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Abstract. We classify 7-dimensional Riemannian manifolds carrying a metric connection
with parallel skew-symmetric torsion whose holonomy is contained in G2, up to naturally
reductive homogeneous spaces and nearly parallel G2-structures. This extends and completes
the classification initiated by Th. Friedrich in the cocalibrated case. Incidentally, we also
obtain the list of SU(3) geometries with parallel skew-symmetric torsion, up to naturally
reductive homogeneous spaces and nearly Kähler manifolds.

1. Introduction

The Levi-Civita connection, as torsion-free metric connection, is the central object in Rie-
mannian geometry. The next most natural class of connections to study is metric connections
with totally skew-symmetric and parallel torsion. These connections have many nice prop-
erties, e.g. their curvature is still pair-symmetric, the second Bianchi identity holds and the
first Bianchi identity holds with an additional torsion term. Moreover, these connections have
the same geodesics as the Levi-Civita connection. An important motivation for studying con-
nections with skew-symmetric parallel torsion comes from the fact that they often arise in
the presence of special geometric structures, such as nearly Kähler and Sasakian manifolds,
G2-structures, and naturally reductive homogeneous spaces. In all these cases a canonical
connection with parallel skew-symmetric torsion preserving the structure exists. This connec-
tion is often better adapted to the special geometry and has interesting additional properties.
In recent years, connections with parallel skew-symmetric torsion have attracted substantial
interest in mathematics, and various papers have studied them in particular settings (e.g. [1],
[9], [12], [16]).

Connections with parallel skew-symmetric torsion are also important in theoretical physics,
in particular in superstring and supergravity theories. In type II superstring theory the
fundamental string equations were formulated by Strominger among other things in terms
of a 3-form. The assumption that this 3-form is the torsion form of a metric connection
has proved to be a successful starting point for a complete solution of the system of string
equations (cf. [19], see also [11]). A particularly interesting dimension in string theory is
dimension 7. Here the G2-Hull-Strominger system (or heterotic G2-system) was extensively
investigated recently (see e.g. [6] or [15]).
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In their seminal paper [8], Cleyton and Swann presented a first classification result for
Riemannian manifolds admitting a metric connection with parallel skew-symmetric torsion.
Under the assumption that the torsion does not vanish and its holonomy acts irreducibly
they show that the manifold is either naturally reductive locally homogeneous, or a nearly
Kähler manifold in dimension 6, or a nearly parallel G2-manifold in dimension 7.

In [7] we started a systematic study of geometries with parallel skew-symmetric torsion in
the general case, i.e. with reducible holonomy. We showed that in this situation there exists
a locally defined Riemannian submersion with totally geodesic leaves, which are naturally re-
ductive spaces. Moreover, the base of the submersion again admits a connection with parallel
skew-symmetric torsion, together with some further, somewhat mysterious, geometric struc-
tures. We used this reduction procedure to obtain new classification results under additional
assumptions. However, it turned out that there is a huge variety of possible constructions
and a complete classification seems to be out of reach for the moment.

The main tool in [7] is the standard decomposition of the tangent bundle into vertical
and horizontal parts. Its definition is based on properties of the holonomy algebra of the
connection with parallel skew-symmetric torsion (see Sect. 2.6 below). This approach was
generalized in [14]. It turns out that one can define a standard decomposition, with similar
properties, associated to any Lie algebra containing the holonomy algebra and contained in
the Lie algebra of the stabilizer of the torsion form (of course the stabilizer algebra contains
the holonomy algebra). One of the main achievements in [14] is the generalization of the
classification result in [8] to the case where any of these intermediate algebras acts irreducibly
on the tangent space. A classification was possible with the exception of the case where the
holonomy algebra is contained in the Lie algebra g2. It is exactly this case which is settled
in the present article.

More precisely, we will study connections with parallel skew-symmetric torsion preserving
a given G2-structure, i.e. with holonomy contained in G2. In this situation, as we will
show, a complete local classification is possible, up to naturally reductive spaces, Riemannian
manifolds with G2-holonomy and nearly parallel G2-manifolds. For these three classes of
manifolds many examples are known and at least for G2-holonomy and nearly parallel G2-
manifolds a classification seems not feasible. Naturally reductive 7-dimensional homogeneous
spaces have been recently classified by Storm [18]. However, it is not clear in which cases
the holonomy algebra of the canonical homogeneous connection is contained in g2. As a
byproduct of our classification in the G2-case we also obtain a classification for connections
with parallel skew-symmetric torsion and holonomy contained in SU(3).

A related classification result was obtained by Friedrich in [12]. He considered the special
case of cocalibrated G2-manifolds, i.e. with coclosed G2-form, assuming non-abelian holonomy
and also in most cases assuming the manifolds to be complete and simply-connected.

With the new tools developed in [7] and [14] at hand, we were now able to extend and
complete Friedrich’s results and at the same time to complete the classification from [14].
Our main results can be summarized as follows.
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Theorem 1.1. Let (M7, g, τ, φ) be a Riemannian manifold with a G2-structure defined by the
3-form φ and a metric connection ∇τ with skew-symmetric and parallel torsion τ , preserving
the G2-structure, i.e. ∇ττ = 0 and ∇τφ = 0. Let Rτ be the curvature of ∇τ and let d :=
dimPar(∇τ ) denote the dimension of the space of ∇τ -parallel vector fields. Then (M, g, τ, φ)
is locally isomorphic to a manifold in one of the following cases:

(1) ∇τRτ = 0 (in which case (M, g) is a naturally reductive homogeneous space);
(2) (M, g, φ) is a torsion-free G2-manifold, (i.e. Hol(M,∇g) ⊂ G2), and τ = 0;
(3) d = 1:

(a) (M, g) = R × (N, gN), where N is a 6-dimensional Calabi-Yau manifold, τ = 0
and φ is given by (16);

(b) (M, g) = R× (N, gN), where N is a 6-dimensional strict nearly Kähler manifold
and τ and φ are given in (17)–(18);

(c) (M, g), where S is a 7-dimensional α-Sasaki manifold which is the total space of
an S1-fibration over a Kähler-Einstein manifold of positive scalar curvature 72α2

and τ and φ are defined in (21)–(22);
(d) (M, g) is the total space of an S1-fibration over the twistor space of an anti-self-

dual Einstein manifold in dimension 4 of positive scalar curvature, and τ and φ
are given in (28);

(e) (M, g) is the total space of an S1-fibration over a product (K, gK) × (Σ, gΣ) of
Kähler-Einstein manifolds, K of dimension 4, and Σ of dimension 2, with scalar
curvatures satisfying either scalK+scalΣ > 0 and scalΣ ̸= 0, or scalK = scalΣ = 0
and τ and φ are defined in (33)–(34);

(4) d ≥ 2:
(a) (M, g) = S3 × (K, gK) or (M, g) = R3 × (K, gK), where K is a 4-dimensional

hyperkähler manifold and τ and φ are given in (39);
(b) (M, g) = R2× (S, gS), where S is a 5-dimensional α-Sasaki manifold which is the

total space of an S1-fibration over a Kähler-Einstein manifold of positive scalar
curvature 32α2 and τ and φ are defined in (43) and (44).

(c) (M, g) has a parallel 3-(α, δ)-Sasaki structure with δ = 2α, and τ and φ are given
in (45) and (46).

(5) d = 0:
(a) (M g, g) is a 3-(α, δ)-Sasaki manifold with δ ̸= 2α and τ and φ are given in

Proposition 6.2;
(b) (M g, g) has a nearly parallel G2-structure φ and τ = λφ for some λ ∈ R∗.

Remark 1.2. Note that cases (5)(a) and (5)(b) have an overlap. Indeed, if δ = 5α, then
the 3-(α, δ)-Sasaki structure defines a nearly parallel G2-structure by (50) with τ = αφ.
Similarly, case (2), which corresponds to torsion-free G2-manifolds, i.e. τ = 0, has an overlap
with (3)(a) and with the second case of (4)(a).

The proof of Theorem 1.1 will be given in Sections 4–6. Note that if a 6-dimensional
manifold (N, g) has a metric connection with parallel skew-symmetric torsion whose holonomy
is contained in SU(3), then the induced connection on the Riemannian product R × (N, g)
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has holonomy contained in SU(3) ⊂ G2, and going through the possible cases in Theorem 1.1
we obtain at once:

Theorem 1.3. Let (N6, g) be a Riemannian manifold with an SU(3)-structure (ω, ψ) and
a metric connection ∇σ with skew-symmetric and parallel torsion σ, preserving the SU(3)-
structure, i.e. ∇σσ = 0, ∇σω = 0 and ∇σψ = 0. Then (N, g) is locally isometric to a
manifold in one of the following cases:

(1) (N, g) is a naturally reductive homogeneous space;
(2) (N, g, ω, ψ) is a 6-dimensional Calabi-Yau manifold, and σ = 0;
(3) (N, g, ω) is a 6-dimensional strict nearly Kähler manifold, σ = −1

6
∗ dω, and ψ is a

linear combination of σ and ∗σ.
(4) (N, g) = R × (S, gS), where (S, gS, ξ,Φ) is a 5-dimensional α-Sasaki manifold which

is the total space of an S1-fibration over a Kähler-Einstein manifold of positive scalar
curvature 32α2, ω = dt ∧ ξ + Φ♭ and σ = dt ∧ αΦ.

Note that in case (4), the 3-form ψ of the SU(3)-structure is harder to describe. From the
considerations in §5.2, it follows that ψ can be written as ψ = ξ ∧ β1 + dt∧ β2, where β1 and
β2 are orthogonal ∇σ-parallel sections of Λ+(ξ⊥) ⊂ Λ2TS of square norm 2.

The paper is structured as follows. We start in Section 2 with collecting a few basic
definitions and facts used throughout the article. We discuss in particular SU(3)- and G2-
structures on Euclidean vector spaces, as well as geometric structures on manifolds, such as
Sasaki and nearly Kähler structures. At the end of the Section 2 we recall the definition
of the standard decomposition and of the corresponding standard submersion for manifolds
with a metric connection with parallel skew-symmetric torsion introduced in [7].

In Section 3 we study the locally defined Riemannian submersion induced by a ∇τ -parallel
vector field, where ∇τ is a connection with skew-symmetric torsion. In particular, we give in
Lemma 3.6 conditions for a ∇τ -parallel form on the total space to be projectable to a form on
the base which is parallel with respect to an induced connection with skew-symmetric torsion.
In (12) we derive a useful relation between the curvature tensors of these connections.

In Section 4 we start with the main topic of our article, the classification of 7-dimensional
Riemannian manifolds admitting a connection∇τ with parallel skew-symmetric torsion whose
holonomy is contained in G2. We divide our study in three cases according to the dimension
of the space of ∇τ -parallel vector fields, denoted by Par(∇τ ). In the case dim(Par(∇τ )) = 1,
the starting point is the observation in Lemma 4.2 that in this situation the horizontal part
H can have hol-irreducible summands only of dimensions 6 or 4. The corresponding subcases
are treated separately and lead to the first classes of examples.

In Section 5 we study the case dimPar(∇τ ) ≥ 2. In this case one has an orthonormal frame
of three ∇τ -parallel vector fields spanning a calibrated 3-plane V , which can be used, together
with the torsion form, to define three self-dual forms on the horizontal spaceH := V⊥. It turns
out that these forms (denoted by γi) define a Lie subalgebra of Λ+H, and according to the
possible dimensions, 0, 1, and 3 of this subalgebra, the solutions to our problem correspond to
Riemannian products of 3-dimensional space forms with hyperkähler 4-manifolds, to products
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of R2 with Sasakian S1-bundles over Kähler-Einstein 4-manifolds, or parallel 3-(δ, α)-Sasaki
manifolds.

In the final Section 6 we discuss the case dimPar(∇τ ) = 0. Here we use the classification
of possible holonomy algebras of ∇τ given by Friedrich in [12]. There are five Lie algebras
contained in g2 acting on R7 without trivial summands. Four of them directly lead to natu-
rally reductive locally homogeneous spaces, respectively to nearly parallel G2-manifolds. The
remaining case hol = su(2)⊕ suc(2) leads to further interesting examples defined on 3-(δ, α)-
Sasaki manifolds, as described in Proposition 6.2. Our result in this case can be interpreted
as the converse to the construction by Agricola and Dileo [1, Thm. 4.5.1] of the characteristic
connection on 3-(δ, α)-Sasaki manifolds in dimension 7. The key argument here was to use a
modified connection which turned out to be flat on the vertical distribution, thus allowing us
to recover the Killing vector fields defining the 3-(δ, α)-Sasaki structure.

Acknowledgments. This research was supported by the Oberwolfach Research Fellows
program at the Mathematisches Forschungsinstitut Oberwolfach (MFO). We are grateful to
MFO for its hospitality and for providing a stimulating research environment. A.M. was
partly supported by the PNRR-III-C9-2023-I8 grant CF 149/31.07.2023 Conformal Aspects
of Geometry and Dynamics.

2. Preliminaries

2.1. Generalities on multilinear algebra. Let (E, ⟨, ·, ·⟩) be an n-dimensional Euclidean
space. We identify E with E∗ and Λ2E ≃ Λ2E∗ with the space End−(E) of skew-symmetric
endomorphisms of E by means of the scalar product. For example, if X, Y ∈ E, then X ∧ Y
can be seen as a skew-symmetric endomorphisms of E by the formula

(X ∧ Y )(Z) := ⟨X,Z⟩Y − ⟨Y, Z⟩X .

The exterior algebra Λ∗E has a unique scalar product extending ⟨·, ·⟩ and such that the
interior and exterior products with vectors X⌟ and X∧ are adjoint to each other. Note that
this scalar product does not correspond to the usual extension of the scalar product to the
tensor algebra via the above identification. For instance, if X, Y ∈ E are two orthogonal
vectors, then

|X ∧ Y |2Λ2E = |X|2|Y |2 = 1

2
|X ∧ Y |2End−(E) .

Every skew-symmetric endomorphism A ∈ End−(E) extends uniquely as a derivation of
the tensor bundle, denoted A∗, commuting with the isomorphism E ≃ E∗ defined by the
scalar product. On the exterior algebra Λ∗E one has the convenient expression

(1) A∗ =
n∑

i=1

A(ei) ∧ ei⌟ ,

where {ei} is any orthonormal basis of E. If A,B ∈ End−E, then A∗B = [A,B], where
[A,B] := AB −BA denotes the commutator of endomorphisms.
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Other useful formulas which will be needed below are

(2)
n∑

i=1

ei ∧ (ei⌟α) = pα,

n∑
i=1

ei⌟(ei ∧ α) = (n− p)α, ∀α ∈ ΛpE .

2.2. SU(3)-structures. Let E be a 2m-dimensional real vector space. A U(m)- (or Her-
mitian) structure on E is a scalar product ⟨·, ·⟩ together with an orthogonal endomorphism
J satisfying J2 = −idE. Then J is skew-symmetric and the bilinear form ω := ⟨J ·, ·⟩ is
skew-symmetric.

The extension J∗ of J to the exterior bundle Λ∗E is skew-symmetric as well. The square
(J∗)

2 is thus symmetric, and for every p ≥ 0 its spectrum on ΛpE is given by

{−(p− 2l)2, | l ∈ Z ∩ [0,
p

2
]} .

The eigenspace of the restriction of (J∗)
2 to ΛpE corresponding to the eigenvalue −(p−2l)2 is

denoted by Λ(p−l,l)+(l,p−l)E, or simply by Λ(l,l)E if p = 2l, so for every p we have the orthogonal
direct sum decomposition

ΛpE =

⌊p
2
⌋⊕

l=0

Λ(p−l,l)+(l,p−l)E .

The skew-symmetric endomorphisms corresponding to Λ(1,1)E and Λ(2,0)+(0,2)E via the above
identifications are exactly those commuting, respectively anti-commuting, with J . The Hodge
duality is the isomorphism ∗ : ΛpE → Λm−pE defined by the volume form 1

m!
ωm. The metric

adjoint of ω∧ : ΛpE → Λp+2E is denoted Λ : Λp+2E → ΛpE. The kernel of its restriction to

Λ(k,l)+(l,k)E will be denoted by Λ
(k,l)+(l,k)
0 E.

An SU(m)-structure on E is a Hermitian structure as above, together with an element
ψ ∈ Λ(m,0)+(0,m)E satisfying |ψ|2ΛmE = 2m−1. The terminology comes from the fact that the
subgroup of GL(E) preserving the structure (⟨·, ·⟩, J, ω, ψ) is isomorphic to SU(m).

Of particular interest for us will be the case m = 3.

Lemma 2.1. For every SU(3)-structure (⟨·, ·⟩, J, ω, ψ) on E there exists an oriented orthonor-
mal basis {ei} of E such that

ω = e12 + e34 + e56, ψ = e135 − e146 − e236 − e245 ,

where {ei} denotes the dual basis and we use the standard notation eij := ei ∧ ej and eijk :=
ei ∧ ej ∧ ek.

Proof. It is clear that one can find an orthonormal basis {fi} of E such that ω = f 12+f 34+f 56.
This basis is automatically oriented with respect to the orientation defined by ω3. Since
Λ(3,0)+(0,3)E is spanned by the real and imaginary parts of

Ψ := (f 1 + if 2) ∧ (f 3 + if 4) ∧ (f 5 + if 6) ,

there exist x, y ∈ R such that ψ = xRe(Ψ) + yIm(Ψ) = Re[(x− iy)Ψ]. As |ψ|2 = |Re(Ψ)|2 =
|Im(Ψ)|2, we have x2 + y2 = 1. If z = eiθ denotes a complex number such that z3 = x − iy,
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then ψ = Re[z(f 1+ if 2)∧z(f 3+ if 4)∧z(f 5+ if 6)]. Thus ω and ψ have the desired form with
respect to the basis obtained from {fi} by a rotation of angle θ in the 2-planes generated by
f2j−1, f2j, for j = 1, 2, 3. □

We list below some standard formulas and facts intensively used all over the paper.

Lemma 2.2. If (⟨·, ·⟩, J, ω, ψ) is an SU(3)-structure on a 6-dimensional real vector space E,
then the following hold:

(1) J∗σ = 3(∗σ), J∗(∗σ) = −3σ, and JX⌟σ = −X⌟(∗σ), X⌟σ = JX⌟(∗σ) for every
X ∈ E and σ ∈ Λ(3,0)+(0,3)E;

(2) E is irreducible as SU(3)-representation, and the decompositions of Λ2E and Λ3E

in irreducible SU(3)-summands are Λ2E = Λ(2,0)+(0,2)E ⊕ Λ
(1,1)
0 E ⊕ Rω and Λ3E =

Rψ ⊕ R(∗ψ)⊕ Λ
(2,1)+(1,2)
0 E ⊕ (ω ∧ E);

(3) The map E ∋ X 7→ X⌟ψ ∈ Λ(2,0)+(0,2)E is an isomorphism of SU(3)-representations;

(4) If α ∈ Λ
(1,1)
0 E then α∗ψ = α∗(∗ψ) = 0.

2.3. G2-structures. The group G2 can be defined as the stabilizer in GL(7) of the 3-form

(3) φ := e123 + e145 + e167 + e246 − e257 − e347 − e356 ,

and is automatically contained in SO(7) (see [4]). A basis in which φ has the above form is
called adapted. By the previous observation, all adapted bases induce the same metric and
orientation on R7.

A G2-structure on a 7-dimensional vector space F is a 3-form whose stabilizer is isomorphic
to G2, or equivalently, which can be written in the form (3) with respect to some basis of
F ∗. Again, such bases will be called adapted, and they all induce the same scalar product,
sometimes denoted gφ, and the same orientation on F .

The following result is classical (see e.g. [10, Prop. 2.3]):

Lemma 2.3. The group G2 acts transitively on the set of pairs of orthonormal vectors in F .

We will now describe the relationship between G2- and SU(3)-structures.

Lemma 2.4. Let φ be a G2-structure on a 7-dimensional vector space F and let ξ be a unit
vector in F (with respect to the induced metric gφ). We denote E := ξ⊥, g0 the restriction
of gφ to E, and decompose φ = ξ ∧ ω + ψ, with ω ∈ Λ2E, ψ ∈ Λ3E. Then (g0, ω, ψ) is an
SU(3)-structure on E. Conversely, any SU(3)-structure (g0, ω, ψ) on a 6-dimensional vector
space E induces a G2-structure φ := ξ ∧ ω + ψ on F := Rξ ⊕ E, compatible with the metric
g on F extending g0 and such that ξ has unit length and is orthogonal to E.

Proof. Using the transitivity of G2 on the unit sphere of F , one can find an adapted or-
thonormal basis {ei} such that ξ = e1. Then e2, . . . , e7 is an orthonormal basis of (E, g0),
and (g0, ω := e23 + e45 + e67, ψ := e246 − e257 − e347 − e356) is an SU(3)-structure. Indeed,
|ψ|2Λ3E = 4 and an easy calculation gives ω∗ω∗ψ = −9ψ.
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Conversely, if (g0, ω, ψ) is an SU(3)-structure on E, Lemma 2.1 shows (by shifting all indices
by 1), that there exists an orthonormal basis e2, . . . , e7 of E such that ω = e23 + e45 + e67

and ψ = e246 − e257 − e347 − e356. Thus φ := ξ ∧ ω + ψ has the standard form (3) by taking
e1 := ξ, so in particular is compatible with the metric g defined above. □

Finally, we describe the 4-dimensional reduction of spaces with G2-structures, relative to
the choice of a calibrated 3-plane. Recall that a 3-plane P ⊂ F is called calibrated by φ if
the restriction of φ to P is a volume form of unit length with respect to the induced metric.
Equivalently, P is calibrated if there exists a basis {ei} adapted to φ such that P is spanned
by the vectors e1, e2, e3.

Let φ be a G2-structure on F and let P be a calibrated 3-plane. By definition, there exists
an adapted basis {ei} such that P is spanned by e1, e2, e3. Then (3) reads

(4) φ = e123 +
3∑

i=1

ei ∧ βi ,

where β1 := e45 + e67, β2 := e46 − e57, and β3 := −e47 − e56. We denote by H the orthogonal
complement of P , i.e. the 4-dimensional vector space spanned by e4, . . . , e7, with the induced
metric and orientation. Then for i = 1, 2, 3 the 2-forms βi ∈ Λ2H are self-dual, |βi|2Λ2H = 2,
and [βi, βj] = −2βk for every even permutation (i, j, k) of {1, 2, 3}. Conversely, we have the
following:

Lemma 2.5. Let ⟨·, ·⟩H be a scalar product on an oriented 4-dimensional vector space H,
and let φ1, φ2, φ3 ∈ Λ+H be self-dual 2-forms, not all zero, satisfying

(5) [φi, φj] = −2φk, for every even permutation (i, j, k) of {1, 2, 3} .
Then |φi|2Λ2H = 2 for i = 1, 2, 3. Moreover, if (e1, e2, e3) denotes the standard basis of R3, then
the 3-form φ defined by (4) on the 7-dimensional vector space F := R3⊕H is a G2-structure
compatible with the direct sum metric and orientation.

Proof. We first notice that for every i ̸= j ∈ {1, 2, 3}, if k denotes the index such that (i, j, k)
is an even permutation, then (5) gives ⟨φi, φj⟩Λ2H = −1

2
⟨[φj, φk], φj⟩Λ2H = 0. This shows

that φ1, φ2, φ3 are mutually orthogonal. If one of φi vanishes, we get immediately from (5)
that the two other vanish as well. Thus φ1, φ2, φ3 is an orthogonal basis of Λ+H. It is easy
to check that every two orthogonal elements of Λ+H anti-commute (as endomorphisms), and
for every φ ∈ Λ+H one has φ ◦ φ = 1

4
tr(φ ◦ φ)idH . From (5) we then obtain

4tr(φk ◦ φk) = tr([φi, φj] ◦ [φi, φj]) = −4tr(φi ◦ φj ◦ φj ◦ φi)

= −1

4
tr[tr(φj ◦ φj)tr(φi ◦ φi)idH ] = −tr(φj ◦ φj)tr(φi ◦ φi) .

As |φi|2Λ2H = −1
2
tr(φi ◦ φi) for every i, this implies that |φi|2Λ2H = 1

2
|φj|2Λ2H |φk|2Λ2H for every

even permutation (i, j, k) of {1, 2, 3}, so |φi|2Λ2H = 2 for every i.

The endomorphisms corresponding to φi are thus complex structures on H compatible with
the orientation. We write φ1 in standard form in some orthonormal basis {f1, . . . , f4} of H
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as φ1 = f 12 + f 34. Since φ2 ∈ Λ+H is orthogonal to f 12 − f 34 ∈ Λ−H, we have

⟨φ2(f1), f2⟩H = ⟨φ2, f
12⟩Λ2H =

1

2
⟨φ2, f

12 + f 34⟩Λ2H = ⟨φ2, φ1⟩Λ2H = 0 .

Consequently φ2(f1) is orthogonal to f1 and f2 and has unit length. Up to a rotation in
the plane generated by f3, f4 (which does not change the expression of φ1) we can thus
assume that φ2(f1) = f3. Then φ2(f3) = −φ1. The same argument shows that φ2(f2) is
orthogonal to f1 and f2, but also to f3 (since ⟨φ2(f2), f3⟩H = −⟨f2, φ2(f3)⟩H = ⟨f2, f1⟩H = 0.
Thus φ2(f2) = εf4 and φ2e4 = −εf2, i.e. φ2 = f 13 + εf 24. As φ2 ∈ Λ+H we must have
φ2 = f 13 − f 24. Finally, φ3 = −1

2
[φ1, φ2] = −1

2
[f 12 + f 34, f 13 − f 24] = −(f 14 + f 23).

We have thus shown that there exists an oriented orthonormal basis {e4, . . . , e7} (with
ei := fi−3 for i = 4, 5, 6, 7) of H such that φ1 = e45+ e67, φ2 = e46− e57, and φ3 = −e47− e56.
Thus the form φ defined in (4) has the standard form (3) with respect to the orthonormal
basis {e1, . . . , e7} of R3 ⊕H. □

All the above considerations will be transposed to Riemannian manifolds in the sequel.

2.4. Sasaki-type structures. In this article we will meet at several places special types of
contact structures. For the convenience of the reader we will recall their definitions.

Definition 2.6. An α-Sasaki manifold (M, g, ξ,Φ) is a Riemannian manifold (M2n+1, g)
together with a unit Killing vector field ξ and a skew-symmetric endomorphism Φ satisfying

Φ2 = −id + ξ ⊗ ξ, ∇g
Xξ = 2αΦ(X), ∇g

XΦ
♭ = −αX♭ ∧ ξ♭, ∀X ∈ TM ,

where the 2-form Φ♭ is defined by Φ♭(X, Y ) = g(ΦX, Y ) and X♭, ξ♭ are the dual 1-forms.

For α = 1 this gives the standard definition of a Sasaki manifold. It is easy to check that an
α-Sasaki manifold (M, g, ξ,Φ) becomes a Sasaki manifold after scaling the metric as g̃ = α2g

and the vector field as ξ̃ = ξ
α
, while keeping the endomorphism Φ unchanged. Note that for

the 2-forms one has Φ♭̃ = λ2Φ♭, where Φ♭̃ is defined from Φ using g̃.

Similarly, there exists a modification of 3-Sasaki structures introduced in [1] under the
name of 3-(α, δ)-Sasaki structure (see also [14, Sec. 2.11]).

Definition 2.7. A 3-(α, δ)-Sasaki manifold (M, g, ξi,Φi), i = 1, 2, 3, is a Riemannian mani-
fold (M4n+3, g) with three unit Killing vector fields ξi, together with three skew-symmetric
endomorphisms Φi satisfying

ξk = −Φiξj = Φjξi

ΦkX = −ΦiΦkX + g(ξj, X)ξi = ΦjΦi − g(ξi, X)ξj ∀X ∈ TM

dξ♭i = 2αΦ♭
i + 2(α− δ)ξj ∧ ξk = 2αΦH

i − 2δξj ∧ ξk
where the 2-forms ΦH

i are defined by ΦH
i := Φ♭

i + ξj ∧ ξk.

For α = δ = 1 one retrieves the classical definition of 3-Sasaki structures. If αδ > 0, every
3-(α, δ)-Sasaki manifold can be obtained from a 3-Sasaki manifold by rescaling the metric
with different factors on the horizontal and vertical distributions [1].
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2.5. Nearly Kähler and Calabi-Yau manifolds.

Definition 2.8. A strict nearly Kähler manifold is a Riemannian manifold (M, g) together
with an almost complex structure J compatible with the metric and such that (∇g

XJ)X = 0
for all X ∈ TM and ∇XJ ̸= 0 for all X ̸= 0.

Then we have the following well-known lemma (see e.g. [3, Lemma 2.4]).

Lemma 2.9. Let (M6, g, J) be a strict nearly Kähler manifold. Then the 3-form σ := −1
6
∗dω

is a non-zero section Λ(3,0)+(0,3)TM , and the metric connection ∇σ := ∇g + σ satisfies

∇σJ = 0 and ∇σσ = 0 .

Definition 2.10. A Calabi-Yau manifold is a Kähler manifold (M2m, g, J) with a non-zero
∇g-parallel complex volume form Ψ ∈ Ω(m,0)(M).

Recall that Calabi-Yau manifolds are automatically Ricci-flat. Conversely a Ricci-flat
Kähler manifold is locally Calabi-Yau.

2.6. Metric connections with parallel skew-symmetric torsion. Let (M, g) be a Rie-
mannian manifold with Levi-Civita connection ∇g. We will most of the time identify vectors
and 1-forms, or skew-symmetric endomorphisms and 2-forms using the metric g. Calculations
will be done using a local orthonormal frame {ei}.

Let τ ∈ Ω3(M) be a 3-form. For every vector field X ∈ Γ(TM) one denotes by τX the
endomorphism of TM defined by g(τX(Y ), Z) = τ(X, Y, Z) for every Y, Z ∈ Γ(TM), and by
∇τ the metric connection defined by

∇τ
X := ∇g

X + (τX)∗, ∀X ∈ TM ,

whose torsion satisfies g(T∇τ
(X, Y ), Z) = 2τ(X, Y, Z) for every X, Y, Z ∈ Γ(TM).

Let ∇τ = ∇g + τ be a connection with parallel skew-symmetric torsion, i.e. ∇ττ = 0 and
denote with hol the holonomy algebra of ∇τ , acting naturally on TM . In [7] we introduced
the standard decomposition TM = V⊕H in vertical and horizontal directions. The horizontal
subspace H ⊂ TM is defined as the sum of hol-irreducible summands Hα such that for each
Hα there is an element in hol, which acts non-trivially on Hα and trivially on H⊥

α . The
subspace V = H⊥ is the direct sum of irreducible summands where no such element exists.

Remark 2.11. Every ∇τ -parallel vector field ξ is tangent to the vertical distribution V (since
the holonomy algebra acts trivially on Rξ).

The standard decomposition of TM is∇τ -parallel. In [7, Lem. 3.7] we showed that V is the
vertical distribution of a locally defined Riemannian submersion π : (M, g) → (N, gN) with
totally geodesic leaves. We call π the standard submersion of a manifold with parallel skew-
symmetric torsion. The fibres of π turn out to be naturally reductive locally homogeneous
spaces (see [7, Prop. 3.13]). In particular, if H = 0 then M itself is a naturally reductive
locally homogeneous space (see [7, Rem. 3.14]).
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The horizontal part of the torsion is projectable to the base N of the standard submersion
(cf. [7, Lemma 3.10], see also Lemma 3.5 below), where it defines again a connection with
parallel skew-symmetric torsion (cf. [7, Rem. 3.11], see also Lemma 3.3 below).

3. ∇τ -parallel vector fields

The local de Rham theorem states that when a Riemannian manifold (M, g) carries non-
zero vector field which is parallel with respect to the Levi-Civita connection ∇g, then the
manifold is locally isometric to a Riemannian product R×(N, gN). We will now investigate the
more general case where the Levi-Civita connection is replaced with a connection∇τ := ∇g+τ
with skew-symmetric torsion. Note that we do not assume that ∇ττ = 0 for the moment.

Let ξ be a unit length ∇τ -parallel vector field on (M, g).

Lemma 3.1. The vector field ξ is Killing and satisfies dξ = 2τξ.

Proof. For every X ∈ Γ(TM) we have

(6) ∇g
Xξ = ∇τ

Xξ − τXξ = τξX ,

whence ∇gξ = τξ is skew-symmetric, so ξ is Killing. Using this we then get

(7) dξ = 2∇ξ = 2τξ .

□

We fix as before a local orthonormal frame {ei}.

Lemma 3.2. For every ∇τ -parallel form β on M we have dβ = 2
∑

i(ei⌟τ) ∧ (ei⌟β).

Proof. Simple calculation:

dβ =
∑
i

ei ∧∇g
ei
β = −

∑
i

ei ∧ (τei)∗β = −
∑
i,j

ei ∧ τeiej ∧ (ej⌟β)

=
∑
i,j

ei ∧ τejei ∧ (ej⌟β) = 2
∑
j

τej ∧ (ej⌟β) .

□

We decompose TM = Rξ ⊕D, where D := ξ⊥, and write correspondingly

(8) τ = ξ ∧ γ + σ ,

with γ := ξ⌟τ ∈ Ω2(D), σ ∈ Ω3(D). The notation Ωp(D) stands here for elements β ∈ Ωp(M)
such that ξ⌟β = 0.

The unit Killing vector field ξ determines a local Riemannian submersion with 1-dimen-
sional totally geodesic fibers π : (M, g) → (N, gN), such that g = ξ⊗ ξ+π∗gN . We denote by

∇gN the Levi-Civita connection of gN . An exterior form β on M is the pull-back of a form
on N if and only if it is basic, i.e. ξ⌟β = 0 and Lξβ = 0.
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Lemma 3.3. Assume that the components γ and σ of the torsion form τ are basic, and
write γ = π∗(γN), σ = π∗(σN) with γN ∈ Ω2(N), σN ∈ Ω3(N). Let β̃ ∈ Ωp(M) such that

γ∗β̃ = 0 = ξ⌟β and ∇τ β̃ = 0. Then there exist a p-form β ∈ Ωp(N) with β̃ = π∗β and

∇σN
β = 0, where ∇σN

:= ∇gN + σN .

Conversely, if β ∈ Ωp(N) such that γN∗ β = 0 and ∇σN
β = 0, then β̃ := π∗β is ∇τ -parallel.

Proof. We start with a general formula relating the covariant derivatives ∇τ and ∇σN
in

the Riemannian submersion π : M → N . Let β be a p-form on N . For any vector fields
X, Y1, . . . Yp on N we denote by X̃, Ỹ1, . . . Ỹp their horizontal lifts to vector fields on M and

by β̃ := π∗β. We then compute:

(∇τ
X̃
β̃)(Ỹ1, . . . , Ỹp) =X̃(β̃(Ỹ1, . . . , Ỹp))−

∑
i

β̃(Ỹ1, . . . ,∇τ
X̃
Ỹi, . . . , Ỹp)

=π∗(X(β(Y1, . . . , Yp)))−
∑
i

β̃(Ỹ1, . . . ,∇g

X̃
Ỹi + τX̃ Ỹi, . . . , Ỹp)

=π∗(X(β(Y1, . . . , Yp)))−
∑
i

β̃(Ỹ1, . . . , ∇̃gN

X Yi + σ̃N
XYi, . . . , Ỹp)

=π∗((∇σN

β)(Y1, . . . , Yp)) .

(9)

Let now β̃ ∈ Ωp(M) be ∇τ -parallel with γ∗β̃ = 0 and ξ⌟β̃ = 0. Using Lemma 3.2 we find

Lξβ̃ = ξ⌟dβ̃ = 2
∑
j

ξ⌟(τej ∧ β̃ej) = −2
∑
j

γej ∧ β̃ej = −2γ∗β̃ = 0 .

Hence β̃ is basic, so we can write β̃ = π∗β for a p-form β ∈ Ωp(N). We also have γ∗β =

π∗(γN∗ β) = 0. From (9) and the injectivity of π∗ we conclude that ∇σN
β = 0 and γN∗ β = 0.

Conversely, let β ∈ Ωp(N) with γN∗ β = 0 and ∇σN
β = 0. Then by (9) the pull-back

β̃ := π∗β satisfies (∇τ
U0
β̃)(U1, . . . , Up) = 0 whenever U0, . . . , Up are horizontal vectors, i.e.

orthogonal to ξ. Moreover, for every U ∈ TM we have

ξ⌟∇τ
U β̃ = ∇τ

U(ξ⌟β̃)− (∇τ
Uξ)⌟β̃ = 0 ,

since ξ⌟β̃ = 0 and ξ is ∇τ -parallel. It remains to show that ∇τ
ξ β̃ vanishes when applied to

horizontal lifts Ỹ1, . . . , Ỹp. Since a horizontal lift Ỹ and the vector field ξ commute, we first
obtain that

∇τ
ξ Ỹ = ∇g

ξ Ỹ + τξỸ = ∇g

Ỹ
ξ + γ∗Ỹ = −τỸ ξ + γ∗Ỹ = 2γ∗Ỹ .

Substituting this into the formula for ∇τ
ξ β̃ we find

(∇τ
ξ β̃)(Ỹ1, . . . , Ỹp) = ξ(β̃(Ỹ1, . . . , Ỹp))−

∑
i

β̃(Ỹ1, . . . ,∇τ
ξ Ỹi, . . . , Ỹp)

= ξ(π∗(β(Y1, . . . , Yp)))−
∑
i

β̃(Ỹ1, . . . , 2γ∗Ỹi, . . . , Ỹp)

= 2(γ∗β)(Ỹ1, . . . , Ỹp) = 0
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Combining the three computations above we obtain ∇τ β̃ = 0. □

We assume from now on that ∇ττ = 0, i.e. that ∇τ has parallel skew-symmetric torsion.
Since τ and ξ are ∇τ -parallel, the components γ and σ of τ defined in (8) are ∇τ -parallel as
well.

Lemma 3.4. The action of γ (as skew-symmetric endomorphism) on τ vanishes: γ∗τ = 0.

Proof. Since γ is ∇τ -parallel, we compute using Lemma 3.2:

0 = d(dξ) = 2d(τξ) = 2dγ = 4
∑
i

(ei⌟τ) ∧ (ei⌟γ) = 4
∑
i

γ(ei) ∧ (ei⌟τ) = 4γ∗τ .

□

By Lemma 3.4, together with the fact that γ∗ξ = 0 and γ∗γ = 0, we get

(10) 0 = γ∗τ = γ∗(ξ ∧ γ + σ) = γ∗σ .

Lemma 3.5. The forms γ and σ are basic.

Proof. The forms γ and σ are ∇τ -parallel and horizontal, i.e. satisfy ξ⌟γ = 0 and ξ⌟σ = 0.
Using Lemma 3.2 and the Cartan formula we compute

Lξγ = d(ξ⌟γ) + ξ⌟dγ = 2ξ⌟
∑
i

(ei⌟τ) ∧ (ei⌟γ) = 2
∑
i

(ξ⌟ei⌟τ) ∧ (ei⌟ξ⌟τ) = 0 ,

and similarly, using also (10) together with the fact that τξ = γ, we get:

Lξσ = d(ξ⌟σ) + ξ⌟dσ = 2ξ⌟
∑
i

(ei⌟τ) ∧ (ei⌟σ) = 2
∑
i

(ξ⌟ei⌟τ) ∧ (ei⌟σ) = −2(τξ)∗σ = 0 .

□

For any vector field X on N we denote as before by X̃ its horizontal lift to M .

Lemma 3.6. For every X, Y ∈ Γ(TN) the following relation holds:

(11) ∇τ
X̃
Ỹ = ∇̃σN

X Y

Proof. The usual formula for Riemannian submersions together with (6) give

∇g

X̃
Ỹ = ∇̃gN

X Y + g(∇g

X̃
Ỹ , ξ)ξ = ∇̃gN

X Y − g(Ỹ ,∇g

X̃
ξ)ξ = ∇̃gN

X Y − g(Ỹ , τξX̃)ξ ,

whence using that τX̃ Ỹ = g(τξX̃, Ỹ )ξ + σX̃ Ỹ

∇̃σN

X Y = ∇̃gN

X Y + σ̃N
XY = ∇g

X̃
Ỹ + g(τξX̃, Ỹ )ξ + σX̃ Ỹ = ∇τ

X̃
Ỹ .

□
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Using this, together with

g([X̃, Ỹ ], ξ) = −dξ(X̃, Ỹ ) = −2γ(X̃, Ỹ ) ,

which follows from Lemma 3.1, and

∇τ
ξ Z̃ = ∇g

ξZ̃ + τξZ̃ = ∇g

Z̃
ξ + τξZ̃ = −τZ̃ξ + τξZ̃ = 2γ(Z̃) ,

which follows from [ξ, Z̃] = 0 and τξ = γ, we readily compute the relation between the

curvature tensors Rτ of ∇τ and RσN
of ∇σN

:

Rτ
X̃,Ỹ

Z̃ =∇τ
X̃
∇τ

Ỹ
Z̃ −∇τ

Ỹ
∇τ

X̃
Z̃ −∇τ

[X̃,Ỹ ]
Z̃

= ˜∇σN

X ∇σN

Y Z − ˜∇σN

Y ∇σN

X Z −∇τ

[̃X,Y ]−2γ(X̃,Ỹ )ξ
Z̃

=R̃σN

X,YZ + 4γ(X̃, Ỹ )γ(Z̃) .

By considering Rτ and RσN
as symmetric endomorphisms of Λ2( TM) and Λ2( TN) respec-

tively, the above equality reads:

(12) Rτ (π∗β) = π∗(RσN

(β)) + 4α2⟨β, ωN⟩Λ2 TNπ
∗ωN ,

for every β ∈ Ω2(N).

4. G2-structures with torsion

As explained in the introduction, our main objective is to classify 7-dimensional Riemann-
ian manifolds (M, g) admitting a connection ∇τ with parallel skew-symmetric torsion whose
holonomy is contained in G2.

We will denote by hol the holonomy algebra of ∇τ , identified at each point x ∈ M with a
Lie subalgebra of End−( TxM). The isomorphism class of the representation of hol on TxM
does not depend on x so from now on we will not specify x anymore.

We will divide our study into three different cases, according to the dimension of trivial
summand of hol, i.e. the space of ∇τ -parallel vector fields, called Par(∇τ ).

If Par(∇τ ) ̸= 0, one can use the ∇τ -parallel vector fields in order to obtain a dimensional
reduction. This will be done in this section for the case dim(Par(∇τ )) = 1 and in Section 5
for the case dim(Par(∇τ )) ≥ 2. The case Par(∇τ ) = 0 will be treated in Section 6.

Assume for the remaining part of this section that the space of ∇τ -parallel vector fields
is one-dimensional, spanned by a unit vector field ξ. According to the orthogonal splitting
TM = Rξ ⊕D we can write

(13) τ = ξ ∧ γ + σ and φ = ξ ∧ ω + ψ ,

where γ, ω ∈ Ω2(D) and σ, ψ ∈ Ω3(D) and all these forms are ∇τ -parallel. By Lemma 2.4,
(g|D, ω, ψ) defines an SU(3)-structure on Dx at each point x ∈M .
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Lemma 2.2 gives the decomposition of the exterior powers ΛkD into SU(3)-irreducible

summands, e.g. we have the ∇τ -parallel decomposition Λ2D = Λ(2,0)+(0,2)D ⊕ Λ
(1,1)
0 D ⊕ Rω,

where the first summand is isomorphic to D by the ∇τ -parallel isomorphism X 7→ X⌟ψ.

Lemma 4.1. The 2-form γ ∈ Ω2(D) defined in (13) belongs to Ω(1,1)(D).

Proof. According to the above SU(3)-decomposition of Λ2D, we can write γ = X⌟ψ+γ0+cω,
for some ∇τ -parallel vector field X ∈ Γ(D), ∇τ -parallel 2-form γ0 ∈ Ω

(1,1)
0 (D) and constant

c ∈ R. But Par(∇τ ) = Rξ, and X is orthogonal to ξ, whence X = 0. This shows that
γ ∈ Ω(1,1)(D). □

By Lemma 3.5, the forms γ and σ are basic. Moreover, ω is ∇τ -parallel and γ∗ω = 0 by
Lemma 4.1. Consequently, Lemma 3.3 shows that ω is basic as well.

Consider the standard decomposition TM = V⊕H described in §2.6 (see also [7, Def. 3.5])
and assume that (M, g, τ) is not an Ambrose-Singer manifold (in the sense that the curvature
tensor Rτ of ∇τ is not ∇τ -parallel). Then H ≠ 0 by [7, Prop. 3.13] and H ⊂ D by Remark
2.11. We denote by J the ∇τ -parallel complex structure on D defined by ω(·, ·) = g(J ·, ·).

Lemma 4.2. The representation of the holonomy algebra hol on H is J-invariant, irreducible,
and dim(H) ≥ 4.

Proof. We decompose H = ⊕αHα in irreducible hol representations as in [7, Def. 3.3]. By
definition, for every α, there exists an element Aα ∈ hol acting non-trivially on Hα and
trivially on H⊥

α . We denote by πα : TM → H⊥
α the orthogonal projection, which is clearly

hol-equivariant. By irreducibility, (πα ◦ J)|Hα is either zero, or injective. In the latter case
(πα ◦ J)(Hα) is a hol-invariant subspace of H⊥

α on which Aα acts non-trivially, which is a
contradiction. Thus πα ◦ J = 0, so J(Hα) = Hα.

Consequently Hα is J-invariant for every α. Assume that there exists α with dim(Hα) = 2.
The corresponding element Aα ∈ hol restricted to Hα is then equal to a non-zero multiple of
J |Hα . Then tr(AαJ) ̸= 0, contradicting the fact that

hol ⊂ su(3) = {A ∈ End−(D) | [A, J ] = 0, tr(AJ) = 0} .

This shows that dim(Hα) ≥ 4 for every α, and since dim(H) ≤ 7, the conclusion follows. □

According to Lemma 4.2, the possible dimensions of H are 4 and 6. We will treat the two
cases separately in the next two subsections.

4.1. The case dim(H) = 6. Since the restriction of the standard representation of su(3) on
R6 to any strict Lie subalgebra is reducible, we must have hol ≃ su(3). Consequently, γ and
σ are su(3)-invariant. The trivial summand of the su(3) representation on Λ2R6 is spanned
by the canonical 2-form and the trivial summand of the su(3) representation on Λ3R6 is
Λ(3,0)+(0,3)R6. We thus conclude that the components of τ can be written as γ = αω and
σ = aψ + b(∗Dψ) for some real constants a, b, α. By (10) we have

0 = τξσ = γ∗σ = αJ∗σ .
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As J acts injectively on Λ(3,0)+(0,3)R6, we must have either α = 0, or α ̸= 0 and σ = 0. We
treat the two cases separately.

4.1.1. The case α = 0. In this case we have γ = 0. In particular, this implies that ∇g
Xξ =

∇τ
Xξ − τXξ = τξX = γ(X) = 0 for every tangent vector X ∈ TM , i.e. ξ is ∇g-parallel,

whence (M, g) is locally isometric to a Riemannian product R× (N, gN). We will now gather
more information about the structure of (N, gN).

By Lemma 3.3, every ∇τ -parallel form on M which vanishes on ξ is basic. In particular,
the forms σ, ω and ψ are projectable to exterior forms on N , which we will denote by σN , ωN

and ψN . These forms are ∇σN
-parallel by the same lemma.

Applying Lemma 2.2 (1) to the SU(3)-structure (gN , ωN , ψN) on TN and using that σN =
aψN + b(∗NψN), we immediately obtain

(14) JN
∗ σ

N = 3(∗NσN), JNX⌟σN = −X⌟(∗NσN), ∀X ∈ TN .

We then compute for every X ∈ TN :

(15) ∇gN

X JN = −(σN
X )∗J

N = (JN)∗(X⌟σN) = (JNX)⌟σN +X⌟((JN)∗σ
N) = 2X⌟(∗NσN) .

In particular we obtain that (∇gN

X JN)X = 0 for every X ∈ TN , so (N, gN , JN , ωN) is
nearly Kähler.

If σ = 0, the structure is Kähler, and (JN , ωN , ψN) is a ∇gN -parallel SU(3)-structure, so

(N, gN , JN) is Calabi-Yau (cf. Def 2.10). If σ ̸= 0 then ∇gN

X JN ̸= 0, so the nearly Kähler
structure is strict.

We will now show that conversely, if (N6, gN , JN , ωN) is a 6-dimensional Calabi-Yau man-
ifold or a strict nearly Kähler manifold, then (M, g) := (N × R, gN + dt2) has a connection
∇τ with parallel skew-symmetric torsion τ preserving a family of G2-structures on M .

In the first case, the Calabi-Yau structure of N , i.e. the ∇gN -parallel SU(3)-structure
(JN , ωN , ψN), defines for every x, y ∈ R with x2 + y2 = 1 a ∇g-parallel G2-structure on M

(16) φ := dt ∧ π∗ωN + xπ∗ψN + yπ∗(∗NψN) .

Assume now that (N6, gN , JN , ωN) is strict nearly Kähler and consider the 3-form σN :=

−1
6
(∗NdωN). By Lemma 2.9, the connection ∇σN

:= ∇gN + σN has parallel skew-symmetric

torsion and satisfies ∇σN
ωN = 0. By the converse statement in Lemma 3.3, the connection

∇τ determined on M by

(17) τ := π∗σN ,

where π : N → N × R denotes the standard projection on the first factor, has parallel
skew-symmetric torsion. For every x, y ∈ R we define

(18) φ := dt ∧ π∗ωN + xπ∗σN + yπ∗(∗NσN) .
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By Lemma 2.4, the 3-form φ defines a G2-structure compatible with g if and only if |ψ|2Λ3N = 4,
which by construction is equivalent to (x2 + y2) = 4

|σN |2
Λ3 TN

.

The components ω and ψ of the G2-form φ are ∇τ -parallel by the converse statement in
Lemma 3.3, and ∇τdt = 0 by direct computation, thus showing that ∇τφ = 0. One can
easily check that δgφ = 0 if and only if y = 0.

4.1.2. The case α ̸= 0 and σ = 0. We denote by Φ := 1
α
γ. Since τ = αξ ∧ Φ, ξ, Φ are

∇τ -parallel, and Φ2 = −idD, we get for every X ∈ TM :

∇g
Xξ = −τXξ = τξX = αΦ(X) ,

and

∇g
XΦ = −(τX)Φ = Φ∗(τX) = αΦ∗(g(X, ξ)Φ− ξ ∧ Φ(X)) = −αξ ∧ Φ2(X) = αξ ∧ Φ .

This shows that (ξ,Φ) defines an α-Sasaki structure on (M, g) (cf. Def. 2.6). Consider as
before the local Riemannian submersion π : (M, g) → (N, gN) determined by ξ, and the form
ωN ∈ Ω2(N) such that π∗ωN = ω. In this case σN = 0, so Lemma 3.3 shows the well known

fact that ωN is ∇gN -parallel, i.e. defines a Kähler structure on (N, gN).

We claim that gN is actually Einstein. Indeed, since ψ is ∇τ -parallel, the image of the
curvature operator Rτ : Λ2TM → Λ2TM acts trivially on ψ:

(19) (Rτ (β̃))∗ψ = 0, ∀β̃ ∈ Λ2TM .

The curvature relation (12) reads in the present situation (with σN = 0):

(20) Rτ (π∗β) = π∗(RgN (β)) + 4α2⟨β, ωN⟩Λ2 TNπ
∗ωN ,

for every β ∈ Ω2(N). Since RgN (Λ2TN) ⊂ Λ(1,1)TN , this shows that Rτ (Λ2D) ⊂ Λ(1,1)D.

Then from (19) we obtain that in fact Rτ (Λ2D) ⊂ Λ
(1,1)
0 D. Taking the scalar product with ω

in (20) we thus obtain for every β ∈ Λ2TN

0 = ⟨RgN (β), ωN⟩Λ2 TN + 12α2⟨β, ωN⟩Λ2 TN ,

whence RgN (ωN) = −12α2ωN .

On the other hand, on every Kähler manifold (N, gN , JN , ωN), one has RgN (ωN) = −ρN ,
where ρN = RicN(J ·, ·) is the Ricci form. We have thus obtained that RicN = 12α2gN so
(N, gN) has positive scalar curvature scalN = 72α2.

Conversely, let (N, gN , ωN) be a 6-dimensional Kähler-Einstein manifold with positive

scalar curvature scalN . We denote by α :=
√

scalN

72
and let ζ be a 1-form such that dζ = 2αωN

on some open set N0. Consider the Riemannian metric on M := R×N0 given by

g = (dt+ π∗ζ)2 + π∗gN ,

where π is the projection of the second factor. We denote by ξ the metric dual of dt + π∗ζ
and by ω := π∗ωN .
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Then (M, g, ξ,Φ) is a 7-dimensional α-Sasaki manifold. Indeed, ξ is Killing and satisfies
dξ = dπ∗ζ = 2απ∗ωN , which is equivalent to the second equation in (2.6) for Φ = ω.
Equivalently, ξ is parallel with respect to the connection ∇g + τ , where

(21) τ := αξ ∧ ω .

We also have (τξ)∗ω = αω∗ω = 0 so by Lemma 3.3, ω is ∇τ -parallel, which immediately gives
the last equation in (2.6).

The curvature operator RN maps Λ
(1,1)
0 TN to itself since (N, gN , JN) is Kähler-Einstein,

vanishes on Λ(2,0)+(0,2)TN , and maps ωN to −1
6
scalNωN = −12α2ωN . By (20) we then obtain

that Rτ takes values in Λ
(1,1)
0 D. The pair symmetry of Rτ then shows that the restriction of∇τ

to Λ(3,0)+(0,3)D is flat, so one can find a (locally defined) ∇τ -parallel section ψ of Λ(3,0)+(0,3)D
of square norm 4. By the converse statement in Lemma 2.4, the 3-form

(22) φ := ξ ∧ ω + ψ

defines a G2-structure on M compatible with g, which is ∇τ -parallel since its defining com-
ponents are all ∇τ -parallel.

4.2. The case dim(H) = 4. The standard decomposition of TM reads in this case TM =
H ⊕ V with dim(V) = 3. By Remark 2.11, ξ is tangent to V so one can decompose V as
V = Rξ⊕V0. Since ξ⌟ω = 0, and ω defines an orthogonal complex structure on D = H⊕V0,
one can write ω = ω0 + e1 ∧ e2, where ω0 := ω|H determines an orthogonal complex structure
on H and {e1, e2} is any orthonormal basis of V0. We decompose

σ = e1 ∧ e2 ∧ ζ + e1 ∧ σ1 + e2 ∧ σ2 + σ0 ,

with ζ ∈ H, σ1, σ2 ∈ Λ2(H) and σ0 ∈ Λ3(H).

We denote as before by hol the Lie algebra of Hol(∇τ ). Since ∇τ preserves ξ, the SU(3)-
structure of D, and the standard decomposition of TM , we have that hol ⊂ su(3)∩ (so(H)⊕
so(V)) ≃ su(2) ⊕ u(1). Here su(2) = Λ1,1

0 H = Λ−H is the set of anti-self-dual 2-forms on H
and u(1) is spanned by the 2-form ω0 − 2e1 ∧ e2 on TN .

Let us denote by hol0 the projection of hol on su(2). Then hol ⊂ u(1) ⊕ hol0, and since
H is irreducible, hol is non-abelian. Consequently hol0 is not abelian, so hol0 = su(2), i.e.
Λ−H ⊂ hol.

Consequently, hol acts irreducibly on H, Λ−H and Λ3H, whereas it acts trivially on Λ+H.
We thus obtain that σ1, σ2 ∈ Ω+(H) and ζ = 0, σ0 = 0, i.e.

σ = e1 ∧ σ1 + e2 ∧ σ2, with σ1, σ2 ∈ Ω+(H) .

Similar arguments show that

γ = ae1 ∧ e2 + γ0, with a ∈ R and γ0 ∈ Ω+(H) .

From (10) we have γ∗σ = 0, which now reads

0 = (ae1 ∧ e2 + γ0)∗(e1 ∧ σ1 + e2 ∧ σ2) = a(e2 ∧ σ1 − e1 ∧ σ2) + e1 ∧ (γ0)∗σ1 + e2 ∧ (γ0)∗σ2 ,
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thus implying that

(23) (γ0)∗σ1 = aσ2, (γ0)∗σ2 = −aσ1 .

Recall that Λ−H ⊂ hol ⊂ Λ−H⊕u(1) where u(1) is spanned by η := ω0−2e1∧e2 ∈ Ω2( TN).
For dimensional reasons we thus either have hol = Λ−H or hol = Λ−H⊕ u(1).

However, the case hol = Λ−H is impossible, since V would then be a trivial hol-represen-
tation, which contradicts the assumption dim(Par(∇τ )) = 1 valid throughout this section.

Consequently hol = Λ−H⊕ u(1) so in particular it contains the element η := ω0 − 2e1 ∧ e2,
whence

(24) η∗γ = 0, η∗σ = 0 .

The first equation is equivalent to [ω0, γ0] = 0, i.e. γ0 commutes (as endomorphism) with ω0.
Since they both belong to Ω+(H), and are ∇τ -parallel, they must be proportional, so there
exists b ∈ R such that

(25) γ = ae1 ∧ e2 + bω0 .

On the other hand, if we write ω = η + 3e1 ∧ e2, and use the fact that η∗ commutes with
(e1 ∧ e2)∗, the second equation in (24) shows that ω∗ω∗σ = 9(e1 ∧ e2)∗(e1 ∧ e2)∗σ = −9σ.
Consequently, σ is of type (3, 0) + (0, 3) with respect to the complex structure defined by ω
on D.

Writing now γ = a+2b
3
ω + b−a

3
η and using the second equation in (24) together with (10)

and Lemma 2.2 (1), we obtain

(26) 0 = γ∗σ =
a+ 2b

3
ω∗σ = (a+ 2b) ∗ σ .

Therefore we either have a + 2b = 0, or σ = 0. These cases will be treated separately in the
next two subsections.

4.2.1. The case a + 2b = 0. In this case we have γ∗ψ = 0, so ψ is projectable onto a ∇σN
-

parallel (3, 0) + (0, 3)-form ψN on N . We can then apply the formulas (14) and (15) to
deduce as before that (N, gN , JN) is strict nearly Kähler. Moreover, its canonical nearly

Kähler connection (which is ∇σN
) has holonomy contained in s(u(1)⊕ u(2)) so by [14, Thm.

5.1], (N, gN , JN) is the twistor space of an anti-self-dual 4-dimensional Einstein manifold with
positive scalar curvature.

Conversely, assume that (N, gN , JN) is the nearly Kähler twistor space of an anti-self-dual
4-dimensional manifold with positive scalar curvature, and let σN be the 3-form defined by
σN := −1

6
∗N dωN . By Lemma 2.9, ∇σN

is the canonical connection of the nearly Kähler
structure, and it is well known (see for instance [17]) that in this case it preserves both the
vertical space V0 and the horizontal space H of the twistor fibration. We denote by ωH and
ωV the restrictions of ωN to H and V0.

Lemma 4.3. The 2-form η := ωH − 2ωV ∈ Ω2(N) is closed.
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Proof. Since η is ∇σN
-parallel, Lemma 3.2 gives:

dη = 2
6∑

i=1

(ei⌟σ
N) ∧ (ei⌟η) = 2η∗σ

N .

On the other hand, η ∈ Ω1,1
0 (N) is a primitive (1, 1) form, whereas σN ∈ Ω(3,0)+(0,3)(N), and

Lemma 2.2 (4) shows that the former space acts trivially as derivation on the latter. □

Consequently, on any contractible open subset N0 of N , there exists a 1-form ζ ∈ Ω1(N0)
such that dζ = η. We define the Riemannian metric

(27) g := (dt+ π∗ζ)⊗ (dt+ π∗ζ) + π∗gN

on the manifold M := R × N0, where π denotes the projection on the second factor. Then
π is a Riemannian submersion with totally geodesic fibers tangent to the unit vector field
ξ := ∂/∂t (which is the metric dual of dt+ π∗ζ).

For all real numbers x, y we define the exterior forms on M :

(28) τ :=
1

2
(dt+ π∗ζ) ∧ π∗η + π∗σN , φ := (dt+ π∗ζ) ∧ π∗ωN + xπ∗σN + yπ∗(∗NσN) .

Like before, Lemma 2.4 shows that φ defines a G2-form on M which is compatible with g if
and only if (x2 + y2) = 4

|σN |2
Λ3 TN

.

We claim that τ and φ are parallel with respect to the metric connection ∇τ := ∇g + τ .
Using the converse statement in Lemma 3.3, we need to show that

(1) η, ωN , and σN are ∇σN
-parallel;

(2) η∗ω
N = 0, and η∗σ

N = η∗(∗NσN) = 0;
(3) ∇τ (dt+ π∗ζ) = 0.

The first item is clear by construction, and the second follows from the fact that η ∈ Ω(1,1)(N)
so its action η∗ on ωN and Λ(3,0)+(0,3)TN is zero by Lemma 2.2 (4). Finally, since the dual
vector field ξ of dt+ π∗ζ is Killing with respect to g, we compute for every X ∈ TM :

∇τ
Xξ = ∇g

Xξ + τXξ = ∇g
Xξ − τξX =

1

2
d(dt+ π∗ζ)(X)− 1

2
π∗η(X) = 0 .

It is easy to check that the G2-structure defined in (28) is cocalibrated if and only if y = 0.
We now go back to (26) and consider the other possibility.

4.2.2. The case σ = 0. This case is somewhat similar to §4.1.2 but more involved. Consider
as before the local Riemannian submersion π : (M, g) → (N, gN) determined by ξ, and the
forms ωN , γN , ηN ∈ Ω2(N) and such that π∗ωN = ω, π∗ηN = η, and π∗γN = γ. In this

case σN = 0, so Lemma 3.3 shows that ωN , γN , and ηN are ∇gN -parallel. Thus ωN defines a
Kähler structure on (N, gN), and ηN defines a ∇gN -parallel splitting TN = HN ⊕VN

0 whose
horizontal lift is exactly the decomposition D = H⊕ V0.
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By the local de Rham theorem, (N, gN) is locally the product of two Kähler manifolds:
(K, gK , ωK) of real dimension 4, and (Σ, gΣ, ωΣ) of real dimension 2. By (25) we have

(29) γN = aωK + bωΣ .

We will now show that, similar to §4.1.2, gK and gΣ are Einstein metrics.

The curvature relation (12) reads in the present situation (with σN = 0):

(30) Rτ (π∗β) = π∗(RgN (β)) + 4⟨β, aωK + bωΣ⟩Λ2 TNπ
∗(aωK + bωΣ) ,

for every β ∈ Ω2(N).

Like before, since ψ is ∇τ -parallel, the image of the curvature operator Rτ : Λ2TM →
Λ2TM acts trivially on ψ:

(31) (Rτ (β̃))∗ψ = 0, ∀β̃ ∈ Λ2TM .

Since RgN (Λ2TN) ⊂ Λ(1,1)TN , (30) shows that Rτ (Λ2D) ⊂ Λ(1,1)D. Then from (31) we

obtain that in fact Rτ (Λ2D) ⊂ Λ
(1,1)
0 D. Taking the scalar product with ω in (30) we thus

obtain for every β ∈ Λ2TN

0 = ⟨RgN (β), ωN⟩Λ2 TN + 4(2a+ b)⟨β, aωK + bωΣ⟩Λ2 TN ,

whence RgN (ωN) = −4(2a+ b)(aωK + bωΣ).

On the other hand, RgN (ωN) = −ρK − ρΣ, whence RicK = 4a(2a + b)gK and RicΣ =
4b(2a + b)gΣ. In particular Σ has constant Gaussian curvature. The scalar curvatures are
then given by

(32) scalK = 16a(2a+ b), scalΣ = 8b(2a+ b) .

If b = 0 we get scalΣ = 0, so Σ is flat, and actually a direct factor in M (as τ = aπ∗ωK by
(29) in this case). This contradicts the fact that Par(∇τ ) = Rξ. Consequently b ̸= 0.

We thus either have a + 2b ̸= 0 and b ̸= 0, in which case scalK + scalΣ = 8(2a + b)2 > 0
and scalΣ ̸= 0, or a+ 2b = 0 and b ̸= 0, in which case scalK = scalΣ = 0.

Conversely, consider a Kähler-Einstein manifold (K, gK , ωK) of real dimension 4 and a
constant curvature surface (Σ, gΣ, ωΣ), with scalar curvatures satisfying either scalK+scalΣ >
0 and scalΣ ̸= 0, or scalK = scalΣ = 0. Then there exist solutions a, b of the system (32) with
b ̸= 0: in the first case the solution is up to sign uniquely determined by

a =
scalK

4
√

2(scalK + scalΣ)
, b =

scalΣ

2
√

2(scalK + scalΣ)
,

whereas in the second case there is a 1-parameter family of solutions of the form (a, b) =
(t,−2t), with t ̸= 0.

For any such solution (a, b), consider the Riemannian product

(N, gN , ωN) = (K, gK , ωK)× (Σ, gΣ, ωΣ)
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and let ζ be a primitive of γN := aωK + bωΣ on some open set N0. Consider the Riemannian
metric g := (dt + π∗ζ)2 + π∗gN , on M := R × N0, where π is the projection of the second
factor. We denote by ξ the metric dual of dt+ π∗ζ, by ω := π∗(ωK +ωΣ), by γ := π∗γN , and

(33) τ := ξ ∧ γ .

Then ξ is a unit Killing vector field on (M, g) and satisfies dξ = dπ∗ζ = 2π∗γN = 2γ, whence
∇g

Xξ = γ(X) for every X ∈ TM . Equivalently, ξ is parallel with respect to the connection
∇τ := ∇g + τ . We also have γ∗ω = π∗([γN , ωN ]) = π∗([aωK + bωΣ, ωK + ωΣ]) = 0, so by
Lemma 3.3, ω is ∇τ -parallel. Thus ∇τ is a metric connection with parallel skew-symmetric
torsion.

By doing the above calculations in reverse order, we obtain that Rτ takes values in Λ
(1,1)
0 D,

and as before one can find a (locally defined) ∇τ -parallel section ψ of Λ(3,0)+(0,3)D of square
norm 4. By the converse statement in Lemma 2.4, the 3-form

(34) φ := ξ ∧ ω + ψ

defines a ∇τ -parallel G2-structure on M compatible with g.

5. The case dim(Par(∇τ )) ≥ 2

In this section we assume that there exist (at least) two orthogonal ∇τ -parallel unit vector
fields ξ1 and ξ2. Then ξ3 := φ(ξ1, ξ2) is a ∇τ -parallel unit vector field, orthogonal to ξ1 and
ξ2. Indeed, since G2 acts transitively on orthonormal pairs of vectors, one can find for every
x ∈ M an adapted orthonormal basis {e1, . . . , e7} of TxM such that ξ1 = e1 and ξ2 = e2, so
by (3) one gets that ξ3 = e3 is also a unit vector. Let V := Rξ1 ⊕ Rξ2 ⊕ Rξ3 and H := V⊥

and TM = V ⊕H be the corresponding ∇τ -parallel orthogonal splitting of TM . We assume
that (M, g, τ) is not Ambrose-Singer, so this is exactly the standard decomposition of TM
by Lemma 4.2. Using the expression (4) of the G2-structure φ, one can write

(35) φ = ξ1 ∧ ξ2 ∧ ξ3 +
3∑

i=1

ξi ∧ βi .

for some self-dual 2-forms βi ∈ Ω+(H) which satisfy [βi, βj] = −2βk for all even permutations
(i, j, k) of {1, 2, 3}, are pairwise orthogonal, and with |βi|2Λ2H = 2. Moreover, the 2-forms βi
are ∇τ -parallel, thus the holonomy algebra hol acts trivially on βi, whence hol ⊂ Λ−H. The
inclusion cannot be strict since then the holonomy algebra would be at most 1-dimensional,
contradicting the fact that H is hol-irreducible by Lemma 4.2.

We thus have hol = Λ−H ≃ su(2). According to the splitting TM = Rξ1⊕Rξ2⊕Rξ3⊕H,
we write the torsion form τ as

τ = aξ1 ∧ ξ2 ∧ ξ3 +
∑
i,j

ξj ∧ ξk ∧ ηi +
3∑

i=1

ξi ∧ γi + τH ,

for some constant a ∈ R, and horizontal forms ηi ∈ Ω1(H), γi ∈ Ω2(H) and τH ∈ Ω3(H).
From the hol-invariance of these forms we immediately have ηi = 0, τH = 0 and γi ∈ Ω+(H).
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Hence the torsion form can be written as

(36) τ = aξ1 ∧ ξ2 ∧ ξ3 +
3∑

i=1

ξi ∧ γi .

Lemma 5.1. For every even permutations (i, j, k) of {1, 2, 3} it holds that [γi, γj] = aγk.

Proof. From Lemma 3.4 we know that the action of τξi on τ vanishes. Hence:

0 = (τξi)∗τ = (aξj ∧ ξk + γi)∗τ = aξk ∧ γj − aξj ∧ γk + ξj ∧ [γi, γj] + ξk ∧ [γi, γk]

for all even permutations (i, j, k) of {1, 2, 3} and the claimed commutator relation follows. □

Consider the 3× 3 matrix A = (aij) defined by γi =
∑3

j=1 aijβj.

Lemma 5.2. For every i ∈ (1, 2, 3) one has:

(37) a|γi|2Λ2H = −4 detA .

Proof. The elements βi ∈ Ω+(H) satisfy |βi|2Λ2H = 2 and [βi, βj] = −2βk for every even
permutation (i, j, k) of {1, 2, 3}. This shows that for every r, s, t ∈ {1, 2, 3} one has that
g([βr, βs], βt) = −4ε(r, s, t) where ε(r, s, t) is the signature of the permutation (r, s, t) if the
indices are mutually distinct, and 0 otherwise. From the definition of the matrix A we then
immediately obtain

g([γ1, γ2], γ3) =
∑
r,s,t

a1ra2sa3t g([βr, βs], βt) = −4 detA .

The conclusion follows from Lemma 5.1. □

The space generated by γ1, γ2, γ3 is a Lie subalgebra of su(2). We will distinguish three
cases, according to the possible dimensions of this Lie algebra.

5.1. The case γ1 = γ2 = γ3 = 0. In this case the torsion form τ is a section of Λ3V , so the
geometry with torsion is decomposable in the sense of [7, Def. 3.1]. By [7, Lemma 3.2], the
manifold (M, g) is locally isometric to a Riemannian product of two Riemannian manifolds

(M3, g3) and (M4, g4), and by (36), τ can be identified with a volM
3

.

The ∇τ -parallel vector fields ξi on M satisfy in particular ∇g
Xξi = 0 for every X ∈ H so

they are constant along M4, and

(38) ∇g
ξi
ξj = −τξiξj, ∀i, j ∈ {1, 2, 3} .

The 2-forms βi defined in (35) satisfy ∇g
Xβi = 0 for every X ∈ TM , so they are constant

along M3 and define a hyperkähler structure on (M4, g4). By (38), the vector fields ξi satisfy
with respect to the Levi-Civita connection on M3 the equations

∇ξiξi = 0, ∇ξiξj = aξk, ∇ξjξi = −aξk
for every even permutation (i, j, k) of {1, 2, 3} (we drop the reference to g3 in this paragraph
and denote ∇g3 simply by ∇). As a first consequence we have dξi = −2aξj ∧ ξk. We also have



24 ANDREI MOROIANU, UWE SEMMELMANN

δξi = 0, since ξi are Killing vector fields. We claim that the manifold (M3, g3) has constant
sectional curvature. To see this, we first compute

∇∗∇ξi = −∇ξj∇ξjξi −∇ξk∇ξkξi = a∇ξjξk − a∇ξkξj = 2a2ξi .

Since ξi are Killing vector fields we obtain

Ric(ξi) =
1

2
∆ξi = ∇∗∇ξi = 2a2ξi .

Hence, the sectional curvature of (M3, g3) is equal to a2, i.e. M3 is locally isometric to the
sphere of radius 1

|a| for a ̸= 0 and to R3 for a = 0.

Conversely, let (M, g) = (M3, g3)× (M4, g4) the Riemannian product of an oriented man-
ifold (M3, g3) of constant sectional curvature a2 and a hyperkähler manifold (M4, g4). For
τ := avolg3 , a straightforward computation shows that the connection ∇τ := ∇g3 + τ is flat,
so there exists an oriented local orthonormal frame of ∇τ -parallel vector fields ξi on M

3. For
any ∇g4-parallel frame βi of Λ

+TM4 satisfying the anti-quaternionic relations, the 3-forms
on M defined by

(39) φ := ξ1 ∧ ξ2 ∧ ξ3 +
∑
i

ξi ∧ βi, τ := aξ1 ∧ ξ2 ∧ ξ3

determine a G2-structure φ and a connection ∇τ with skew-symmetric torsion such that
∇ττ = 0 and ∇τφ = 0.

5.2. The case where γ1, γ2, γ3 span a real line. In this case one can write γi = viν, for some
constants vi with v

2
1+v

2
2+v

2
3 = 1 and a non-zero∇τ -parallel 2-form ν ∈ Ω+(H). Let v ∈ R3 be

the unit vector with components vi and let B = (bij) ∈ SO(3) be such that Bv = e1. We define

the unit ∇τ -parallel vector fields ξ̃i :=
∑

j bijξj and the 2-forms γ̃i :=
∑

j bijγj =
∑

j(bijvj)ν.

Since det(A) = 0, Lemma 5.2 gives a = 0, so τ =
∑

j ξi ∧ γi =
∑

j ξ̃i ∧ γ̃i. Moreover, from the

definition of B we have γ̃1 = ν and γ̃2 = γ̃3 = 0, whence τ = ξ̃1 ∧ ν.
The special form of the torsion τ in this case implies ∇g ξ̃2 = ∇g ξ̃3 = 0. Hence, one can

write locally (M, g) = R2 × (S, gS) for some 5-dimensional manifold (S, gS). Moreover, since

ξ̃1 and ν are ∇τ -parallel, we obtain for i ∈ {2, 3}: ∇g

ξ̃i
ξ̃1 = 0 and ∇g

ξ̃i
ν = −(τξ̃i)∗ν = 0.

Therefore ξ̃1 and ν define on S a unit Killing vector field and a 2-form which will be denoted
by ξ and νS. They are both parallel with respect to the connection ∇τS = ∇gS + ξ ∧ νS on
S. For every tangent vector on M we have

∇g
X ξ̃1 = −τX ξ̃1 = τξ̃1X = ν(X) ,

and similarly

∇g
Xν = −(τX)∗ν = ν∗τX = ν∗((g(X, ξ̃1)ν − ξ̃1 ∧ ν(X)) = −ξ̃1 ∧ ν(ν((X)) .

On the other hand ν ∈ Ω+(H) is a self-dual form. Denoting by α := |ν|Λ2H (which is non-zero
since ν is non-zero) and by Φ := 1

α
ν, we then have ν ◦ ν = −α2idH and Φ ◦ Φ = −idH. The

two relations above now read on S:

(40) ∇gS

X ξ = αΦ(X), ∇gS

X Φ = αξ ∧X .
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Hence, (ξ,Φ) defines an α-Sasaki structure on (S, gS) (cf. Definition 2.6). By Lemma 3.3 and
Lemma 3.5, there is a local Riemannian fibration π : (S, gS) → (K, gK) with fibers tangent
to ξ, and Φ descends to a Kähler structure ωK on (K, gK).

Using the orthonormal basis ξ̃1, ξ̃2, ξ̃3 of V , we can write φ = ξ̃1∧ξ̃2∧ξ̃3+
∑3

i=1 ξ̃i∧β̃i. Clearly
β̃i are ∇τ -parallel, so in particular they define ∇τS -parallel 2-forms on S spanning Λ+H at
every point. That shows that RτS seen as symmetric endomorphism of Λ2TS = Λ2H⊕ξ∧H,
vanishes on the last summand (as ξ is parallel), and its image commutes with Λ+H, i.e. is

contained in Λ−H. Consequently, RτS(β) = 0 for every β ∈ Ω+(H).

On the other hand, the general curvature relation (12) applied to the Riemannian submer-
sion (S, gS) → (K, gK) reads:

(41) RτS(π∗β) = π∗(RgK (β)) + 4α2⟨β, ωK⟩Λ2 TKπ
∗ωK .

for every β ∈ Ω2(K). We thus obtain that

(42) 0 = RgK (β) + 4α2⟨β, ωK⟩Λ2 TKω
K ∀β ∈ Ω+(K) .

Taking the scalar product with ωK in (42) gives RgK (ωK) = −8α2ωK , thus showing as
before that (K, gK) is Kähler-Einstein with positive scalar curvature 32α2. Note that this is
consistent with the computation in [14, Thm. 7.4].

Conversely, let (K, gK , ωK) be a 4-dimensional Kähler-Einstein manifold with positive

scalar curvature scalK . We denote by α :=
√

scalK

32
and let ζ be a primitive of 2αωK on

some open set K0. Consider the Riemannian metric on S := R×K0 given by

gS = (dt+ π∗ζ)2 + π∗gK ,

where π is the projection of the second factor, and denote by ξ the metric dual of dt+π∗ζ and
by Φ the skew-symmetric endomorphism of TS corresponding to π∗ωK . Then (S, gS, ξ,Φ) is
a 5-dimensional α-Sasaki manifold. Indeed, ξ is Killing and satisfies dξ = dπ∗ζ = 2απ∗ωK ,
thus showing that ξ satisfies the first equation in (40), i.e. it is parallel with respect to the

connection ∇gS + τS, where τS := αξ ∧ Φ. We also have (τSξ )∗Φ = αΦ∗Φ = 0 so by Lemma

3.3, Φ is ∇τS -parallel, which immediately gives the second equation in (40).

The curvature operator RK maps Λ+TK to itself since (K, gK , ωK) is Kähler-Einstein,
vanishes on Λ(2,0)+(0,2)TK, and maps ωK to 1

4
scalKωK = −8α2ωK . By (41) we then obtain

that RτS vanishes on Λ+H, where H denotes the horizontal distribution H := T̃K. Using the
pair symmetry of RτS we thus obtain that the restriction of ∇τS to Λ+H is flat, so one can
find (locally defined) ∇τS -parallel 2-forms β1, β2, β3 ∈ Ω+(H) satisfying the anti-quaternionic
relations [βi, βj] = −2βk for every even permutation (i, j, k) of {1, 2, 3}.

Define (M, g) := R2 × (S, gS). Every tensor on S extends in a canonical way to a tensor
on M constant along R2. Let ξ1 be the extension to M of the Sasaki vector field ξ, and let
ξ2, ξ3 be an orthonormal ∇g-parallel frame on the R2 factor. Define the 3-form

(43) τ := αξ1 ∧ Φ ∈ Ω3(M) .
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Then ∇τ := ∇g + τ extends to M the canonical connection of the α-Sasaki structure on S.
It follows that ξ1, ξ2, ξ3 are ∇τ -parallel vector fields and that Φ is a ∇τ -parallel 2-form.

Then φ defined by

(44) ξ1 ∧ ξ2 ∧ ξ3 +
3∑

i=1

ξi ∧ βi

defines a G2-structure on (M, g) by Lemma 2.5, which is ∇τ -parallel since ξi and βi are all
∇τ -parallel by construction.

5.3. The case where γ1, γ2, γ3 are linearly independent. In this last case, the constant
a in Lemma 5.1 is non-zero, so the 2-forms ΦH

i := − 2
a
γi ∈ Ω+(H) satisfy the commutator

relations [ΦH
i ,Φ

H
j ] = −2ΦH

k for every even permutation (i, j, k) of {1, 2, 3}. By Lemma 2.5

we obtain (ΦH
i )

2 = −idH for every i ∈ {1, 2, 3} and ΦH
i ◦ ΦH

j = −ΦH
j ◦ ΦH

i = −ΦH
k for every

even permutation (i, j, k) of {1, 2, 3}. In addition we define Φi := ΦH
i − ξj ∧ ξk. It follows

ξk = −Φi(ξj) = Φj(ξi) and Φ2
i = −idH + ξi ⊗ ξi. An easy calculation gives

Φk(X) = −Φi ◦ Φj(X) + g(ξi, X)ξj .

Computing dξi by means of (7) we obtain

dξi = 2ξi⌟τ = 2aξj ∧ ξk + 2γi = 2aξj ∧ ξk − aΦH
i = aξj ∧ ξk − aΦi .

By Definition 2.7 (cf. also [1] or [14, §2.11]), the tuple (ξi,Φi) defines a 3-(α, δ)-Sasaki
structure, where α and δ are determined by a = 2(α − δ) and −a = 2α. Thus α = −a

2
and

δ = −a, i.e. we are in the special case where δ = 2α ̸= 0, the so-called parallel 3-(α, δ)-Sasaki
manifolds (cf. [1, Def. 2.3.2]).

Conversely assume that (M7, g, ξi,Φi), i = 1, 2, 3, is a parallel 3-(α, δ)-Sasaki manifold, i.e.
δ = 2α ̸= 0. Set γi := αΦH and define a 3-form τ via

(45) τ = 4αξ1 ∧ ξ2 ∧ ξ3 +
1

2

3∑
i=1

ξi ∧ dξi·

Then ∇τ := ∇g + τ is a metric connection with parallel skew-symmetric torsion τ (cf. [1,
Cor. 4.4.2]). It follows that the vector fields ξi and the 2-forms ΦH

i are ∇τ -parallel. From the
definition of a 3-(α, δ)-Sasaki manifold it is clear that the forms ΦH

i have square norm 2 and
satisfy the anti-quaternionic relations ΦH

i ◦ΦH
j = −ΦH

k for every even permutation (i, j, k) of
{1, 2, 3}.

Take any matrix B = (bij) ∈ SO(3) and define 2-forms βi by βi =
∑3

i=1 bijΦ
H
j . It follows

that the forms βi are again ∇τ -parallel and [βi, βj] = −2βk for all even permutations (i, j, k)
of {1, 2, 3}. By Lemma 2.5, the 3-form φ defined by

(46) φ = ξ1 ∧ ξ2 ∧ ξ3 +
3∑

i=1

ξi ∧ βi .

is a G2-structure compatible with the metric g of M .
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Since the 2-forms ΦH
i and the vector fields ξi are ∇τ -parallel, the G2-form φ is ∇τ -parallel

as well. One can check that φ is co-closed if and only if the matrix B ∈ SO(3) is symmetric
(i.e. B = I3 or is the matrix of an orthogonal symmetry with respect to a line in R3).

6. The case dim(Par(∇τ )) = 0

In this last section we will assume that there are no non-zero∇τ -parallel vector fields onM ,
i.e. the hol-representation has no trivial summand. Since dimM is odd the holonomy algebra
hol cannot be abelian in this case. According to Friedrich [12, §2], hol is then isomorphic to
one of the algebras in the following list:

g2, suc(2), u(1)⊕ suc(2), soir(3) or su(2)⊕ suc(2) .

In the generic case hol = g2, since G2 has only one trivial 1-dimensional summand in Λ3R7,
the torsion is proportional to the G2-form, i.e. τ = λφ for some real constant λ. Since φ is
∇τ -parallel we obtain

∇g
Xφ = −(τX)∗φ = −λ(φX)∗φ = −λ

∑
(ei⌟X⌟φ) ∧ (ei⌟φ) = −3λ ∗ φ ,

e.g. using (2.13) in [2]. It follows that the G2-structure is either torsion free, for λ = 0, or
nearly parallel G2, for λ ̸= 0. Both classes of manifolds provide examples for connections
with parallel skew-symmetric torsion with holonomy contained in G2.

If the holonomy algebra is isomorphic to suc(2) or u(1)⊕suc(2), it follows from [12] that ∇τ

has parallel curvature, so the manifold has to be a naturally reductive locally homogeneous
space.

In the case hol = soir(3) the G2-structure is automatically nearly parallel G2, since the
space of SOir(3)-invariant elements in Λ3R7 is 1-dimensional. Moreover, the curvature tensor
Rτ turns out to be SOir(3)-invariant, so we are in the naturally reductive locally homogeneous
case. It can be shown that the manifold is locally isometric to the Berger space SO(5)/SOir(3)
(see [14, Prop. 4.10], or [12, Thm. 8.1] in the simply connected case).

It remains to study the case hol = su(2) ⊕ suc(2). In this case the tangent bundle of M
decomposes in a ∇τ -parallel orthogonal direct sum TM = V ⊕ H of oriented sub-bundles
with dim(V) = 3 (the orientation of V is the one defined by the restriction of φ). Let ξ1, ξ2, ξ3
be a local orthonormal basis of V . Then the 3-form volV := ξ1 ∧ ξ2 ∧ ξ3 does not depend on
the choice of the basis and is ∇τ -parallel. By (4) one can write

(47) φ = ξ1 ∧ ξ2 ∧ ξ3 +
∑

ξi ∧ βi ,

where βi ∈ Ω+(H) satisfy the relations βi ◦ βj = −βk for every even permutation (i, j, k) of
{1, 2, 3}. Note that the vector fields ξi and the 2-forms βi are only locally defined and are
not ∇τ -parallel in general.

From [12, §2.6], the space of hol-invariant 3-forms is generated by volV and φ. We can
therefore write the torsion form as

(48) τ = xξ1 ∧ ξ2 ∧ ξ3 + y
∑

ξi ∧ βi
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for some real constants x, y.

The key point here will be to find a new metric connection∇τ̃ with skew-symmetric torsion,
preserving V , and which is flat on V . In this way we will be able to choose a ∇τ̃ -parallel basis
ξ1, ξ2, ξ3 of V and then express the properties of the G2-form in terms of it.

Our Ansatz will be to take τ̃ := τ + λvolV for some λ ∈ R. For any choice of λ, the
corresponding connection ∇τ̃ is metric, has skew-symmetric torsion, and preserves V .

Proposition 6.1. For λ = −2(x+ 2y), the curvature Rτ̃ of ∇τ̃ vanishes on V.

Proof. For horizontal vectors X, Y ∈ H the Bianchi identity [7, Eq. (3)] gives for every even
permutation (i, j, k) of {1, 2, 3}:
Rτ (X, Y, ξi, ξj) = 4(g(τXY, τξiξj) + g(τY ξi, τXξj) + g(τξiX, τY ξj))

= 4

(
g(y

3∑
a=1

ξaβa(X, Y )), xξk) + y2g(βi(Y ), βj(X))− y2g(βi(X), βj(Y ))

)
= 4(xy + 2y2)βk(X, Y ) .

Note that we cannot apply the Bianchi formula directly to Rτ̃ since τ̃ is not parallel with
respect to ∇τ̃ . For computing the curvature Rτ̃ we will first obtain formulas for the vertical
part of commutators of two horizontal vector fields X, Y :

[X, Y ]V = (∇g
XY −∇g

YX)V = −2(τXY )V = −2y
∑

ξiβi(X, Y ) ,

and similarly for a horizontal vector field X and a vertical vector field V :

(49) [X, V ]V = (∇τ
XV − τXV −∇τ

VX + τVX)V = ∇τ
XV .

Note that ∇τ̃
X = ∇τ

X holds for all horizontal vectors X. Then we compute

g(Rτ̃
X,Y ξi, ξj) = g(∇τ̃

X∇τ̃
Y ξi −∇τ̃

Y∇τ̃
Xξi −∇τ̃

[X,Y ]ξi, ξj)

= g(Rτ
X,Y ξi − λvolV[X,Y ]ξi, ξj)

= 4(xy + 2y2)βk(X, Y )− λg(ξk, [X, Y ])

= 2y(2(x+ 2y) + λ)βk(X, Y ) .

We see that this expression vanishes for λ = −2(x+ 2y). Next we compute using (49):

Rτ̃
X,V ξi = ∇τ

X(∇τ
V ξi + λvolVV ξi)−∇τ

V∇τ
Xξi − λvolVV (∇τ

Xξi)−∇τ
[X,V ]ξi − λvolV[X,V ]ξi

= Rτ
X,V ξi + λvolV∇τ

XV ξi − λvolV[X,V ]ξi

= 0 .

It remains to calculate the curvature Rτ̃ on vertical vectors. The distribution V ⊂ TM
is totally geodesic and the leaves have constant sectional curvature K ≥ 0. The constant K
was computed in [12]. The torsion form T = 2τ is written in loc. cit.

2τ = aφ+ bvolV = (a+ b)volV + a
∑

ξi ∧ βi = 2xvolV + 2y
∑

ξi ∧ βi .
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By (48), the relation between a, b and x, y is a+ b = 2x and a = 2y. Then by [12, Prop. 10.1]
we have

K =
1

4
(5a+ b)2 = (x+ 4y)2 .

We can restrict the curvature calculation to the 3-dimensional leaves of V . The connection
∇τ̃ on V can be written as ∇τ̃

∣∣
V = ∇g

V + (x+ λ)volV . A standard calculation then gives

Rτ̃
V1,V2

= Rg
V1,V2

+ (x+ λ)2V1 ∧ V2 = ((x+ λ)2 −K)V1 ∧ V2
If we take λ = −2(x + 2y) we get x + λ = −x − 4y, i.e. (x + λ)2 = k. We see that for this
choice of λ the curvature of ∇τ̃ on the bundle V vanishes. □

Since the bundle V is flat with respect to the connection ∇τ̃ , we can choose a local or-
thonormal frame ξ1, ξ2, ξ3 of ∇τ̃ -parallel sections of V . By Lemma 3.1, the vector fields ξi are
all Killing and their differentials can be computed as follows:

dξi = 2τ̃ξi = 2(x+ λ)ξj ∧ ξk + 2yβi = −2(x+ 4y)ξj ∧ ξk + 2yβi .

From the last equation we see that (ξi, βi) defines a 3-(α, δ)-Sasaki structure as in Definition
2.7, with α := y, δ := x+ 4y and ΦH

i := βi.

Note that if δ = 2α, then λ = −2(x + 2y) = 0. Indeed for these particular 3-(α, δ)-Sasaki
structures, the so-called parallel 3-(α, δ)-Sasaki structures, the vector fields ξi are ∇τ parallel
and it is not necessary to modify the torsion form τ , i.e. we can take λ = 0.

Conversely, we have the following statement (see [1, Rem. 4.4.3] and [1, Thm.4.5.1]).

Proposition 6.2. For any 3-(α, δ)-Sasaki structure (ξi,Φ
H
i ) on a 7-dimensional Riemannian

manifold (M, g) there exists a canonical connection ∇τ with parallel skew-symmetric torsion
τ defined as

(50) τ = (δ − 4α)volV + α
∑

ξi ∧ ΦH
i .

Moreover, there is an associated cocalibrated and ∇τ -parallel G2-structure φ defined by

φ := volV +
∑

ξi ∧ ΦH
i .

The torsion form τ in Proposition 6.2 coincides with the one defined in (48) for βi = ΦH
i ,

y = α, and x = δ − 4α. The G2-form φ is the G2-form defined in (47) for ΦH
i = βi.
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