volume form. Conversely,
we have the following:
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2.6 Lemma. Any geometry with parallel skew torsion (M6, g, τ) with stab(τ) = su(3)
is a Gray manifold with respect to some almost complex structure J .

Proof. Up to scaling, stab(τ) = su(3) stabilizes exactly one nonzero vector J ∈ Λ2R6 ∼=
so(6). The same goes for Sym2 R6, so J2 is a multiple of the identity, and we can assume
that J2 = −Id. Since hol(∇τ ) ⊆ stab(τ), it follows that there exists an almost Hermitian
structure J on (M, g) which is ∇τ -parallel. Moreover, τ is of type (3, 0) + (0, 3) with
respect to J , because (Λ3R6)su(3) = Λ(3,0)+(0,3)R6. This shows that τXJX = 0 for every
tangent vector X, whence

(∇XJ)(X) = (∇τ
XJ − τXJ)(X) = −(τXJ)(X) = −τXJX + J(τXX) = 0.

Moreover since τ is nonzero, so is ∇J , and thus (M, g, J) is a Gray manifold.

2.7 Remark. Homogeneous Gray manifolds have been classified by Butruille [7]. Any
simply connected homogeneous Gray manifold G/H is one of the naturally reductive
spaces

S6 = G2

SU(3) , F1,2 = SU(3)
T 2 , CP3 = SO(5)

U(2) , S3 × S3 = S3 × S3 × S3

diag(S3) ,

each (up to scale) with the metric induced by minus the Killing form of G. The canonical
Hermitian connection coincides with the canonical reductive connection, and with the
help of (2.4) one may verify that in each of the above cases, hol(∇) = h.

2.8 Nearly parallel G2-manifolds. A G2-structure on a 7-dimensional manifold M
is a 3-form φ ∈ Ω3(M) such that at every point, its stabilizer in GL(7,R) is isomorphic
to the compact Lie group G2. Any G2-structure φ determines both a metric gφ and an
orientation on M . The triple (M, gφ, φ) is called a nearly parallel G2-manifold if

dφ = τ0 ⋆φ φ

for some τ0 ∈ R. Any nearly parallel G2-manifold carries a canonical G2-connection ∇
which parallelizes φ and which is given by

∇ = ∇gφ + τ, τ = τ0

12φ,

see e.g. [5].1 By definition, stab(τ) = g2. If g is any other Riemannian metric on M such
that so(7, g) contains g2, then by the irreducibility of R7 under g2 and Schur’s Lemma, g
must be a constant multiple of gφ. We still call (M, g, φ) a nearly parallel G2-manifold.

Not all geometries with parallel skew torsion such that hol(∇τ ) ⊆ g2 are nearly parallel
G2, because the torsion is not a priori linearly related to the G2-structure. Friedrich
[16] achieved a classification under the assumption that the G2-structure is cocalibrated
(meaning that d∗φ = 0) and that the holonomy algebra is nonabelian.

1In contrast to [5], there is a sign change in both τ0 and the choice of orientation induced by φ.
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2.9 Lemma. Any geometry with parallel skew torsion (M7, g, τ) such that stab(τ) = g2
is a nearly parallel G2-manifold.

Proof. Since g2 stabilizes exactly one vector in Λ3R7 up to scaling, τ is proportional to
a G2-form φ. One can write τ = τ0

12φ for some non-zero constant τ0 ∈ R. Moreover, it
is easy to check that ∑φei

∧ φei
= 6 ⋆φ φ for every local orthonormal frame (ei). Using

this, and the fact that ∇ττ = 0, we compute

dφ = 12
τ0
dτ = 12

τ0

∑
ei ∧ ∇ei

τ = −12
τ0

∑
ei ∧ (τei

)∗τ = − τ0

12
∑

ei ∧ (φei
)∗φ

= − τ0

12
∑

ei ∧ φei
ej ∧ φej

= τ0

6
∑

φej
∧ φej

= τ0 ⋆φ φ.

2.10 Remark. The compact, simply connected, homogeneous nearly parallel G2-mani-
folds have been classified by Friedrich et al. [17]. A notable example is the Berger space
SO(5)/ SO(3)irr, where the inclusion SO(3)irr ↪→ SO(5) is given by the 5-dimensional
irreducible representation of SO(3). This is an isotropy irreducible space where the
canonical G2-connection coincides with the canonical reductive connection. Again one
may check using (2.4) that hol(∇) = so(3), viewed as a subalgebra of so(7) by its
7-dimensional irreducible representation.

2.11 Sasaki, 3-Sasaki, and 3-(α, δ)-Sasaki manifolds. For our purposes, a Sasaki
manifold (M2n+1, g, ξ,Φ) is a Riemannian manifold (M, g) together with a unit length
Killing vector field ξ ∈ X(M) and a skew-symmetric endomorphism field Φ satisfying

dξ = 2Φ, Φ2 = −Id + ξ ⊗ ξ, ∇g
XΦ = −X ∧ ξ ∀X ∈ TM. (2.6)

The canonical Sasaki connection ∇ is a metric connection given by

∇ = ∇g + τ, τ = ξ ∧ Φ,

and it has parallel skew-symmetric torsion.
The endomorphism Φ annihilates ξ and restricts to a complex structure on the orthog-

onal complement ξ⊥. Thus the stabilizer of τ is isomorphic to U(n) if dimM = 2n+ 1.
It is well known that any Sasaki manifold locally fibers over a Kähler manifold with
fibers tangent to ξ.

A 3-Sasaki manifold is a Riemannian manifold (M4n+3, g) carrying three Sasakian
structures (ξi,Φi), i = 1, 2, 3, interacting via

ξk = −Φiξj = Φjξi, (2.7)
ΦkX = −ΦiΦjX + ⟨ξj, X⟩ξi = ΦjΦiX − ⟨ξi, X⟩ξj ∀X ∈ TM, (2.8)

for any even permutation (i, j, k) of (1, 2, 3).2 In particular, the vector fields ξi satisfy
the so(3)-commutation relations [ξi, ξj] = 2ξk.

2Note the change in sign compared to [2, Def. 1.2.2] due to a different way of associating 2-forms with
endomorphisms.
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For later use, we introduce the vertical distribution V spanned by ξ1, ξ2, ξ3, its orthog-
onal complement H := V⊥, and the horizontal endomorphisms ΦH

i := Φi + ξj ∧ ξk, which
by (2.7)-(2.8) satisfy ΦH

i (ξj) = 0 for every i, j and

ΦH
i ΦH

j = −ΦH
j ΦH

i = −ΦH
k , (2.9)

for every even permutation (i, j, k) of (1, 2, 3).
A generalization of the latter are 3-(α, δ)-Sasaki manifolds, introduced in [2]. Again,

these are Riemannian manifolds (M4n+3, g) with three unit length Killing vector fields
ξi and skew-symmetric endomorphism fields Φi satisfying (2.7) and (2.8), but with the
condition (2.6) replaced by

Φ2
i = −Id + ξi ⊗ ξi, (2.10)

dξi = 2αΦi + 2(α− δ)ξj ∧ ξk (2.11)

for some constants α, δ ∈ R, α ̸= 0. The analogous first order condition on the Φi is
then automatic [2, Prop. 2.3.2]. A 3-(α, δ)-Sasaki manifold can be obtained by rescal-
ing a 3-Sasakian structure with two separate parameters on the distribution V spanned
by ξ1, ξ2, ξ3 and on its orthogonal complement H := V⊥. Indeed, any 3-(α, δ)-Sasaki
manifold with αδ > 0 is related to a 3-Sasaki manifold in this way. Moreoever, any
3-(α, δ)-Sasaki manifold fibers over a quaternion-Kähler orbifold [3, 27], and the dis-
tribution V is tangent to the fibers. For δ = 0 (the degenerate case), the base of the
fibration is hyperkähler.

On any 3-(α, δ)-Sasaki manifold, there exists a family of metric connections (∇γ)γ∈R
with skew-symmetric torsion, the so-called compatible connections

∇γ = ∇g + τ γ, τ γ = α

2

3∑
i=1

ξi ∧ ΦH
i + γ

2 ξ1 ∧ ξ2 ∧ ξ3,

which have the distinctive property that they parallelize the distributions V and H.
Only for the choice γ = 2(δ− 4α) is the torsion also parallel; this is called the canonical
3-(α, δ)-Sasaki connection.

We remark that only in the so-called parallel case δ = 2α does the canonical 3-(α, δ)-
Sasaki connection parallelize the ξi and Φi. In this case, for any R-linear combination
ξ of ξ1, ξ2, ξ3, there exists a local fibration along ξ over a nearly Kähler manifold whose
canonical connection has reducible holonomy, and which in turn is locally isometric to
the twistor space over the aforementioned quaternion-Kähler manifold [28].

On a seven-dimensional 3-(α, δ)-Sasaki manifold (n = 1), the three-form

φ =
3∑

i=1
ξi ∧ ΦH

i + ξ1 ∧ ξ2 ∧ ξ3

gives a cocalibrated G2-structure [2, Thm. 4.5.1], which is nearly parallel (and thus a
multiple of the torsion of the canonical connection) if and only if δ = 5α.
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2.12 Lemma. For n ̸= 1, the stabilizer in SO(4n + 3) of any of the 3-forms τ γ is
isomorphic to Sp(n) · Sp(1), acting on H ∼= R4n in the standard way, and acting on
V ∼= R3 by the adjoint representation of the factor Sp(1).

Proof. It is enough to prove this at the infinitesimal level. Let A ∈ so(4n + 3) be any
element, decomposed with respect to the splitting R4n+3 = H ⊕ V as

A = a1ξ2 ∧ ξ3 + a2ξ3 ∧ ξ1 + a3ξ1 ∧ ξ2 +
3∑

i=1
ξi ∧Xi + σ,

where Xi ∈ H and σ ∈ Λ2H. An easy computation yields

A∗(2τ γ) = a1(ξ3 ∧ ΦH
2 − ξ2 ∧ ΦH

3 ) + a2(ξ1 ∧ ΦH
3 − ξ3 ∧ ΦH

1 ) + a3(ξ2 ∧ ΦH
1 − ξ1 ∧ ΦH

2 )

+
3∑

i=1
Xi ∧ ΦH

i −
3∑

i,j=1
ξi ∧ ξj ∧ ΦH

i (Xj)

+ γ(X1 ∧ ξ2 ∧ ξ3 + ξ1 ∧X2 ∧ ξ3 + ξ1 ∧ ξ2 ∧X3) +
3∑

i=1
ξi ∧ σ∗(ΦH

i ).

Comparing types, we see that A ∈ stab(τ γ) if and only if the following system holds:
σ∗(ΦH

i ) = akΦH
j − ajΦH

k∑3
i=1 Xi ∧ ΦH

i = 0
ΦH

i (Xj) − ΦH
j (Xi) = γXk

for every even permutation (i, j, k) of (1, 2, 3). Using (2.9), the first condition is equiv-
alent to (σ0)∗(ΦH

i ) = 0 for i = 1, 2, 3, where σ0 := σ − 1
2
∑3

i=1 aiΦH
i . Of course, the

relations (σ0)∗(ΦH
i ) = 0 are equivalent to σ0 ∈ sp(n).

It remains to show that Xi = 0 for i = 1, 2, 3, since then it will follow that every
element A ∈ stab(τ γ) can be written as a sum of an element in sp(n) and one in sp(1),
where the elements ei of the standard basis of sp(1) act as −ΦH

i on H and as 2ξj ∧ ξk

on V for every even permutation (i, j, k) of (1, 2, 3).
In order to prove our claim, we contract the second equation of the system with ΦH

i ,
and apply ΦH

i to the resulting equation. Using (2.9) again, we obtain

0 = (2n− 1)ΦH
i (Xi) + ΦH

j (Xj) + ΦH
k (Xk)

for every even permutation (i, j, k) of (1, 2, 3). This system immediately implies that if
2n− 1 ̸= 1, then ΦH

i (Xi) = 0 for every i, so Xi = 0.
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§3 Canonical splittings and submersions
We reminded ourselves in 2.11 that some geometries with parallel skew torsion canon-

ically bring locally defined submersions with them. This phenomenon has already been
systematically studied in [13] by means of the so-called standard submersion. We recall
and at the same time generalize some of the results of [13] below.

3.1 Definition. Let (M, g, τ) be a geometry with parallel skew torsion. An admissible
splitting is an orthogonal decomposition of the tangent bundle into ∇τ -parallel distribu-
tions TM = H ⊕ V such that the projection of τ onto Λ2V ⊗ H ⊂ Λ3TM vanishes.

H is called the horizontal distribution and V the vertical distribution of the admissible
splitting.

Given an admissible splitting, we may decompose the 3-form τ into a purely horizontal,
a mixed, and a purely vertical part:

τ = τH + τm + τV ,

where τH ∈ Λ3H, τm ∈ Λ2H ⊗ V , and τV ∈ Λ3V . Clearly, if a geometry with parallel
skew torsion is decomposable (and thus locally a product) it has an admissible splitting
such that τm = 0.

3.2 Local submersions. As remarked in [13, Rem. 3.15], see also [28, Thm. 2.1],
any admissible splitting locally defines a Riemannian submersion π : (M, g) ↣ (N, gN)
which enjoys the following properties:

(S1) N is the local leaf space of the integrable distribution V , that is, V is actually the
vertical distribution of π.

(S2) π has totally geodesic fibers.

(S3) If the horizontal distribution admits a further ∇τ -parallel splitting H = ⊕
α Hα,

then the horizontal and mixed parts of τ decompose accordingly:

τH ∈
⊕

α

Λ3Hα, τm ∈
⊕

α

Λ2Hα ⊗ V .

(S4) For all V ∈ V , one has (τV )∗τ
H = 0.

(S5) The horizontal part τH is projectable to N , i.e. τH = π∗σ for some σ ∈ Ω3(N),
and (N, gN , σ) is again a geometry with parallel skew torsion. The connections ∇τ

and ∇σ are π-related.

(S6) By restriction, every fiber F of π becomes a geometry with parallel skew torsion
(F, gF , τ

V).

11



(S7) For any X, Y ∈ H and V ∈ V , we have the curvature identities

Rτ (X, V ) = 0, (3.1)
Rτ (X, Y )V = −4[τX , τY ]V + 4ττXY V. (3.2)

In fact, the O’Neill invariantA which measures the failure of the horizontal distribution
to be integrable (see [6, §9.C]) is encoded in the mixed part of the torsion, A = −τm.

The key observation leading to the next definition is the following: since ∇ττ = 0,
the holonomy algebra hol(∇τ ) is contained in the stabilizer algebra stab(τ) of τ inside
so(n). However holonomy and stabilizer do not necessarily coincide, and indeed fail to
do so in many geometrically interesting cases. This leads us to the following scheme
where “parallel distributions” are replaced with “g-invariant subbundles”.

3.3 Definition. Let g ⊆ so(n) be a Lie algebra such that hol(∇τ ) ⊆ g ⊆ stab(τ). The
representation of g on Rn decomposes into an orthogonal sum of irreducible modules hα

and vj such that so(hα) ∩g ̸= 0 for all α and so(vj) ∩g = 0 for all j. Then the canonical
g-splitting of TM is defined by taking H to be the subbundle associated to h = ⊕

α hα,
and V the subbundle associated to v = ⊕

j vj.

Even though the decomposition into irreducible g-modules might itself not be unique,
the canonical g-splitting is, since any two isotypical summands belong to V by definition.

3.4 Lemma. Any canonical g-splitting is an admissible splitting.

Proof. We give an adaptation of the proofs of [13, Lem. 3.4, Lem. 3.6]. Let for any α be
h⊥

α the orthogonal complement of hα in Rn, and denote gα := so(hα) ∩ g.
First, we show that the representation of gα on hα has no trivial subspace, i.e. hgα

α = 0.
Since g preserves the splitting Rn = hα ⊕ h⊥

α , we have [g, gα] ⊂ gα, i.e. gα is an ideal of
g. Thus, for every v ∈ hgα

α , A ∈ gα and B ∈ g,

ABv = [A,B]v +BAv = 0,

which shows that hgα
α is a g-invariant subspace of hα. By assumption, hα is an irreducible

g-module, so hgα
α = 0 or hgα

α = hα. By definition, gα acts faithfully on hα, and by
assumption, gα ̸= 0. Thus gα cannot act trivially on hα and we conclude that hgα

α = 0.
Next, since gα acts trivially on h⊥

α by definition, we have

(hα ⊗ Λ2h⊥
α )gα = hgα

α ⊗ Λ2h⊥
α

and since hgα
α = 0, we conclude that (hα ⊗ Λ2h⊥

α )gα = 0.
In particular (hα ⊗ Λ2h⊥

α )g = 0, and it follows that

(Λ3Rn)g ⊂
(⊕

α

Λ3hα

)
⊕
(⊕

α

Λ2hα ⊗ v

)
⊕ Λ3v.

Since hol(∇τ ) ⊂ g, the splitting TM = H ⊕ V associated to Rn = h ⊕ v is ∇τ -parallel.
And since g ⊂ stab(τ), the 3-form τ corresponds to an element of (Λ3Rn)g, whence the
Λ2V ⊗ H-part of τ vanishes.
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As a consequence of 3.2, a canonical g-splitting locally defines a Riemannian submer-
sion called the canonical g-submersion. The standard submersion defined in [13] is just
one example of a canonical g-submersion, namely the case where g = hol.

3.5 Remark. It is natural to ask whether every admissible splitting coincides with a
canonical g-splitting for a suitable choice of g. This may fail when V = 0 or when the
map V → Λ2H defined by τm is not injective. Beyond that, we currently do not have
an answer to this question.

Canonical g-splittings have more distinguishing properties making them preferable.
The following generalizations of [13, Prop. 3.13] and [13, Lem 6.2] are proved in complete
analogy, while noting that g-invariance implies parallelity under ∇τ since hol(∇τ ) ⊆ g.

3.6 Lemma. Let TM = H ⊕ V be a canonical g-splitting. Then the composition

prΛ2V ◦Rτ : Λ2TM −→ Λ2H ⊕ Λ2V −→ Λ2V

is g-invariant.
In particular, any fiber F of the canonical g-submersion has parallel skew torsion and

parallel curvature, so F is a naturally reductive Ambrose–Singer manifold.

3.7 Lemma. Let TM = H⊕V be a canonical g-splitting. If (M, g, τ) is indecomposable,
V ≠ 0 and g acts trivially on V, then the horizontal part τH vanishes.

3.8 Remark. Initially, the analogous statement to [13, Lem 6.2] would require that
(M, g, τ) is g-indecomposable in the sense that there exists no nontrivial splitting of the
tangent bundle TM = T1 ⊕ T2 into orthogonal, g-invariant distributions under which
τ = τ1 + τ2 for some τi ∈ Λ3Ti.

In fact, all notions of g-decomposability for hol(∇τ ) ⊆ g ⊆ stab(τ) are equivalent.
Clearly, g-decomposability implies g′-decomposablility for hol(∇τ ) ⊆ g′ ⊆ g ⊆ stab(τ),
and by [13, Lem. 3.2], (M, g, τ) is hol(∇τ )-decomposable if and only if it is locally
isometric to a Riemannian product (M1 × M2, g1 + g2, τ1 + τ2). To close the circle, we
need to observe that a Riemannian product is stab(τ)-decomposable. This is achieved
by way of the following lemma.

3.9 Lemma. Let T = T1 ⊕ T2 be a direct sum of finite-dimensional vector spaces, and
let τ = τ1 + τ2 ∈ ΛkT for τi ∈ ΛkTi, where k ≥ 3. Then

stabgl(T )(τ) = stabgl(T1)(τ1) ⊕ stabgl(T2)(τ2).

Proof. Of course, if Ai ∈ stabgl(Ti)(τi), then (A1 ⊕ A2)∗τ = (A1)∗τ1 + (A2)∗τ2 = 0.
Conversely, let A ∈ gl(T ) such that A∗τ = 0. Then we have

A∗τi ∈ T ⊗ Λk−1Ti ⊂ ΛkT, i = 1, 2,

but also A∗τ1 + A∗τ2 = 0. Since these two vector subspaces of ΛkT intersect trivially if
k ≥ 3, we conclude A∗τi = 0.
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It may seem as if one would lose information by taking g to be strictly larger than
hol(∇τ ) since the decomposition of the tangent space Rn may get coarser, and the vertical
space smaller. However, there are some definite advantages. First of all, as already
remarked in [13], it is in general not easy to determine the standard decomposition
explicitly since hol(∇τ ) is not always known. Second, as we will see later on, many
situations require us to consider a local submersion based on an action of some fixed
Lie algebra g which may be larger than hol(∇τ ). Third, focusing on the action of
stab(τ) yields the most satisfactory analogue of the de Rham decomposition theorem for
geometries with parallel skew torsion, in so far that it guarantees irreducibility of the
factors of the base:

3.10 Theorem. Let (M, g, τ) be a geometry with parallel skew torsion, and π : M ↣ N
a canonical g-submersion. Then the base is locally decomposable into geometries with
parallel skew torsion (Nα, gα, σα),

(N, gN , σ) ∼=
∏
α

(Nα, gα, σα), τH =
∑

α

π∗σα,

which are irreducible under their respective stabilizer algebra stab(σα).

Proof. Let h = ⊕
α hα be the horizontal part in the definition of the canonical g-splitting.

By (S3) and (S5), the base (N, gN , σ) of the corresponding local submersion π is decom-
posable and thus a product of geometries with parallel skew torsion (Nα, gα, σα) by [13,
Lem. 3.2]. Moreover, the 3-forms σα are related to τ by τHα = π∗σα.

It remains to show that stab(σα) acts irreducibly on the tangent space hα of Nα for
every α. Consider the projection

sα := prso(hα) g = im(g → so(hα)).

Clearly, sα acts irreducibly on hα. Moreover, since g preserves each hα, it has to stabilize
each component τHα separately, so

sα ⊆ stabso(hα)(τHα) = stab(σα).

Hence stab(σα) must also act irreducibly on hα.

Put differently, any geometry with parallel skew torsion is locally decomposable into
stabilizer-irreducible geometries with parallel skew torsion, possibly after passing to the
base of a local submersion with locally naturally reductive homogeneous fibers.

Note also that a stabilizer-irreducible geometry with parallel skew torsion needs not
be de Rham irreducible if the torsion vanishes – but this is simply the Riemannian case.
In the following section we classify the cases where the torsion does not vanish, and in
particular characterize the cases where hol(∇τ ) ⊊ stab(τ).
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§4 Irreducible stabilizer actions
In his PhD thesis, Cleyton gave a rough classification of the stabilizer-irreducible ge-

ometries with parallel, skew and nonvanishing torsion [11, Thm. I.3.14]. Later, Cleyton–
Swann refined this classification and removed the assumption of skew-symmetric torsion,
while specializing to irreducible holonomy action [12, Thm 5.14]. Our aim is to show
that essentially the same classification can be achieved by considering an arbitrary in-
termediate Lie algebra hol(∇τ ) ⊆ h ⊆ stab(τ) acting irreducibly on the tangent space.
(Note that this intermediate algebra was denoted g in the previous section.)

More pressingly, there turns out to be a gap in both classifications, occurring in
dimension 3 (and contradicting Cleyton–Swann’s conclusion that such a geometry is
always Einstein!), plus another small gap in the symmetric setting where g is flat. In
order to fix the first gap, we need to revisit a technical lemma [12, Lem. 5.13]. We give
a correction to the statement in Lemma 4.1 together with a conceptual, Lie-theoretic
proof.

First, we need to recall a few definitions and facts. Let V be a finite-dimensional
Euclidean vector space. Consider the well-known O(V )-invariant decomposition

Sym2 Λ2V = K ⊕ Λ4V,

where K is the space of algebraic curvature tensors on V . The projection to Λ4 is given
by 1

3b, where b : Sym2 Λ2V → Λ4V is the Bianchi map, which involves a cyclic sum in
the first three arguments,

b(R)(X, Y, Z,W ) := R(X, Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ).

For any subalgebra h ⊆ so(V ), we may view its space Sym h of symmetric endomor-
phisms as a subspace of Sym2 Λ2V , and thus define

K(h) := ker(b : Sym h → Λ4V ) = K ∩ Sym h

as the space of algebraic curvature tensors with values in h. This representation of h
has been instrumental in studying holonomy representations [9, 12, 26] as well as in the
proof of Lemma 3.6.

We remark that if we denote τ 2
X,YZ := τZτXY , then we have (τX)∗τ = X ⌟ b(τ 2) and

(2.3) may more elegantly be rewritten as

Rg = Rτ + τ 2 + b(τ 2). (4.1)

§4.1 The local classification
First, we state the promised correction to [12, Lem. 5.13 (i)].

4.1 Lemma. Let V be a finite-dimensional Euclidean vector space underlying a faithful
irreducible representation of a Lie algebra h ⊆ so(V ). If (V ⊗ h)h ̸= 0, then h is simple
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and V ∼= h. If h has rank at least 2, then K(h) ∼= R, while for h = so(3) we have
K(h) = K ∼= Sym2 R3.

Moreover, if τ ∈ (V ⊗h)h ⊆ (V ⊗so(V ))h, then τ is a multiple of the canonical 3-form
given by the Lie bracket of h.

Proof. We write Homh and Endh for h-equivariant homomorphisms (resp. endomor-
phisms) of h-modules. Since V is irreducible, Homh(V, h) ∼= (V ⊗ h)h ̸= 0 means that
there is a simple ideal h0 of h such that h0 ∼= V . Write h = h0 ⊕h1. Now h0 acts on V by
its adjoint representation, and the action of h1 commutes with it, that is h1 ⊂ Endh0 V .
However, since h0 preserves the inner product on V , it is a compact Lie algebra and thus
its adjoint representation is of real type, i.e. Endh0 h0 = RId. Since h1 ⊂ Endh0 V = RId
consists of skew-symmetric endomorphisms, it follows that h1 = 0. Hence h is simple.

Since Endh h ∼= (V ⊗h)h ⊆ (V ⊗ so(V ))h is one-dimensional, any element is a multiple
of the canonical 3-form ⟨[ · , · ], · ⟩.

Assume now that the rank of h is at least two, and let A ∈ Sym h such that b(A) = 0.
Since both the inclusion h → so(h) and the projection Λ2h → h are determined by the
Lie bracket, the condition b(A) = 0 reduces to

[A[X, Y ], Z] + [A[Y, Z], X] + [A[Z,X], Y ] = 0 ∀X, Y, Z ∈ h. (4.2)

It remains to show that A is a multiple of the identity.
Let t ⊂ h be a maximal torus, and take X, Y ∈ t. For any root λ and root vector

Z ∈ hλ ⊂ hC, (4.2) implies

0 = [A[X, Y ], Z] = [X,A[Y, Z]] − [Y,A[X,Z]] = iλ(Y )[X,AZ] − iλ(X)[Y,AZ]
=

∑
µ root

(λ(X)µ(Y ) − λ(Y )µ(X))(AZ)µ

where (AZ)µ denotes the hµ-part in the root space decomposition

hC = tC ⊕
⊕

µ root
hµ.

Thus we find that for any root µ, the tensor (λ∧µ) ⊗ (AZ)µ ∈ Λ2t∗ ⊗ hC vanishes – and
hence, if µ ̸∈ {±λ}, we have (AZ)µ = 0. Thus

A(hλ ⊕ h−λ) ⊆ tC ⊕ hλ ⊕ h−λ (4.3)

for any root λ.
Let now X ∈ t, while Y ∈ hλ and Z ∈ h−λ for some fixed root λ. Then (4.2) implies

that

[X,A[Y, Z]] = [A[X, Y ], Z] − [A[X,Z], Y ] = iλ(X)([AY,Z] + [AZ, Y ]),

and because of the bracket relations

[t, h±λ] ⊆ h±λ, [h±λ, h±λ] = 0, [h±λ, h∓λ] ⊆ tC
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we conclude that [X,A[Y, Z]] ∈ t ⊕ hλ ⊕ h−λ. Since for every root µ there is an X ∈ t
with µ(X) ̸= 0, we may let X ∈ t vary to find that

A[hλ, h−λ] ⊆ tC ⊕ hλ ⊕ h−λ. (4.4)

Recall that tC = span{[hµ, h−µ] |µ root}. If the rank of h is at least 2, then there are
more opposite pairs of roots than rk h. Moreover, by the reflection property of root
systems, there can be no hyperplane in t∗ containing all but one opposite pair of roots
{±λ}, except possibly for λ⊥ – but this would imply that the root system is reducible,
which contradicts h being simple. Hence the linear hull of the roots remains the same if
one removes any pair {±λ}, and thus

tC = span{[hµ, h−µ] |µ ̸= λ}

for any fixed root λ. Together with (4.4) this shows that At ⊆ (hλ ⊕ h−λ)⊥. But since
this holds for all roots λ, we obtain

At ⊆ t. (4.5)
A being symmetric and (4.3) then imply that

A(hλ ⊕ h−λ) ⊆ hλ ⊕ h−λ. (4.6)

Let now 0 ̸= X ∈ hλ. Then its complex conjugate X ∈ h−λ, and

[ReX, ImX] = −1
2[X,X] ̸= 0.

Choose now another maximal torus t′ containing ReX but not ImX. Then A preserves
t′ by (4.5), so together with (4.6) it preserves

t′ ∩ (hλ ⊕ h−λ) = span{ReX}.

Hence we have shown that every vector in (hλ ⊕ h−λ) ∩ h is an eigenvector of A, thus

A
∣∣∣
hλ⊕h−λ

= αλIdhλ⊕h−λ
(4.7)

for some αλ ∈ R.
Let now λ, µ be roots such that λ+ µ is a root. Then for all Y ∈ hλ and Z ∈ hµ, we

have [Y, Z] ∈ hλ+µ. Choose Y, Z such that [Y, Z] ̸= 0, and let X ∈ t. Then it follows
from (4.2) that

0 = iλ(X)αλ[Y, Z] − i(λ+ µ)(X)αλ+µ[Y, Z] − iµ(X)αµ[Z, Y ]
= i(λ(X)(αλ − αλ+µ) + µ(X)(αµ − αλ+µ))[Y, Z].

Since X was arbitrary, we conclude that αλ = αλ+µ = αµ.
Consider the equivalence relation ∼ on the set of roots generated by decreeing that

λ ∼ µ if λ+ µ or λ− µ is a root. Clearly, if λ ∼ µ, then αλ = αµ.
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Since h is simple, its root system is irreducible. In particular, if we choose a set of
simple roots, no two simple roots λ, µ are orthogonal, which implies that λ ∼ µ (see
for example [19, §21.1 (5)]). And since every positive root is a sum of simple roots, it
follows that they are all in the same equivalence class. Thus all αλ are equal, and (4.7)
simplifies to

A
∣∣∣
t⊥

= αIdt⊥ (4.8)

for some α ∈ R.
Finally, let us take X ∈ hλ, Y ∈ h−λ and Z ∈ hµ where µ ̸= ±λ. Then [X, Y ] ∈ tC

and [Y, Z] ∈ t⊥, so from (4.2), (4.8) and the Jacobi identity we find

0 = [A[X, Y ], Z] + α[[Y, Z], X] + α[[Z,X], Y ]
= [A[X, Y ], Z] − α[[X, Y ], Z] = µ(A[X, Y ] − α[X, Y ])Z.

If A[X, Y ] − α[X, Y ] ̸= 0, then all µ ̸= ±λ lie inside the hyperplane in t∗ defined by
A[X, Y ] − α[X, Y ]. But this is impossible, again due to the reflection property and h
being simple. Thus A[X, Y ] = α[X, Y ]. Since tC is spanned by all the [hλ, h−λ], we
conclude together with (4.8) that

A = αIdh.

We briefly discuss the rank 1 case, i.e. h = so(3). In this case, h ∼= Λ2h, and the
condition b(A) = 0 is vacuous since Λ4R3 = 0. Thus K(h) = K ∼= Sym2 so(3).

4.2 Remark. The first part of Lemma 4.1, namely the conclusion that V ∼= h, is
reminiscent of the Skew-Torsion Holonomy Theorem by Olmos–Reggiani [24]. The sub-
stantial difference is that this theorem assumes that τ is a 3-form and that h ̸= so(V )
and concludes that τ is h-invariant, while Lemma 4.1 assumes invariance and proves the
total skew-symmetry of τ .

For convenience we restate [12, Lem. 5.13 (ii)]. Due to [12, Prop. 4.10], the proof is
really just a case-by-case check.

4.3 Lemma. Let V be a finite-dimensional Euclidean vector space underlying a faithful
irreducible representation of a Lie algebra h ⊆ so(V ). If (V ⊗ h⊥)h ̸= 0, where h⊥ is the
orthogonal complement of h in so(V ), and K(h) ̸= 0, then (h, V ) is either (su(3),C3) or
(g2,R7). In both cases K(h) is an irreducible representation not isomorphic to R or V .
Moreover, (V ⊗ h⊥)h ⊆ (Λ3V )h.

We are now ready to state and prove the correction and generalization of [12, Thm. 5.14].
Note that as in [12], the skew-symmetry of the torsion is a consequence instead of an
assumption.

4.4 Theorem. Let (M, g) be a Riemannian manifold carrying a connection ∇ with
parallel nonzero torsion, and h any Lie algebra such that hol(∇) ⊆ h ⊆ stab(τ) and
h acts irreducibly on the tangent space of M . Then the torsion is skew-symmetric,
i.e. ∇ = ∇τ for some τ ∈ Ω3(M), and (M, g, τ) belongs to one of the following cases:
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(a) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous
space G/H with h = Lie(H), and ∇ is the canonical connection, cf. 2.4.

(b) (M, g) is locally isometric to one of the irreducible symmetric spaces (H×H)/H or
HC/H with h = Lie(H), or to the Euclidean vector space h, and τ is any nonzero
multiple of the canonical 3-form on h.

(c) (M, g) is a Gray manifold or nearly parallel G2, and ∇ is the characteristic SU(3)-
or G2-connection, cf. 2.5 and 2.8.

(d) dimM = 3 and τ is a multiple of volg.

Proof. As the major part of the work has already been done in [12], we give an account
of the proof of [12, Thm. 5.14] and point out the necessary modifications, corrections,
and additions.

(a) First, assume that K(h) = 0. Then also K(hol(∇)) = 0, and [12, Lem 5.6] implies
that (M, g) is an Ambrose–Singer manifold. The regularity argument in the proof
of [12, Prop. 5.12] works analogously for h instead of hol(∇). Thus we conclude
that (M, g) is locally isometric to an isotropy irreducible homogeneous space G/H,
where H is a Lie group with Lie algebra h, and that ∇ is its canonical connection.
The pair (G,H) cannot be symmetric: indeed, suppose the Lie algebra of g splits
as g = h ⊕ m with [m,m] ⊆ h, then the inclusion h → so(m) and the projection
Λ2m → h are both given in terms of the Lie bracket, and the condition b(A) = 0
for A ∈ Sym h reduces to

[A[X, Y ], Z] + [A[Y, Z], X] + [A[Z,X], Y ] = 0, ∀X, Y, Z ∈ m.

This is however satisfied for A = Idh thanks to the Jacobi identity, which shows
that K(h) ̸= 0, contradicting the assumption.

Let us now assume that K(h) ̸= 0. Since τ ∈ (Rn ⊗ so(n))h, at least one of the spaces
(Rn ⊗ h)h or (Rn ⊗ h⊥)h must be nontrivial, where h⊥ is the orthogonal complement of
h in so(n). It follows from Lemmas 4.1 and 4.3 that τ is a 3-form.

(b) If we assume that b(τ 2) = 0, then it follows from (4.1) that b(Rτ ) = 0. Moreover
τX annihilates τ for any X ∈ Rn, thus τ ∈ Rn ⊗ stab(τ). This means τ 2 is an
algebraic curvature tensor with values in stab(τ), i.e. τ 2 ∈ K(stab(τ)), and in
particular K(stab(τ)) contains a trivial submodule. Lemma 4.3 then implies that
(Rn ⊗ stab(τ)⊥)stab(τ) = 0, hence we must have (Rn ⊗ stab(τ))stab(τ) ̸= 0, and
by Lemma 4.1 stab(τ) is simple and Rn ∼= stab(τ). But since h ⊆ stab(τ) acts
irreducibly, it must coincide with stab(τ).
Assuming from now on rk h ≥ 2, Lemma 4.1 guarantees that K(h) ∼= R. Since
b(Rτ ) = 0 and Rτ takes values in hol(∇τ ) ⊆ h, we have Rτ ∈ K(h), and it follows
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that Rτ = κτ 2 for some function κ : M → R. As in [12], we may calculate using
(4.1) that

scalg = 2(1 + κ)∥τ∥2.

Since h acts irreducibly on Rn, Schur’s Lemma implies that (Sym2
0 Rn)h = 0.

Together with K(h) ∼= R, we may apply [12, Thm. 5.3] to find that (M, g) is
Einstein. In particular scalg is constant. Since τ is parallel with respect to the
metric connection ∇τ , it has constant norm. Thus also κ is constant, and we have

∇g
XR

g = (1 + κ)(∇τ
Xτ

2 − (τX)∗τ
2) = 0.

Thus (M, g) is locally symmetric with tangent space h. Let G/K denote the
symmetric model, where k = imRg ⊆ Λ2Rn. Since ∇ττ = 0 and b(τ 2) = 0, we also
have ∇gτ = 0. That is, τ lifts to an invariant 3-form on G/K. Hence K stabilizes
τ , i.e. k ⊆ h = stab(τ). By Rτ = κτ 2 and (4.1), Rg is also invariant under h.
Thus k = imRg is an h-invariant subspace of h, i.e. an ideal. Since h is simple,
this means either k = 0 or k = h. In the first case, g is flat, and in the second case
g = h⊕ h (as a representation of h). It is well known that the only two symmetric
spaces with this property are (H ×H)/H and HC/H.

(c) Next, if K(h) ̸= 0 and b(τ 2) ̸= 0, then the projection of τ to Rn ⊗ stab(τ)⊥,
and in particular to Rn ⊗ h⊥, is nontrivial. Then Lemma 4.3 implies that h =
stab(τ) is one of su(3) or g2, and the representation on the tangent space is C3

or R7, respectively. Thus (M, g, τ) is a geometry with parallel skew torsion whose
stabilizer is su(3) ⊂ so(6) or g2 ⊂ so(7). By Lemma 2.6, resp. Lemma 2.9, (M, g)
is a Gray manifold or a nearly parallel G2-manifold.

(d) Lastly, if rk h = 1, then dimM = 3. Again τ has constant norm since ∇ττ = 0,
so it must be a constant multiple of the volume form volg (and in particular, M is
orientable).

§4.2 Stabilizer versus holonomy
The above generalization of [12, Thm. 5.14] raises the question how many more cases

it actually catches. In other words,

• which of the above situations allow for hol(∇τ ) to be properly contained in stab(τ),
or even for the existence of a proper intermediate subalgebra h?

• can we characterize the stabilizer-irreducible geometries with parallel skew torsion
for which the holonomy representation is reducible?

These questions drive the remainder of the article.

4.5 Proposition. In cases (a) and (b) above we actually have hol(∇τ ) = stab(τ), except
for the Berger space SO(5)/ SO(3)irr, and the flat (±)-connections on (H ×H)/H.
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Proof. (a) Let G/H be a non-symmetric isotropy irreducible homogeneous space, ∇
its canonical connection, and g = h ⊕ m its reductive decomposition. Note that
h ⊆ so(m), so it follows from (2.4) that

hol(∇) ⊕ m = m + [m,m],

and this is in fact an ideal in g. But by [31, Thm. 1.1], G is simple, so this ideal
must equal g, and this only possible if hol(∇) = h.
Suppose that h ⊊ stab(τ). If K(stab(τ)) = 0, we may apply Theorem 4.4 and
repeat the above argument to conclude that stab(τ) = hol(∇). On the other hand,
if K(stab(τ)) ̸= 0, then we fall in case (c) of Theorem 4.4 for the stabilizer action;
that is, the isotropy representation is the restriction of C3 or R7 to h ⊂ su(3) or to
h ⊂ g2, respectively. Since no proper subalgebra of su(3) acts irreducibly on C3,
this case is ruled out; and the only proper subalgebra of g2 that acts irreducibly
on R7 is h = so(3)irr, as defined in Example 2.8. By the classification of Wolf [31],
G/H must be the Berger space SO(5)/ SO(3)irr.

(b) Assume now that b(τ 2) = 0. Then M is either (H ×H)/H, h, or HC/H, and

τXY = −t[X, Y ], t ̸= 0,

for a suitable identification h ∼= m (cf. Example 2.4), while the curvature is given
by

Rτ (X, Y ) = −s ad([X, Y ]), s =


1 − t2, M = (H ×H)/H,
−t2 M = h,

−1 − t2, M = HC/H.

Thus hol(∇τ ) = im(Rτ ) = h, except when s = 0, which happens only on the space
(H × H)/H for t = ±1. Moreover, stab(τ) is the Lie algebra of derivations of h,
and since h is simple, this coincides with h.

Before we carry on with the cases (c) and (d) of Theorem 4.4, we need to state a few
preparatory results.
4.6 Lemma. Let (M6, g, J) be a Gray manifold and ∇τ its canonical Hermitian con-
nection. Then there do not exist any nontrivial ∇τ -parallel vector fields on M .
Proof. Let ξ ∈ X(M) be a ∇τ -parallel vector field, that is

∇g
Xξ = −τXξ, X ∈ TM.

In particular ξ is Killing and dξ = 2∇gξ = 2τξ. Moreover, τξ is ∇τ -parallel since τ and
ξ are. Using (2.1) and [21, (8)], one may calculate that

0 = 1
2d

2ξ =
∑

i

ei ∧ ∇g
ei
τξ = −

∑
i

ei ∧ (τei
)∗τξ = −ξ ⌟

∑
i

τei
∧ τei

= −2ξ ⌟ (ω ∧ ω),

where ω is the Kähler form (identified with J using the metric). Since ω ∧ ω is nonde-
generate, it follows that ξ = 0.
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4.7 Lemma ([16], Prop. 3.1). Let (M7, g, φ) be a nearly parallel G2-manifold and ∇τ

its canonical G2-connection. Then there do not exist any nontrivial ∇τ -parallel vector
fields on M .

Proof. We prove this by contradiction. Let X ̸= 0 be a hol(∇τ )-invariant element of R7

corresponding to a ∇τ -parallel vector field. Let h := stabg2(X) be the subalgebra of g2
that annihilates X. Then hol(∇τ ) ⊆ h. It is well-known that the stabilizer algebra in g2
of any nonzero vector in R7 is conjugate to su(3) ⊂ g2, so the holonomy representation
splits into R7 = R ⊕ C3. This is precisely the canonical h-splitting, where V = R and
H = C3. From Lemma 3.7 it follows now that τH = 0, and thus τ ∈ Λ2H ⊗ V . But this
implies

τX ∧ τX ∧ τ = 0
for any X ∈ H, which is not possible for a 3-form stabilized by G2.

4.8 Lemma. Let (M, g, τ) be a naturally reductive Ambrose–Singer manifold, and let
g = h ⊕ m be its transvection algebra. If τ ∈ m ⊗ h⊥ ⊆ m ⊗ so(m) and

Ricg(X,X) + |τX |2 > 0 ∀X ∈ m, X ̸= 0,

then g is compact and semisimple.3

Proof. It suffices to show that the Killing form B of g is negative definite. First, we
show that B(m, h) = 0. Extend g to the natural inner product on g ⊆ m ⊕ Λ2m, and
let (ei) and (fj) be orthonormal bases of m and h, respectively. Then for any A ∈ h and
X ∈ m, we have

B(X,A) = trg(ad(X) ad(A)) =
∑

i

⟨[X, [A, ei]], ei⟩ +
∑

j

⟨[X, [A, fj]], fj⟩.

The second term vanishes because [h, h] ⊆ h and [h,m] ⊆ m ⊥ h. For the first term, we
use natural reductivity and the definition (2.5) of the bracket on g to obtain∑

i

⟨[X, [A, ei]], ei⟩ =
∑

i

⟨Aei, 2τXei⟩ = 4⟨A, τX⟩Λ2m,

which vanishes since by assumption, τX ∈ h⊥.
It remains to show that the restrictions of B to h and m are negative definite. For

A ∈ h ⊆ so(m) we have

B(A,A) =
∑

i

⟨[A, [A, ei]], ei⟩ +
∑

j

⟨[A, [A, fj]], fj⟩

= −
∑

i

|Aei|2 −
∑

j

|[A, fj]|2 = −|A|2 −
∑

j

|[A, fj]|2,

3Here we use the endomorphism norm, which is given by |α|2 =
∑

i |α(ei)|2 for α ∈ Endm.
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which is clearly negative definite. Finally, for X ∈ m, we have by [6, Cor. 7.38] and (2.5)

B(X,X) = −2Ricg(X,X) −
∑

i

|[X, ei]m|2 + 1
2
∑
i,j

⟨[ei, ej], X⟩2

= −2Ricg(X,X) − 4|τX |2 + 2|τX |2

and this is negative if and only if Ricg(X,X) + |τX |2 > 0.

The following result was already proven by Nagy under the additional assumption of
completeness [23, Cor. 3.1].

4.9 Proposition. Let (M6, g, τ) be a geometry with parallel skew torsion such that
hol(∇τ ) ⊊ stab(τ) = su(3). Then either (M, g, τ) is locally isomorphic to the homoge-
neous Gray manifold S3 × S3, or the holonomy representation is reducible as a complex
representation.

Proof. If hol(∇τ ) ⊊ su(3), then hol(∇τ ) is contained in a maximal proper subalgebra
of su(3). Up to conjugation, these are s(u(2) ⊕ u(1)) and so(3). In the first case, the
holonomy representation splits into C3 = C2 ⊕ C, which are preserved by the almost
complex structure J .

In the second case, the holonomy representation splits as C3 = R3 ⊕ R3 according to
the real structure on C3 that so(3) ⊂ su(3) preserves – that is, the two summands are
interchanged by J . Since the two summands are equivalent as representations of so(3),
they are both vertical with respect to the canonical so(3)-splitting. Lemma 3.6 then
implies that (M, g, τ) is an Ambrose–Singer manifold.

We must have hol(∇τ ) = so(3). Indeed, if hol(∇τ ) ⊊ so(3), then the holonomy
representation C3 = R3 ⊕ R3 has to have at least two trivial summands and thus ∇τ -
parallel vector fields, which is impossible by Lemma 4.6.

Let h := so(3), m := C3 the holonomy representation, and let g := h ⊕ m be the
transvection algebra of the Ambrose–Singer manifold (M, g, τ). As (C3 ⊗su(3))su(3) = 0,
it follows that τ ∈ (m⊗su(3)⊥)su(3) ⊂ (m⊗h⊥)h. Since (M, g, τ) is a Gray manifold, it is
Einstein with positive scalar curvature, so in particular the assumptions of Lemma 4.8 are
satisfied, and we conclude that g is compact and semisimple. For dimensional reasons,
the Lie algebra g must then be isomorphic to so(3) ⊕ so(3) ⊕ so(3).

The only possible embeddings h = so(3) ↪→ g as a subalgebra are given by

X 7→ (aX, bX, cX), X ∈ so(3),

where a, b, c ∈ {0, 1}. If one of them was 0, then the isotropy representation m ∼= g/h
would have a trivial summand; and since this is not the case, h must be the diagonal
subalgebra. In particular, the associated subgroup diag(S3) ⊂ S3 × S3 × S3 is closed,
and thus (M, g, τ) is locally isometric to the Gray manifold S3 × S3 = S3×S3×S3

diag(S3) .

4.10 Proposition. Let (M7, g, τ) be a geometry with parallel skew torsion such that
hol(∇τ ) ⊊ stab(τ) = g2. Then it is either locally isomorphic to the Berger space, or
hol(∇τ ) ⊆ so(4) ⊂ g2 and the holonomy representation is reducible.
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Proof. Again, hol(∇τ ) must be contained in a maximal proper subalgebra of g2, and up
to conjugation, these are so(3)irr, so(4), and su(3).

For the first case, we note that

so(7) ∼= g2 ⊕ R7 ∼= so(3)irr ⊕ R7 ⊕ R11

under so(3)irr ⊂ g2. Thus (R7 ⊗ so(3)⊥
irr)so(3)irr ̸= 0, and since so(3)irr acts irreducibly on

R7, Lemma 4.3 yields that K(so(3)irr) = 0. By the proof of Theorem 4.4, (M, g, τ) must
locally be an isotropy irreducible space, and we may again invoke the classification of
Wolf [31] to see that it is the Berger space.

In the second case where hol(∇τ ) ⊆ so(4), the holonomy representation splits as
R7 = R3 ⊕ R4. The action of so(4) ∼= so(3) ⊕ so(3) is by the adjoint representation of
one of the so(3)-factors on R3, and by the standard representation on R4.

Finally, assume that hol(∇τ ) ⊆ su(3). Then the holonomy representation splits as
R7 = R⊕C3. In particular, there exists a nontrivial ∇τ -parallel vector field. Hence this
case is ruled out by Lemma 4.7.

4.11 Remark. In [16, Thm. 8.1], the Berger space had already been characterized as
the unique complete, simply connected and cocalibrated G2-manifold with parallel skew
torsion such that hol(∇τ ) = so(3)irr. This is slightly more general than Prop. 4.10, since
it goes beyond the nearly parallel G2 condition.

4.12 Proposition. If (M3, g, τ) is a geometry with parallel skew torsion such that
hol(∇τ ) ⊊ so(3), then (M, g) is Sasakian up to rescaling and locally fibers over a Rie-
mann surface.

Proof. By Theorem 4.4 (d), we have τ = t volg for some t ∈ R, and we may use the
Hodge star to write τX = t ⋆X and τXY = t ⋆(X ∧ Y ) for vector fields X, Y . Thus

τXτYZ = t2 ⋆(X ∧ ⋆(Y ∧ Z)) = −t2(Y ∧ Z)X.

In dimension 3 the Bianchi map is identically zero, and so (4.1) reduces to

Rg(X, Y ) = Rτ (X, Y ) − t2X ∧ Y. (4.9)

The only maximal proper subalgebra of so(3), up to conjugacy, is so(2). Suppose that
hol(∇τ ) ⊆ so(2). Then the holonomy representation splits as R3 = R2⊕R. In particular,
there exists a hol(∇τ )-invariant vector, and thus a ∇τ -parallel vector field ξ, assumed to
be of unit length. As in the proof of Lemma 4.6, ξ is Killing and satisfies dξ = 2τξ = 2t⋆ξ.
Since ∇τdξ = 0, we have

∇g
Xdξ = −(τX)∗dξ = −2(τX)∗τξ = −2X ⌟ b(τ 2) + 2ττXξ = 2t2X ∧ ξ.

Thus, up to a rescaling of the metric g by the factor t2, the Sasaki condition (2.6) is
satisfied. The canonical so(2)-splitting is given by H = R2 and V = R, so (M, g) locally
fibers over a surface (N, gN). We readily compute

(⋆ξ)2X = ⋆(ξ ∧ ⋆(ξ ∧X)) = −(ξ ∧X)ξ = −X, X ∈ H,
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thus ⋆ξ defines an almost complex structure on the distribution H. Together with
the above, Cartan’s formula immediately implies that Lξ(⋆ξ) = 0, so ⋆ξ projects to a
complex structure J on N . Hence (N, gN , J) is a Riemann surface.

4.13 Remark. Finally, if (M3, g, τ) is a geometry with parallel skew nonzero torsion
such that hol(∇τ ) = 0, i.e. ∇τ is flat, then (4.9) implies that Rg = −t2IdΛ2 . Hence g
has constant sectional curvature t2 > 0, that is, (M, g) is locally isometric to a round
3-sphere.

§5 Gray manifolds with complex reducible
holonomy

Let (M6, g, J) be a Gray manifold whose canonical connection ∇τ has complex re-
ducible holonomy representation, that is, hol(∇τ ) ⊆ s(u(1)⊕u(2)) (see Proposition 4.9).
Then the canonical s(u(1) ⊕ u(2))-splitting is given by TM = H ⊕ V , where pointwise
H ∼= C2 and V ∼= C. In particular it is J-invariant. The 3-form τ = −1

2J ◦∇gJ is of type
(3, 0) + (0, 3), and since dimC H = 2 and dimC V = 1, we necessarily have τ ∈ Λ2H ⊗ V .

The splitting TM = H ⊕ V locally defines a Riemannian submersion with totally
geodesic fibers over some manifold (N4, gN). Our goal in this section is to prove that
this local submersion is equivalent to the twistor fibration.

5.1 Theorem. (M, g, J) is locally isomorphic to the twistor space over the anti-self-dual
Einstein 4-manifold (N, gN).

5.2 Remark. It was first shown by Reyes-Carrión [25] that the canonical connection of
a nearly Kähler twistor space over an anti-self-dual Einstein 4-manifold has holonomy
contained in S(U(1) × U(2)). Theorem 5.1 may be seen as a converse to that.

Under the additional assumption that (M, g) is complete, Belgun–Moroianu [8] have
already shown that if (M, g, τ) has complex reducible holonomy, it is isometric to one of
the homogeneous Gray manifolds CP3 or F1,2 (see Remark 2.7), which are the twistor
spaces over S4 or CP2 with their respective standard metric. However, there are many
more anti-self-dual Einstein 4-manifolds which are not complete, and their twistor spaces
are captured by Theorem 5.1.does not assume that the torsion is a G2-structure.

A higher-dimensional version of Theorem 5.1 is given by Stecker [28, Thm. 4.5], stating
that under some technical assumptions, any nearly Kähler manifold Mn+2 with a suit-
able ∇τ -parallel splitting of the tangent bundle fibers locally over a quaternion-Kähler
manifold Nn. Our formulation in dimension n+ 2 = 6 removes these assumptions.

A version for Hermitian manifolds with parallel skew torsion and holonomy contained
in U(m)×U(1) was proved by Alexandrov [4, Thm. 7.1]. Again, under suitable assump-
tions on the torsion, the space is locally isomorphic to a twistor space over a positive
quaternion-Kähler manifold.
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§5.1 The twistor space over a 4-manifold
First, let us give an account of the twistor construction. Let (N4, gN) be an oriented

Riemannian 4-manifold. Its twistor space Z is defined as the bundle of compatible almost
complex structures:

Z := {(p, j) | p ∈ N, j ∈ SO(TpN), j2 = −Id}.

The corresponding bundle map

πZ : Z −→ N : (p, J) 7−→ p,

is called the twistor fibration. One may also view the fiber bundle Z ∼= P ×SO(4) S
2 as

associated to the principal bundle P → N of oriented orthonormal frames, with fiber
S2 = SO(4)/U(2). Since almost complex structures are in particular skew-symmetric,
Z ⊂ so(TN) = P ×SO(4) so(4).

Let VZ := ker dπZ be the vertical distribution of the fibration πZ . Its fiber over a
point (p, j) ∈ Z is identified with the tangent space Tjπ

−1
Z (p) of the fiber, that is

VZ,(p,j) = {A ∈ so(TpN) |A ◦ j + j ◦ A = 0}.

The Levi-Civita connection ∇gN induces a connection on the bundle of skew-symmetric
endomorphisms so(TN), which restricts to an Ehresmann connection on Z. Take HZ

to be the horizontal distribution of this Ehresmann connection. That is, a curve γ in Z
with γ(0) = j is horizontal if for any t, γ(t) is the ∇gN -parallel transport of j in so(TN)
along the curve πZ ◦ γ

∣∣∣
[0,t]

. We then have a splitting TZ = VZ ⊕ HZ , and the bundle

map dπZ

∣∣∣
HZ

: HZ → TN is invertible.
Denote with gS2 the metric on the twistor fibers given by the restriction of the usual

inner product on EndTN , i.e.

gS2(X, Y ) = − tr(XY ), X, Y ∈ VZ ⊂ so(TN).

It can be shown that on each fiber, gS2 is the round metric with Gaussian curvature 1.
Now, one may define a family of Riemannian metrics (gλ)λ>0 on Z by setting

gλ

∣∣∣
HZ×HZ

:= π∗
Zg, gλ

∣∣∣
VZ×VZ

:= λ−1gS2 , gλ

∣∣∣
HZ×VZ

:= 0,

each making πZ into a Riemannian submersion.
Finally, let J± be the almost complex structures defined on Z by

J±
(p,j)(X) = dπZ

∣∣∣−1

HZ

◦ j ◦ dπZ(X), X ∈ HZ,(p,j),

J±
(p,j)(j′) = ±j ◦ j′, j′ ∈ VZ,(p,j).

These are compatible with the metrics gλ. It is well-known that if (N, gN) is Einstein with
anti-self-dual Weyl curvature and positive scalar curvature, then (Z, gλ, J

+) is Kähler
for λ = scalgN

/3, and (Z, gλ, J
−) is strictly nearly Kähler for λ = 2scalgN

/3. Conversely,
if (Z, gλ, J

+) is Kähler or (Z, gλ, J
−) is nearly Kähler, then (N, gN) is anti-self-dual

Einstein with positive scalar curvature, and λ = scalgN
/3 or λ = 2scalgN

/3, respectively
[18, 22].
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§5.2 The isometry
Let now (M, g, J) be as in the beginning of §5, and π : M → N the canonical submer-

sion. In order to prove Theorem 5.1, it suffices to give an isometry between (M, g, J)
and (Z, gλ, J

−) with λ = 2scalgN
/3 that intertwines the almost complex structures. We

define the smooth map

F : (M, g, J) → (Z, gλ, J
−) : p 7−→ (π(p), dπ ◦ JH

p ◦ dπ
∣∣∣−1

H
), (5.1)

where JH ∈ End H is the horizontal part of J ∈ EndTM (recall that J preserves
the distributions H and V). For the purpose of this section, we use the conventional
normalization scalg = 30. Then we show that for the choice λ = 16, the map F is a
holomorphic isometry.

5.3 Lemma. The map F : M → Z defined in (5.1) preserves the horizontal and vertical
distributions, that is, dF (H) = HZ and dF (V) = VZ.

Proof. First, let V ∈ V . Then by (S1),

0 = dπ(V ) = d(πZ ◦ F )(V ),

and thus dF (V ) ∈ VZ .
Now let γ : [0, 1] → M be any horizontal curve, i.e. γ̇(t) ∈ H for all t. Then

dF (γ̇(0)) = j′(0), where

j(t) = F (γ(t)) = (π(γ(t)), dπ ◦ JH
γ(t) ◦ dπ

∣∣∣−1

H
).

We intend to show that j : [0, 1] → Z is parallel along π ◦ γ = πZ ◦ j, and thus a
horizontal curve. For any vector field X ∈ X(N), let X̃ denote its horizontal lift to M ,
i.e.

X̃p = dπp

∣∣∣−1

H
Xπ(p), p ∈ M.

Suppose that X is a ∇gN -parallel vector field along π ◦ γ. Since τH = 0, (S5) states that

∇τ
γ̇X̃ = ∇̃gN

(π◦γ)′X = 0.

Because J and the distributions V ,H are ∇τ -parallel, so is the horizontal part JH. Hence

0 = ∇τ
γ̇(JHX̃) = ˜∇gN

(π◦γ)′(jX).

Since X was assumed to be parallel, it follows that j is parallel along π ◦ γ, hence
dF (γ̇(0)) = j′(0) ∈ HZ .

Since both π and πZ are Riemannian submersions and π = πZ ◦ F , we obtain:

5.4 Corollary. For any X ∈ H, |X|2 = |dF (X)|2.
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5.5 Lemma. For any V ∈ V, we have

dF (V ) = dπ ◦ 4JτV ◦ dπ
∣∣∣−1

H

and |V |2 = |dF (V )|2.

Proof. Let V ∈ X(M) be a vertical vector fields, and let Φ denote the flow of V . Since
V is an integrable distribution by (S1), the flow of V preserves the fibers of π, that is

π ◦ Φt = π ∀t.

Hence we may calculate at every p ∈ M that

dF (Vp) = d

dt

∣∣∣
t=0
dπΦt(p) ◦ JH

Φt(p) ◦ dπΦt(p)

∣∣∣−1

H

= d

dt

∣∣∣
t=0
dπp ◦ (dΦ−t)Φt(p) ◦ JH

Φt(p) ◦ (dΦt)p ◦ dπp

∣∣∣−1

H

= dπp ◦ (LV J
H)H

p ◦ dπp

∣∣∣−1

H
.

That is, dF (V ) = dπ ◦ (LV J
H)H ◦ dπ

∣∣∣−1

H
∈ so(TN). Further, using thatJ , H and V are

∇τ -parallel, that τ ∈ Λ2H ⊗ V , and that τ is a (3, 0) + (0, 3)-form, we find

(LV J
H)H(X) = [V, JX]H − J [V,X]H

= (∇g
V (JX))H − (∇g

JXV )H − J(∇g
VX)H + J(∇g

XV )H

= (∇τ
V J

H)(X) − (∇τ
JXV )H + J∇τ

XV − 2(τV (JX))H + 2J(τVX)H

= 4JτVX.

for any horizontal vector field X ∈ X(M). By [20, Thm. 5.2 (i)], we have

|τXY |2 = 1
4 |X|2|Y |2 if X ⊥ Y, JY

(where we note that our normalization corresponds to α = 1). Since π is a Riemannian
submersion, we conclude

|dF (V )X|2 = |4JτV X̃|2 = 4|V |2|X|2

for any X ∈ TN with horizontal lift X̃ ∈ H. Taking the trace,

gS2(dF (V ), dF (V )) = − tr(dF (V )2) = 16|V |2.

It follows that for λ = 16, we have |dF (V )|2 = |V |2 with respect to the metric gλ.

Together with Lemma 5.3 and Corollary 5.5, this shows that F : M → Z is an
isometry. It remains to show that it intertwines J and J−.

5.6 Lemma. dF ◦ J = J− ◦ dF .
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Proof. Let p ∈ M . Since F is an isometry, dFp is invertible. By definition,

J±
F (p) = (dπZ)F (p)

∣∣∣−1

HZ

◦ dπp ◦ JH
p ◦ dπp

∣∣∣−1

H
◦ (dπZ)F (p)

= dFp ◦ JH
p ◦ (dFp)−1

since πZ ◦ F = π. Thus dF (JX) = J±dF (X) for any X ∈ H.
Let now V ∈ V . By Lemma 5.5, and since τ is of type (3, 0) + (0, 3),

dF (JV ) = dπ ◦ 4JτJV ◦ dπ
∣∣∣−1

H
= −dπ ◦ J ◦ 4JτV ◦ dπ

∣∣∣−1

H

= −dπ ◦ JH ◦ dπ
∣∣∣−1

H
◦ dF (V ) = J−dF (V ).

This completes the proof of Theorem 5.1.

§5.3 Further holonomy reduction
We now turn to the case where the holonomy algebra of the canonical connection of

a Gray manifold is properly contained in s(u(1) ⊕ u(2)).

5.7 Theorem. Let (M6, g, τ) be a geometry with parallel skew torsion which is a Gray
manifold. If hol(∇τ ) ⊊ s(u(2)⊕u(1)), then hol(∇τ ) = s(u(1)⊕u(1)⊕u(1)) and (M, g, τ)
is locally isomorphic to the homogeneous Gray manifold F1,2.

Proof. Since hol(∇τ ) ⊊ s(u(2)⊕u(1)), it must be contained in one of the maximal proper
subalgebras su(2) and s(u(1) ⊕ u(1) ⊕ u(1)).

In the first case, the C-summand of the holonomy representation C2 ⊕C would have to
be trivial, which means that there exists an at least two-dimensional space of ∇τ -parallel
vector fields. However this is impossible by Lemma 4.6.

In the second case, the holonomy representation splits further into C ⊕ C ⊕ C. It is
easy to see that everything is vertical with respect to the canonical s(u(1)⊕u(1)⊕u(1))-
splitting, and thus by Lemma 3.6, (M, g, τ) is an Ambrose–Singer manifold.

The holonomy algebra cannot be smaller than h := s(u(1)⊕u(1)⊕u(1)), since otherwise
we would again have trivial summands in the holonomy representation and thus parallel
vector fields, which Lemma 4.6 forbids. Hence hol(∇τ ) = h.

Consider thus the transvection algebra g = h ⊕ m, where m = C3 is the holonomy
representation. As before, we have τ ∈ (m ⊗ su(3)⊥)su(3) ⊂ (m ⊗ h⊥)h and (M, g, τ) is
Einstein with positive scalar curvature, so Lemma 4.8 tells us that g is compact and
semisimple. The only possibility in dimension eight is g = su(3), and since this has
rank two, h is a maximal torus in g. The corresponding Lie groups are G = SU(3) and
H = T 2. In particular H is closed in G. Thus (M, g, τ) is locally isometric to the Gray
manifold F1,2 = SU(3)/T 2.
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§6 Nearly parallel G2-manifolds with reducible
holonomy

Recall from Example 2.6 that a 3-(α, δ)-Sasaki manifold is a Riemannian manifold
(M, g) carrying three sets of structure tensors (ξi,Φi)i=1,2,3 such that the algebraic (al-
most 3-contact metric) conditions (2.7), (2.8) and (2.10) as well as the differential con-
dition (2.11) are satisfied.

As observed in [2, Thm. 4.5.1], every 7-dimensional 3-(α, δ)-Sasaki manifold carries a
natural G2-structure

φ :=
∑

i

ξi ∧ ΦH
i + ξ1 ∧ ξ2 ∧ ξ3

which is cocalibrated, i.e. d∗φ = 0, and whose characteristic connection (in the sense of
[1]) coincides with the canonical 3-(α, δ)-Sasaki connection, whose holonomy algebra is
contained in so(4)⊕so(3). The G2-structure φ defined above is nearly parallel if and only
if δ = 5α. In this case, its holonomy algebra is also contained in g2, hence in a maximal
so(4)-subalgebra of g2 (which is characterized by preserving a splitting R7 = R4 ⊕R3 of
the standard representation of G2).

Our goal in this section is to show a sort of converse:

6.1 Theorem. If (M7, g, τ) is a geometry with parallel skew torsion which is strictly
nearly parallel G2 with reducible holonomy representation, i.e. hol(∇τ ) ⊆ so(4) ⊂ g2,
then it is 3-(α, δ)-Sasakian, and δ = 5α.

§6.1 Recovering the 3-(α, δ)-Sasaki structure
Let (M7, g, τ) be as above. Recall from Example 2.8 that τ = τ0

12φ, where φ is the
G2-structure. We assume without restriction that g is the metric induced by φ, i.e. that
|φ|2 = 7. As in Proposition 4.10, let TM = H ⊕ V be the so(4)-canonical splitting,
where fiberwise dim H = 4 and dim V = 3. Note that τH = 0, since any subalgebra of
so(4) that stabilizes an element of Λ3H also stabilizes a vector in H, and by Lemma 4.7
the holonomy algebra hol(∇τ ) cannot stabilize a tangent vector. Thus τ = τm + τV .

Since the 3-form φ describes a vector cross product on TM , it satisfies the identities
[15, (2.7), (2.13)]

2φφXY + [φX , φY ] = 3X ∧ Y, (6.1)
{φX , φY } = −2⟨X, Y ⟩Id +X ⊙ Y, (6.2)

where {·, ·} is the anticommutator, and X ⊙ Y = X ⊗ Y + Y ⊗X. Moreover, since φV

is a 3-dimensional vector cross product on V , we additionally have

[φU , φV ]W = φφU VW = (U ∧ V )W, U, V,W ∈ V . (6.3)

In light of (6.1), the curvature identity (3.2) reduces to

Rτ (X, Y )V = 12ττXY V, X, Y ∈ H, V ∈ V . (6.4)
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In addition to the identities (S7) that hold for any admissible splitting, we also need to
describe the purely vertical part of the curvature in our situation.

6.2 Lemma. For any U, V,W ∈ V, we have Rτ (U, V )W = −24ττU VW .

Proof. By Lemma 3.6, the vertical part Rτ,V := prΛ2V ◦Rτ ◦ prΛ2V is so(4)-invariant, i.e.

Rτ,V ∈ (Sym2 Λ2V)so(4).

Since Λ2V ∼= V ∼= so(3) is irreducible, any invariant symmetric endomorphism must be
some multiple of the identity, and since the isomorphism Λ2V ∼= V is given by τV , we
must have

Rτ (U, V )W = c · ττU VW, U, V,W ∈ V ,

for some c ∈ R that it remains to determine.
Recall that the Ricci endomorphism can be written as

Ricτ =
∑
i<j

(ei ∧ ej) ◦Rτ (ei, ej). (6.5)

for any orthonormal basis (ei) of TM . Recall also that on an Euclidean vector space T
of dimension n, the Casimir operator

Casso(n)
T := −

∑
i<j

(vi ∧ vj)2 ∈ (EndT )so(n),

where (vi) is an orthonormal basis of T , acts as the operator (n − 1)Id. By (3.1), we
have Rτ (H,V) = 0, and by (6.4), Rτ (H,H)V ⊆ V . With (Ui) as an orthonormal basis
of V , and using (6.3), the only remaining terms in (6.5) applied to W ∈ V are

Ricτ (W ) =
∑
i<j

(Ui ∧ Uj)Rτ (Ui, Uj)W = c
∑
i<j

(Ui ∧ Uj)ττUi
Uj
W

= c
(
τ0

12

)2∑
i<j

(Ui ∧ Uj)2W = −c
(
τ0

12

)2
Casso(3)

V W = −2c
(
τ0

12

)2
W

Now, [5, (5.33)] combined with the fact that (M, g) is Einstein with Ricg = 3τ2
0

8 Id implies
that

Ricτ = Ricg + 7
(
τ0

12

)2
Casso(7)

T M = 48
(
τ0

12

)2
Id.

Comparing the above results, we obtain c = −24.

We now define a new connection that will help us reconstruct the 3-(α, δ)-Sasaki
structure tensors. Let

∇ := ∇g + τm − 5τV = ∇τ − 6τV .

Since both ∇τ
X and τV

X preserve the splitting TM = H ⊕ V for any X ∈ TM , so does
∇X . In particular ∇ restricts to a connection on the vector bundle V .

6.3 Lemma. The connection ∇ on V is flat.
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Proof. Let X, Y be horizontal and U, V,W be vertical vector fields on M , and R denote
the curvature of ∇. Using ∇X = ∇τ

X , ∇τ
XY ∈ H, τXY ∈ V , and (6.4), we calculate

R(X, Y )V = ∇X∇Y V − ∇Y ∇XV − ∇[X,Y ]V

= ∇τ
X∇τ

Y V − ∇τ
Y ∇τ

XV − ∇τ
∇τ

XY −∇τ
Y XV + 2∇τXY V

= Rτ (X, Y )V − 12ττXY V = 0

Further, with ∇τ
XV ∈ V , ∇τ

VX ∈ H, τXV ∈ H, ∇ττ = 0, and (3.1), we obtain

R(X, V )W = ∇X∇VW − ∇V ∇XW − ∇[X,V ]W

= ∇τ
X(∇τ

VW − 6τVW ) − (∇τ
V − 6τV )∇τ

XW − ∇∇τ
XV −∇τ

V X−2τXVW

= ∇τ
X∇τ

VW − ∇τ
V ∇τ

XW − 6∇τ
X(τVW ) + 6τV ∇τ

XW

− ∇τ
∇τ

XV −∇τ
V X−2τXVW + 6τ∇τ

XVW

= Rτ (X, V )W − 6(∇τ
Xτ)VW = 0.

Finally, we use [U, V ],∇τ
VW, τVW ∈ V , ∇ττ = 0, (6.3), and Lemma 6.2, to see that

R(U, V )W = ∇U∇VW − ∇V ∇UW − ∇[U,V ]W

= ∇U(∇τ
VW − 6τVW ) − ∇V (∇τ

UW − 6τUW ) − ∇τ
[U,V ]W + 6τ[U,V ]W

= Rτ (U, V )W − 6τU(∇τ
VW − 6τVW ) − 6∇τ

U(τVW )
+ 6τV (∇τ

UW − 6τUW ) + 6∇τ
V (τUW ) + 6τ∇τ

U V −∇τ
V U−2τU VW

= Rτ (U, V )W − 6(∇τ
Uτ)VW + 6(∇τ

V τ)UW + 36[τU , τV ]W − 12ττU VW

= Rτ (U, V )W − 24ττU VW = 0.

6.4 Lemma. ∇φV = 0.

Proof. Since τ = τ0
12φ and ∇ττV = 0, it remains to show that (φV

X)∗φ
V = 0. But

φV ∈ Λ3V and dim V = 3, so clearly

b((φV)2) ∈ V⊗4 ∩ Λ4TM = Λ4V = 0,

hence (φV
X)∗φ

V = X ⌟ b((φV)2) = 0.

Proof of Theorem 6.1. At an arbitrary point ofM , choose an orthonormal basis (ξ1, ξ2, ξ3)
of V that is positively oriented with respect to φV , that is

φV = ξ1 ∧ ξ2 ∧ ξ3

at that point. By Lemma 6.3, we may extend the ξi to ∇-parallel vector fields on M ,
and by Lemma 6.4, the above relation then holds globally. Since φ = φm + φV , we may
write

φ =
3∑

i=1
ξi ∧ ωi + ξ1 ∧ ξ2 ∧ ξ3
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for the horizontal 2-forms ωi := φm
ξi

= φξi
− ξj ∧ ξk. Each ωi defines an almost complex

structure on H, which is easily checked using the identity (6.2) with X = Y = ξi. If we
now define

Φi := ωi − ξj ∧ ξk = φξi
− 2ξj ∧ ξk,

then this implies

Φ2
i = (ωi − ξj ∧ ξk)2 = ω2

i − (ξj ∧ ξk)2 = −Id + ξi ⊗ ξi,

verifying (2.10). Using the definition of ∇, the condition ∇ξi = 0 is rewritten as

∇gξi = −ξi ⌟ (τm − 5τV) = − τ0

12(ωi − 5ξj ∧ ξk)

for any even permutation (i, j, k) of (1, 2, 3). This is turn is equivalent to (2.11) with
α = − τ0

12 and δ = 5α. Since the ωi are horizontal, we clearly have Φiξj = −ξk = −Φjξi,
which is (2.7). Finally, combining the identities (6.1) and (6.2), we obtain

φX ◦ φY = 2X ⊗ Y − Y ⊗X − ⟨X, Y ⟩Id − φφXY ∈ EndTM.

Specializing to X = ξi and Y = ξj, we find φξi
◦ φξj

= 2ξi ⊗ ξj − ξj ⊗ ξi − φξk
. Thus

ΦiΦjX = (φξi
− 2ξj ∧ ξk)(φξj

− 2ξk ∧ ξi)X
= φξi

φξj
X − 2⟨ξk, X⟩φξi

ξi + 2⟨ξi, X⟩φξi
ξk

− 2⟨ξj, φξj
X⟩ξk + 2⟨ξk, φξj

X⟩ξj + 4⟨ξi, X⟩ξj

= φξi
φξj

X

= −φξk
X + 2⟨ξi, X⟩ξj − ⟨ξj, X⟩ξi

= −ΦkX + ⟨ξj, X⟩ξi

and similarly for ΦjΦiX, thus showing the desired relation (2.8).

§6.2 Further holonomy reduction
6.5 Theorem. If hol(∇τ ) ⊆ so(4) inside g2, then either we have equality, or the base
of the locally defined submersion is Kähler–Einstein and hol(∇τ ) = u(2) ⊂ so(4).

Proof. Since V is hol(∇τ )-invariant and dim V = 3, it must be irreducible – otherwise,
there would be a trivial summand in V and thus a ∇τ -parallel vector field, which is
impossible by Lemma 4.7. Hence the projection hol(∇τ ) → so(V) is surjective.

Assume that hol(∇τ ) ⊊ so(4), and write so(4) ∼= so(3)1 ⊕so(3)2 such that V ∼= so(3)1,
and both so(3)1,2 act irreducibly on H. The maximal proper subalgebras of so(4) are,
up to conjugacy,

so(3)1 ⊕ u(1), u(1) ⊕ so(3)2, diag(so(3)) ⊂ so(3)1 ⊕ so(3)2.

Since u(1)⊕so(3)2 has an invariant vector in V ∼= so(3)1 and diag(so(3)) has an invariant
vector in H ∼= R4, the holonomy algebra cannot be contained in either of them by
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Lemma 4.7. Furthermore, since hol(∇τ ) → so(V) is surjective, the only remaining
possibilities are hol(∇τ ) = so(3)1 ⊕ u(1) or hol(∇τ ) = so(3)1.

The representation Λ2H splits under so(3)1 ⊕ u(1) as

Λ2H ∼= R ⊕ C ⊕ R3,

where the u(1)-factor acts nontrivially only on C, and so(3)1 only on R3. In particular,
there exists an invariant element, corresponding to a ∇τ -parallel horizontal 2-form α.
This 2-form is nondegenerate – otherwise its kernel would be a ∇τ -parallel subbundle of
H, which is impossible since H is irreducible as a representation of so(3)1. Thus we may
rescale and assume that α is an almost complex structure on H. In turn, so(3)1 ⊕ u(1)
is the u(2)-subalgebra stabilizing α.

The contraction α ⌟ τ is a parallel 1-form, hence zero. For any vertical vector field V ,
we then calculate using the Cartan formula

LV α = V ⌟ dα =
∑

i

V ⌟ (ei ∧ ∇g
ei
α) = −

∑
i

V ⌟ (ei ∧ (τei
)∗α)

= −(τV )∗α +
∑

i

ei ∧ (V ⌟ (τei
)∗α) = −(τV )∗α +

∑
i

ei ∧ ((τei
)∗(V ⌟ α) − τei

V ⌟ α)

= −(τV )∗α +
∑

i

ei ∧ (τV ei ⌟ α) = −(τV )∗α−
∑

i

τV ei ∧ (ei ⌟ α) = −2(τV )∗α.

Since so(3)2 acts trivially on V , the 2-form τV is also so(3)2-invariant. Thus, under the
identification Λ2H ∼= so(4), we have τV ∈ so(3)1, while α ∈ so(3)2. In particular, the
skew-symmetric endomorphisms τV and α commute, and (2.2) implies

(τV )∗α = [τV , α] = 0.

Thus α is projectable to a 2-form α̌ on the quaternion-Kähler base (N, gN) in the canon-
ical so(4)-submersion, and since τH = 0, property (S5) of the canonical submersion
implies that ∇gN α̌ = 0. Thus α̌ is a ∇gN -parallel complex structure on N , that is,
(N, gN , α̌) is Kähler.

Finally, we rule out the case hol(∇τ ) = so(3)1 = su(2). Under this subalgebra, the
representation so(3)2 ⊂ Λ2H is trivial. By the argument above, we obtain a triple of
∇gN -parallel complex structures on N satisfying the so(3) commutation relations. This
means that (N, gN) is hyperkähler. However by [27, Thm. 4.2.10] we have

scalgN
= 48αδ > 0,

which clashes with the fact that hyperkähler metrics are Ricci-flat.
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§7 Almost irreducible stabilizer actions and Sasaki
geometry

We conclude this article with a particular class of geometries with parallel skew torsion
that does not appear in the classification of Theorem 4.4, while still being of great
importance. In [13], geometries with torsion of special type were introduced. These are
geometries with parallel skew torsion (M, g, τ) such that hol(∇τ ) acts trivially on the
vertical space V ̸= 0 of the standard submersion. Equivalently, the distribution V is
spanned by ∇τ -parallel vector fields. Geometries with torsion of special type include
Sasaki manifolds as well as parallel 3-(α, δ)-Sasaki manifolds (δ = 2α).

§7.1 A characterization of Sasaki manifolds
Replacing the holonomy action by the stabilizer action, we focus on the so-called

almost irreducible case, where in the canonical stab(τ)-splitting TM = H ⊕ V , the
vertical part V is one-dimensional and H is an irreducible representation of stab(τ).

7.1 Theorem. If (M, g, τ) is a geometry with parallel skew torsion such that stab(τ)
acts almost irreducibly on the tangent space, and (M, g, τ) has no local one-dimensional
factor, then (M, g, τ) is Sasakian.

Proof. Write the canonical stab(τ)-splitting as TM = H ⊕ V , and let ξ ∈ X(M) be
a unit length ∇τ -parallel vector field spanning V . By the irreducibility of H and the
assumption, (M, g, τ) is indecomposable. Thus Lemma 3.7 yields τH = 0 and we may
write

τ = ξ ∧ Φ
for the stab(τ)-invariant horizontal 2-form Φ := τξ. By Schur’s Lemma, its square
Φ2 ∈ (Sym H)stab(τ) is a multiple of the identity, i.e.

Φ2 = −λIdH

for some λ > 0. Up to a joint rescaling of the metric and ξ, we can assume that λ = 1.
Since ξ and Φ are ∇τ -parallel, we calculate for X ∈ H

∇g
Xξ = −τXξ = X ⌟ Φ, ∇g

ξξ = −τξξ = 0,
∇g

XΦ = −τXΦ = [ξ ∧ Φ(X),Φ] = −λX ∧ ξ, ∇g
ξΦ = −τξΦ = −[Φ,Φ] = 0.

Thus (ξ,Φ) satisfy the Sasaki conditions (2.6).

In particular we can view H as a complex representation of stab(τ), using the invariant
complex structure Φ. M2n+1 is necessarily odd-dimensional, and stab(τ) ∼= u(n).

Applying the canonical u(n)-submersion, we recover the well-known fact that any
Sasaki manifold locally fibers over a Kähler manifold. Indeed, the torsion of the base
vanishes as a consequence of (S5) and Lemma 3.7.

35



§7.2 Holonomy reductions for Sasaki manifolds
Let (M2n+1, g, ξ,Φ) be a Sasaki manifold, τ = ξ ∧ Φ as in 2.11, and (N2n, gN , J) the

Kähler base of the canonical u(n)-submersion π : M → N . Again one may raise the
question whether it is possible to characterize the cases where hol(∇τ ) is a proper sub-
algebra of u(n). We shall henceforth assume that n ≥ 2, because the three-dimensional
case is covered in Proposition 4.12 and Remark 4.13.

We consider the (complex) representation H of hol(∇τ ) and distinguish three possi-
bilities:

(H1) H = ⊕
α Hα is reducible as a complex representation. Then accordingly, (N, gN , J)

locally splits into a product of Kähler manifolds (Nα, gα, Jα).

(H2) H is irreducible as a complex representation, but reducible as a real one. That is,
H = H′ ⊕ ΦH′ for an irreducible real representation H′ of hol(∇τ ).

(H3) H is irreducible as a real representation. Then hol(∇τ ) ⊊ u(n) is necessarily a
maximal subalgebra.

The last two cases merit a further investigation. First, however, we need to relate the
holonomy of ∇τ to the Riemannian holonomy of the Kähler base. View both holonomy
groups as subgroups of U(n), and denote with U(1) ⊂ U(n) the rotation subgroup
generated by Φ on H, resp. by the π-related endomorphism J = dπ ◦ Φ ◦ dπ

∣∣∣−1

H
on TN .

7.2 Theorem. We have the inclusions

Hol(∇τ ) ⊆ Hol(∇gN ) · U(1),
Hol(∇gN ) ⊆ Hol(∇τ ) · U(1),

and U(1) is contained in at least one of the holonomy groups.

Proof. Let γ : [0, 1] → N be a closed smooth curve, and let X be a vector field along γ.
Let further δ : [0, 1] → M be a closed smooth curve with π ◦ δ = γ, and denote with X̃
the horizontal lift of X along γ. At every point of the curve δ, we may write the tangent
vector as

δ̇ = ˜̇γ + fξ

for some function f : [0, 1] → R. By (S5), we have

∇τ
˜̇γX̃ = ∇̃gN

γ̇ X,

and since X̃ is projectable, LξX̃ = 0 and thus

∇g
ξX̃ = ∇g

X̃
ξ = ΦX̃ = J̃X.

Putting this together, we find

∇τ
δ̇X̃ = ∇τ

˜̇γX̃ + f∇τ
ξX̃ = ∇̃gN

γ̇ X + f(∇g
ξX̃ + τξX̃) = ∇̃gN

γ̇ X + 2fJ̃X.
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Thus the parallel transport equation of X̃ with respect to ∇τ is given by

∇gN
γ̇ X + 2fJX = 0.

If XN is the solution of ∇gN
γ̇ X = 0 with initial value XN(0) = X(0), then using ∇gNJ = 0

and integrating yields
X(1) ∈ span{XN(1), JXN(1)}.

Since ∇τ is metric, parallel transport preserves length, and we conclude

Hol(∇τ ) ⊆ {αh+ βhΦ |h ∈ Hol(∇gN ), α2 + β2 = 1} = Hol(∇gN ) · U(1).

Since also XN(1) ∈ span{X(1), JX(1)}, we have at the same time

Hol(∇gN ) ⊆ {αh+ βhJ |h ∈ Hol(∇gN ), α2 + β2 = 1} = Hol(∇τ ) · U(1).

Let us now compare the curvature of ∇τ and ∇gN . For vector fields X, Y, Z ∈ X(N)
with horizontal lifts X̃, Ỹ , Z̃ ∈ X(M), (S5) implies that

Rτ (X̃, Ỹ )Z̃ =
[
RgN (X, Y )Z

]∼
+ ∇τ

[̃X,Y ]−[X̃,Ỹ ]
Z̃.

For the difference term, we note that

[̃X, Y ] − [X̃, Ỹ ] =
[
∇gN

X Y − ∇gN
Y X

]∼
− ∇g

X̃
Ỹ + ∇g

Ỹ
X̃

= ∇τ
X̃ Ỹ − ∇τ

Ỹ X̃ − ∇g

X̃
Ỹ + ∇g

Ỹ
X̃

= 2τX̃ Ỹ = 2g(ΦX̃, Ỹ )ξ = 2ω(X, Y )ξ,

where ω(X, Y ) = gN(JX, Y ) is the Kähler form on N . Again, since LξZ̃ = 0, we have

∇τ
ξ Z̃ = ∇g

ξZ̃ + τξZ̃ = 2ΦZ̃ = 2J̃Z.

Finally, we obtain

Rτ (X̃, Ỹ )Z̃ =
[
RgN (X, Y )Z

]∼
+ 4ω(X, Y )J̃Z. (7.1)

Thus Rτ is π-related to RgN + 4ω ⊗ ω. In particular, the curvature operators cannot
both annihilate ω (resp. Φ). Thus at least one of the holonomy algebras hol(∇τ ) and
hol(∇gN ) has to contain u(1) = Rω.

Finally, we are ready to discuss the cases (H2) and (H3). It turns out that it is possible
to completely describe (H2), and we give a classification scheme for (H3).

7.3 Theorem. If n ≥ 2, condition (H2) is satisfied if and only if (M2n+1, g) is locally
isometric to one of the Sasaki manifolds

SO(n+ 2)/ SO(n), E6/ SO(10), E7/E6,

SO(n, 2)/ SO(n), E−14
6 / SO(10), E−25

7 /E6,

which are circle bundles over Hermitian symmetric spaces.
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Proof. We have H = H′ ⊕ ΦH′ as a representation of hol(∇τ ). Since H′ ∼= ΦH′,
everything in TM ∼= R⊕H is vertical with respect to the canonical hol(∇τ )-splitting. By
Lemma 3.6, ∇τRτ = 0 and (M, g, τ) is a naturally reductive Ambrose–Singer manifold.
It then follows from (7.1) and (S5) that also ∇gNRgN = 0. Hence (N, gN) is locally
symmetric, i.e. locally of the form G/(K ·U(1)). Let p ∼= H be the isotropy representation
of hol(∇gN ) = k⊕u(1), and let g′ := k⊕m be the transvection algebra of (M, g, τ), where
m = V ⊕ H. It remains to show that g′ ∼= g. We stipulate the isomorphism

ψ : g = k ⊕ u(1) ⊕ p −→ g′ = k ⊕ V ⊕ H : (k, J,X) 7→ (k,−1
2ξ, X̃).

The [k, k]- and [k, p]-part of the bracket agree by construction. We also have [k,V ] = 0
since ∇τξ = 0, which agrees with the fact that [k, u(1)] = 0 in g. For the [m,m]-part,
recall the definition (2.5) of the bracket. Clearly, [V ,V ] = 0 = [u(1), u(1)]. Next, for
[H,H]m we have

[X, Y ]g′ = −2τXY = −2Φ(X, Y )ξ, X, Y ∈ H,

while [p, p]p = 0, and it follows from (7.1) that [p, p]u(1) is given by

([X, Y ]g)u(1) = −RgN (X, Y )u(1) = 4ω(X, Y )J, X, Y ∈ p,

so indeed [H,H]m and [p, p]p⊕u(1) agree under ψ. Next, [p, p]k and [H,H]k are given by
− prk ◦RgN and −Rτ

∣∣∣
H×H

, respectively, which fit together under ψ thanks to (7.1). The
[u(1), p]-part is simply given by [J,X]g = JX ∈ p for X ∈ p. Meanwhile for [V ,H] we
have

([ξ,X]g′)m = −2τξX = −2ΦX,
([ξ,X]g′)k = −Rτ (ξ,X),

for X ∈ H, and this agrees with [u(1), p] under ψ provided Rτ (ξ, ·) = 0.
Since ∇τ = 0, we have Rτ (ξ, ·)ξ = 0. Thus it suffices to compute Rτ (ξ, X̃)Ỹ for

X, Y ∈ X(N). Using earlier identities, we see that

Rτ (ξ, X̃)Ỹ = ∇τ
ξ ∇τ

X̃ Ỹ − ∇τ
X̃∇τ

ξ Ỹ − ∇τ
[X̃,ξ]Ỹ

= ∇τ
ξ ∇̃gN

X Y − ∇τ
X̃(2J̃Y )

= 2
[
J∇gN

X Y − ∇gN
X (JY )

]∼
= 0

since ∇gNJ = 0. This finishes the proof that g ∼= g′, and it follows that (M, g, τ) is
locally isometric to G/K.

After inspecting the known list of Hermitian symmetric spaces, we list the possibilities
where p splits under restriction to k in the following table:

G SO(n+ 2) or SO(n, 2) E6 or E−14
6 E7 or E−25

7

K SO(n) SO(10) E6

p Rn ⊕ Rn R10 ⊕ R10 e6 ⊕ e6
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Conversely, for any naturally reductive space (G/K, g, τ) as above, (2.4) implies that
hol(∇τ ) = k, so (H2) is indeed satisfied for these spaces.

7.4 Theorem. Under the assumptions of (H3), if n ≥ 2, one of the following holds:

(a) (M2n+1, g) is locally isometric to one of the Sasaki manifolds

SU(p+ q)/(SU(p) × SU(q)), SO(2k)/ SU(k), Sp(k)/ SU(k),
SU(p, q)/(SU(p) × SU(q)), SO(k,H)/ SU(k), Sp(k,R)/ SU(k),

which are circle bundles over Hermitian symmetric spaces.

(b) hol(∇τ ) = su(n) and (M2n+1, g) locally fibers over a Kähler–Einstein manifold
with scalar curvature 8n2.

(c) hol(∇τ ) = sp(n/2)u(1) and (M2n+1, g) locally fibers over a hyperkähler manifold.

Proof. Suppose that H is irreducible under hol(∇τ ). First, we show that it is also irre-
ducible under hol(∇gN ). Indeed, by Theorem 7.2, hol(∇τ ) ⊆ hol(∇gN )+u(1), so if H was
reducible under hol(∇gN ), we would have H = H′ ⊕ JH′, where H′ is irreducible under
hol(∇gN ). But this is impossible, since as a consequence of the de Rham decomposition
theorem, Riemannian holonomy representations are multiplicity-free.

Now, by the Berger classification of Riemannian holonomy groups, hol(∇gN ) can be
either u(n), su(n), sp(n/2), or (N, gN) is locally symmetric.

In the symmetric case, let (N, gN) be locally isometric to G/(K · U(1)). We may
argue as in the proof of Theorem 7.3 that (M, g, τ) is locally the naturally reductive
space G/K, where (G,K) is such that the isotropy representation p ∼= H of k ⊕ u(1)
does not split when restricted to k. The possibilities are precisely the following:

G SU(p+ q) or SU(p, q) SO(2k) or SO(k,H) Sp(k) or Sp(k,R)
K SU(p) × SU(q) SU(k) SU(k)
p Cp ⊗C Cq Λ2Ck Sym2 Ck

Moreoever, for each of these spaces G/K, we indeed have hol(∇τ ) = k by (2.4) and thus
(H3) is satisfied.

Let us now turn to the situation where (N, gN) is not locally symmetric. Since by
assumption, hol(∇τ ) ⊊ u(n), but at least one of hol(∇τ ) and hol(∇gN ) contains u(1) by
Theorem 7.2, the case hol(∇gN ) = su(n) is ruled out.

Assume that hol(∇gN ) = u(n). Then it follows from the hol(∇τ ) ⊊ u(n) and Theo-
rem 7.2 that hol(∇τ ) = su(n). Then Rτ ∈ Sym2 su(n), which implies that Rτ (Φ) = 0.
Together with the fact that the Ricci tensor of a Kähler manifold satisfies

RicgN (X, Y ) = 1
2 tr(RgN (X, JY ) ◦ J),

it follows from (7.1) that

Ric(X, Y ) = 1
2
∑

i

gN(RgN (X, JY )Jei, ei) = −2
∑

i

ω(X, JY )gN(J2ei, ei) = 4ngN(X, Y )
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where (ei) is an orthonormal basis of TN . Thus (N2n, gN) is Einstein with scalar cur-
vature 8n2.

Finally, if we assume that hol(∇gN ) = sp(n/2), then (N, gN) is hyperkähler, and it
follows from Theorem 7.2 that hol(∇τ ) = sp(n/2)u(1).
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