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Abstract. We study conformal product structures on compact reducible Riemannian man-
ifolds, and show that under a suitable technical assumption, the underlying Riemannian
manifolds are either conformally flat, or triple products, i.e. locally isometric to Riemannian
manifolds of the form (M, g) with M = M1 ×M2 ×M3 and g = e2fg1 + g2 + g3, where gi is
a Riemannian metric on Mi, for i ∈ {1, 2, 3}, and f ∈ C∞(M1 ×M2).

1. Introduction

Conformal product structures were formally introduced in [3], but they appear in the
literature several decades earlier. They can be defined in various ways: either in terms of
Weyl connections (see for instance [9], [5]), or by means of conformal foliations (e.g. [22]), or
finally by locally describing the metrics in the conformal class (cf. [3]).

The point of view that we adopt here is the following. If (M, c) is a conformal manifold, a
conformal product structure on (M, c) is defined as a Weyl connection D (i.e. a torsion-free
linear connection preserving the conformal class) with reducible holonomy representation.

Recall that by fixing a background metric g in the conformal class c, every Weyl connection
D determines a 1-form θ (called the Lee form with respect to g), by the formula Dg = −2θ⊗g,
and conversely, a Riemannian g ∈ c together with any 1-form θ determines a unique Weyl
connection D whose Lee form with respect to g is θ (see Definition 2.2 and Equation (2.1)
below). A Weyl connection is called closed or exact if its Lee form with respect to some
metric in c is closed or exact. This definition does not depend on the choice of the metric in
the conformal class and it is easy to see that a Weyl connection is exact (or closed) if and
only if it is globally (or locally) the Levi-Civita connection of a metric in c.

It follows from Merkulov-Schwachhöfer’s classification of possible irreducible holonomies of
torsion-free linear connections [15] that every non-closed Weyl connection with irreducible
holonomy representation on a conformal n-dimensional manifold has holonomy equal to the
full conformal group CO(n) if n ̸= 4. This result already constitutes a strong motivation for
investigating Weyl connections with reducible holonomy.
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The tangent bundle of a manifold M endowed with a conformal product structure D splits
by definition as the orthogonal direct sum of two D-parallel distributions TM = T1 ⊕ T2,
which are both integrable due to the fact that D is torsion-free.

The problem we tackle in this paper is part of a more general program, which aims to
classifying conformal product structures D on compact conformal manifolds (M, c) which
carry a metric g ∈ c with special holonomy. In order to avoid trivial solutions, we always
assume that D is different from the Levi-Civita connection of g.

According to the Berger-Simons holonomy theorem, if the metric g has special holonomy,
then (M, g) is either Kähler, or Einstein, or reducible. The first two cases have already
been studied recently: the problem was completely solved when g is Kähler [20], and a
partial solution, under some simplifying assumption, was obtained when g is Einstein [19],
[21]. Previous results on the related problem of conformally Einstein product spaces have
been obtained by W. Kühnel und H.-B. Rademacher [12], [13], [14]. We study here the last
remaining case, when g has reducible holonomy, more precisely by asking the following:

Question 1.1. Characterize compact Riemannian manifolds (M, g) with reducible holonomy,
which carry a conformal product structure D, other than the Levi-Civita connection of g.

Note that the above framework can be characterized by means of tensor fields on (M, g)
in the following way. The connection D is determined by the metric g and a 1-form θ, and
the D-parallel decomposition of TM = T1 ⊕ T2 is determined (up to the choice of the two
factors) by an orthogonal D-parallel involution S whose ±1 eigenspaces are exactly T1 and T2.
Similarly, the reducibility of (M, g) is equivalent to the existence of a ∇-parallel orthogonal
involution P different from ±IdTM , where ∇ is the Levi-Civita connection of g. Question 1.1
is thus equivalent to the existence of a triple (θ, S, P ) on (M, g), where θ is a non identically
vanishing 1-form, and S, P are orthogonal involutions different from ±IdTM satisfying

(1.1) DS = 0, ∇P = 0,

where D is determined by ∇ and θ by means of Equation (2.1) below.

It turns out that solutions to Question 1.1 can be constructed on products of three mani-
folds. More precisely, if gi is a Riemannian metric on a compact manifold Mi for i ∈ {1, 2, 3}
and f is a smooth function on M1 × M2, then the metric g := e2fg1 + g2 + g3 on M :=
M1 ×M2 ×M3 is obviously a Riemannian product metric between (M1 ×M2, e

2fg1 + g2) and
(M3, g3). Moreover, the conformal class of g also admits a conformal product structure D,
different from the Levi-Civita connection of g if the warping function f is non-constant along
M2, cf. Example 3.1 below. Riemannian manifolds which are locally isometric to the ones
constructed in this way are called triple products.

Another class of solutions is given by compact conformally flat manifolds. Indeed, as
noticed at the beginning of Section 4 in [2], if D is a flat Weyl connection (which is in
particular closed) on a compact conformal n-dimensional manifold (M, c) with n ≥ 3, then

by a result of Fried [8], the universal cover M̃ , endowed with the Riemannian metric whose

Levi-Civita connection is the pull-back of D to M̃ , is isometric to Rn \ {0} and π1(M) is a
semi-direct product K ⋊ Z between a finite group of isometries of Rn fixing the origin and a
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group generated by a homothety of ratio λ < 1. In polar coordinates, the flat space Rn \ 0
can be seen as the product R+ × Sn−1 together with the cone metric dr2 + r2gS where gS is
the round metric on the sphere. Consequently, π1(M) acts by isometries with respect to the
metric 1

r2
dr2+ gS, which is conformal to the previous metric and descends to M . In addition,

this metric is a product metric, so it is reducible, implying that all compact manifolds carrying
a flat Weyl connection are solutions of Question 1.1.

Our purpose here is to collect evidence in favor of the following:

Conjecture 1.2. A compact connected Riemannian manifold (M, g) with reducible holonomy
which carries a conformal product structure D different from the Levi-Civita connection of g
is either conformally flat, or a triple product.

Note first that by [18, Thm. 6.3], Conjecture 1.2 is true when D is exact, i.e. when D is the
Levi-Civita connection of some metric on M which is globally conformal to g. The conjecture
was also proved when D is closed but non-exact. Indeed, conformal product structures with
closed non-exact and non-flat Weyl connection are exactly the so called locally conformally
product (LCP) structures [6]. The study of LCP manifolds started with a construction given
by V. Matveev and Y. Nikolayevsky [16] as a counterexample to a conjecture by Belgun and
the first author [4]. A structure theorem was first obtained in the analytic case by V. Matveev
and Y. Nikolayevsky [17] and afterwards extended to the smooth case by Kourganoff [10] (see
also [7] for another proof). In the LCP setting, Conjecture 1.2 follows from [2, Thm. 4.7 and
Rem. 4.11].

In this paper we make further progress towards the proof of the conjecture in the remaining
case, where D is non-closed, by showing that it holds true under any of the following extra
assumptions:

(i) Sθ = εθ, for some ε ∈ {−1, 1}; this is equivalent to saying that θ vanishes on vectors
from one of the two distributions of the conformal product.

(ii) δSθ = εδθ, for some ε ∈ {−1, 1}; this amounts to saying that the restriction of θ to
one of the two distributions of the conformal product is co-closed.

(iii) SP = PS; this commutation is equivalent to the fact that the tangent bundle of M
decomposes in an orthogonal direct sum of distributions TM = T1,1⊕T1,2⊕T2,1⊕T2,2

such that T1,1 ⊕ T1,2 and T2,1 ⊕ T2,2 are D-parallel and T1,1 ⊕ T2,1 and T1,2 ⊕ T2,2 are
∇-parallel.

(iv) tr(SP ) is constant.
(v) δ(Sθ) = 0.
(vi) tr(P ) = 0; this is equivalent to the fact that TM has a ∇-parallel splitting in an

orthogonal direct sum of two distributions of the same dimension.

Note that conditions (i)-(iv) are automatically satisfied on a triple product. Moreover, one
has the obvious implications (i)⇒(ii) and (iii)⇒(iv).

Our main result is the following:

Theorem 1.3. Let (M, g) be an oriented, compact connected Riemannian manifold of dimen-
sion n ≥ 3 endowed with a Weyl connection D, whose Lee form θ with respect to g is not
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identically zero. We assume that both the Levi-Civita connection of g and the Weyl connection
D have reducible holonomy, and that at least one of the conditions (i)-(vi) above is satisfied.
Then (M, g) is a triple product.

The proof is based on an integral formula, somewhat similar to the one used in the proof
of [20, Thm. 4.1]. The main idea is to exploit the fact that S is D-parallel in order to obtain
a formula for the Riemannian curvature tensor R acting on S, then to use the symmetries of
R given by the holonomy reduction, together with some suitable traces, in order to obtain
a scalar identity involving a divergence term, and some further terms whose sign can be
controlled.

However, unlike the proof of [20, Thm. 4.1], where the Kähler symmetries of R together
with the Cauchy-Schwarz inequality give a definite sign in the corresponding scalar identity,
the fact that the holonomy reduction in the present case is determined by an orthogonal
involution instead of an orthogonal complex structure, gives some extra terms in the scalar
identity whose sign can not be controlled, unless we make one of the assumptions (i)-(vi)
above.

The structure of the paper is the following. After some preliminaries on Weyl connections
and conformal product structures, we introduce triple products in Section 3, and give their
tensorial characterization in Proposition 3.4. In Section 4 we obtain the scalar identity men-
tioned above (Proposition 4.1), and in Section 5 we prove that the coefficients involved in it
are non-negative provided that one of the assumptions (i)-(vi) holds. Finally, in Section 6 we
prove our main theorem, by distinguishing the cases where one of the D-parallel distributions
has rank 1 or both have rank at least 2, and in the Appendix we prove several divergence
formulas used in the proof of Proposition 4.1.

Acknowledgment. This work was partly supported by the PNRR-III-C9-2023-I8 grant
CF 149/31.07.2023 Conformal Aspects of Geometry and Dynamics.

2. Definitions and notation

Let (M, g) be a Riemannian manifold of dimension n ≥ 2. We denote by ∇ the Levi-Civita
connection of g and by ♯ : T∗M → TM and ♭ : TM → T∗M the musical isomorphisms
defined by g, which are ∇-parallel and inverse to each other. In order to simplify notation,
we will sometimes simply write ⟨·, ·⟩ instead of the metric g, and denote the associated norm
by ∥ · ∥. Furthermore we will identify vector fields with their dual 1-forms with respect to g,
when there is no risk of confusion.

We introduce the following notation: If F is a non-trivial orthogonal involution of TM ,
then F has exactly two eigenvalues, −1 and 1, and we denote by E+(F ) the eigenspace of
F corresponding to the eigenvalue 1 and by E−(F ) the eigenspace of F corresponding to
the eigenvalue −1. By a slight abuse of notation we denote these eigenspaces as Eε(F ),
for ε ∈ {−1, 1}. On a Riemannian manifold (M, g), an endomorphism F of TM is called
symmetric if F is self-adjoint with respect to the metric g, i.e. g(FX, Y ) = g(X,FY ), for
all vector fields X, Y . Clearly, an involution is symmetric if and only if it is an orthogonal
endomorphism of (TM, g).
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Remark 2.1. If (M, g) is a Riemannian manifold with Levi-Civita connection ∇, then the
following assertions are equivalent:

(i) The metric g has reducible holonomy.
(ii) There is an orthogonal non-trivial ∇-parallel decomposition of the tangent bundle.
(iii) There exists a∇-parallel g-orthogonal involution P ∈ End(TM) different from±IdTM .

For the equivalence between (ii) and (iii) it suffices to notice that every orthogonal splitting
TM = D1 ⊕D2 is equivalent to an orthogonal involution P by defining E+(P ) := D1 and
E−(P ) := D2. Moreover, D1 and D2 are ∇-parallel if and only if P is ∇-parallel.

Definition 2.2. A Weyl connection on (M, g) is a torsion-free linear connection D satisfying
Dg = −2θ ⊗ g for some 1-form θ ∈ Ω1(M), called the Lee form of D with respect to g.

The conformal Koszul formula [9] shows that D is completely determined by its Lee form
with respect to g:

(2.1) DXY = ∇XY + θ(Y )X + θ(X)Y − ⟨X, Y ⟩θ♯, ∀X, Y ∈ Γ(TM).

Definition 2.3. A conformal product structure on (M, g) is a Weyl connection D together
with a decomposition of the tangent bundle of M as TM = T1 ⊕ T2, where T1 and T2 are
orthogonal D-parallel non-trivial distributions. The rank of a conformal product structure is
defined to be the smallest of the ranks of the two distributions T1 and T2. A conformal product
structure D on (M, g) is orientable if the D-parallel distributions T1 and T2 are orientable.

Let us recall the following tensorial characterization of conformal product structures (cf.
[20, Lemma 2.4]):

Remark 2.4. On a Riemannian manifold (M, g) with Levi-Civita connection ∇ the following
assertions are equivalent:

(i) There exists a conformal product structure on (M, g).
(ii) There exists a g-orthogonal involution S of TM different from ±IdTM and a 1-form θ

on M , such that

(2.2) ∇XS = SX ⊙ θ♯ − Sθ♯ ⊙X, ∀X ∈ Γ(TM),

where for any two vectors X, Y ∈ TM the symmetric endomorphism X ⊙ Y is defined by

(X ⊙ Y )(Z) := ⟨X,Z⟩Y + ⟨Y, Z⟩X, ∀Z ∈ TM.

More precisely, the orthogonal involution S of TM is defined by declaring E+(S) = T1 and
E−(S) = T2. The Lee form θ decomposes accordingly as θ = θ+ + θ−, where

(2.3) θ+ :=
1

2
(θ + Sθ), θ− :=

1

2
(θ − Sθ).

For later use, we recall the action of the Riemannian curvature tensor on S obtained in [20,
Equality (7)], which follows in a straightforward way from (2.2) applied twice to vector fields
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X, Y ∈ Γ(TM):

RX,Y S =SY ⊙ TX − SX ⊙ TY + STY ⊙X − STX ⊙ Y

+ ⟨θ, Y ⟩(SX ⊙ θ − Sθ ⊙X) + ⟨θ,X⟩(Sθ ⊙ Y − SY ⊙ θ)

− ∥θ∥2(SX ⊙ Y − SY ⊙X).

(2.4)

Our framework throughout the paper is summarized in the following:

Hypothesis 2.5. (M, g) is an oriented, compact, connected n-dimensional Riemannian man-
ifold, and D is a Weyl connection different from the Levi-Civita connection ∇ of g, such that:

• The Weyl connection D has reducible holonomy, so it defines a conformal product
structure, and S denotes the corresponding D-parallel orthogonal involution given by
Remark 2.4.

• The metric g has reducible holonomy and P denotes the corresponding ∇-parallel or-
thogonal involution given by Remark 2.1.

Let us denote by θ the Lee form of D with respect to g (which is not identically zero by as-
sumption), and by T := ∇θ its covariant derivative. We will identify T with the corresponding
endomorphism of TM using the metric g.

The exterior 2-form α ∈ Ω2(M), identified with the skew-symmetric endomorphism of TM
defined by

(2.5) α := SP − PS

will be of particular interest in the sequel. We derive some of its basic properties in the next
result:

Lemma 2.6. The following identities hold:

(2.6) ∇Xα = PSX ∧ θ + Pθ ∧ SX − PX ∧ Sθ − PSθ ∧X, ∀X ∈ TM.

(2.7) dα = −α ∧ θ,

(2.8) δα = (1− n)PSθ − SPθ − tr(PS)θ + tr(P )Sθ + tr(S)Pθ,

(2.9) d(tr(SP )) = 2α(θ).

Proof. The identities follow by straightforward computation. For any vector fields X, Y , we
obtain, using the fact that P is ∇-parallel and the covariant derivative of S is explicitly given
by (2.2):

(∇Xα)(Y ) =(∇X(SP − PS))(Y ) = (∇XS)PY − P (∇XS)(Y )

=(SX ⊙ θ − Sθ ⊙X)PY − P (SX ⊙ θ − Sθ ⊙X)(Y )

=⟨SX,PY ⟩θ + θ(PY )SX − PSθ(Y )X − ⟨X,PY ⟩Sθ
− ⟨SX, Y ⟩Pθ − θ(Y )PSX + Sθ(Y )PX + ⟨X, Y ⟩PSθ

=(PSX ∧ θ + Pθ ∧ SX − PX ∧ Sθ − PSθ ∧X)(Y ),
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which proves (2.6). If {ei}i=1,n is a local orthonormal basis of TM , then we compute:

dα =
n∑

i=1

ei ∧∇eiα
(2.6)
=

n∑
i=1

ei ∧ (PSei ∧ θ + Pθ ∧ Sei − Pei ∧ Sθ − PSθ ∧ ei)

=
n∑

i=1

ei ∧ PSei ∧ θ = −α ∧ θ,

δα = −
n∑

i=1

ei⌟∇eiα
(2.6)
= −

n∑
i=1

ei⌟ (PSei ∧ θ + Pθ ∧ Sei − Pei ∧ Sθ − PSθ ∧ ei)

= −tr(PS)θ + PSθ − SPθ + tr(S)Pθ + tr(P )Sθ − PSθ + (1− n)PSθ,

yielding (2.7) and (2.8). In order to obtain (2.9), we compute for any vector field X taking
the orthonormal basis {ei}i=1,n to be parallel at the point where the computation is done:

d(tr(SP ))(X) = X(tr(SP )) =
n∑

i=1

X(⟨SPei, ei⟩) =
n∑

i=1

X(⟨PSei, ei⟩) =
n∑

i=1

⟨P (∇XS)ei, ei⟩)

(2.2)
=

n∑
i=1

⟨(SX ⊙ θ − Sθ ⊙X)(ei), P ei⟩)

=
n∑

i=1

(⟨SX, ei⟩⟨θ, Pei⟩+ θ(ei)⟨SX,Pei⟩ − ⟨Sθ, ei⟩⟨X,Pei⟩ − ⟨X, ei⟩⟨Sθ, Pei⟩)

= ⟨SX,Pθ⟩+ ⟨PSX, θ⟩ − ⟨Sθ, PX⟩ − ⟨X,PSθ⟩ = 2⟨α(θ), X⟩.

□

3. Triple products

We start with the following construction:

Example 3.1. Let (Mi, gi), for i ∈ {1, 2, 3}, be three Riemannian manifolds and consider a
function f ∈ C∞(M1 ×M2). On the product M := M1 ×M2 ×M3 we define the Riemannian
metric g := e2fg1 + g2 + g3. We remark that the manifold M is endowed simultaneously
with a Riemannian metric and with a Weyl connection, both having reducible holonomy, i.e.
satisfying Hypothesis 2.5:

(i) The Riemannian manifold (M, g) is the Riemannian product of (M1 ×M2, e
2fg1 + g2)

with (M3, g3), so the holonomy of g is reducible.
(ii) The 1-form θ := −d2f defines a Weyl connection D on (M, g), which together with the

orthogonal D-parallel decomposition TM = TM1⊕ (TM2⊕TM3) defines a conformal
product structure on (M, g), meaning that the holonomy of D is reducible (cf. [3] or
[20, Prop. 3.2]). Here d2 denotes the differential of functions on M along M2.

The previous example motivates the following:
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Definition 3.2. A Riemannian manifold (M, g) is called a triple product if the tangent
bundle of M decomposes into an orthogonal direct sum of three integrable distributions
TM = T1 ⊕ T2 ⊕ T3, such that every point of M has a neighbourhood U which can be writ-
ten as M1×M2×M3, with Ti = TMi along U , and the metric g restricted to U takes the form
e2fg1+g2+g3, where gi is a Riemannian metric on Mi, for i ∈ {1, 2, 3}, and f ∈ C∞(M1×M2).

Remark 3.3. This definition generalizes the notion of triple warped product introduced
in [18], where the manifold is considered to be a global product of three manifolds and, in the
notation of Definition 3.2, the function f is assumed to be a function on M2 alone.

We now provide a tensorial characterization of triple products.

Proposition 3.4. Let M be a manifold satisfying Hypothesis 2.5. If the following two con-
ditions are satisfied:

(i) SP = PS,
(ii) Eε(S) ⊆ Eε′(P ), for some ε, ε′ ∈ {−1, 1},

then (M, g) is a triple product.

Proof. Up to changing the signs of S and P if necessary, we may assume without loss of
generality that ε = ε′ = 1 in (ii), i.e. that E+(S) ⊆ E+(P ). Since S and P are orthogonal
involutions, the inclusion E+(S) ⊆ E+(P ) implies that also the inclusion E−(P ) ⊆ E−(S)
holds. Moreover, since S and P commute, S preserves E+(P ), which thus decomposes as
E+(P ) = E+(S) ⊕ (E+(P ) ∩ E−(S)). We thus have the following orthogonal direct sum
decompositions of the tangent bundle:

TM = E+(P )⊕ E−(P ) = E+(S)⊕ (E+(P ) ∩ E−(S))⊕ E−(P ) = E+(S)⊕ E−(S).

Because both the Levi-Civita and the Weyl connection D are torsion-free, the three distri-
butions E+(S), E+(P ) ∩ E−(S), and E−(P ) are integrable. Consequently, every point of M
has a neighbourhood U which can be written as the product of three connected manifolds
M1 ×M2 ×M3, such that TM1 = E+(S), TM2 = E+(P ) ∩ E−(S) and TM3 = E−(P ).

Now, because P is the orthogonal involution defined by the holonomy reduction of the
metric g, the restriction of g to this neighbourhood can be written as

(3.1) g = g12 + g3,

where g12 is a metric on M1 ×M2 and g3 is a metric on M3. Furthermore, because S is the
orthogonal involution corresponding to the conformal product structure, after shrinking M1,
M2 and M3 if necessary, the restriction of g to the neighbourhood U can also be expressed as

(3.2) g = ef1h1 + ef23h23,

where f1, f23 ∈ C∞(M1×M2×M3), h1 is a metric onM1 and h23 is a metric onM2×M3 (cf. [20,
Prop. 3.2]). From the expressions (3.1) and (3.2) of the metric g, we obtain that the metric
h23 can be decomposed as h23(y, z) = h2(y, z)+h3(y, z), where h2(·, z) is a metric on M2×{z}
for every z ∈ M3 and h3(y, ·) is a metric on M3 for every y ∈ M2. It follows in particular that
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g3(z) = ef23(x,y,z)h3(y, z) for every (x, y, z) ∈ M1 ×M2 ×M3, hence f23 ∈ C∞(M2 ×M3). If we
further compare the restrictions of (3.1) and (3.2) to M1 ×M2 we obtain that

(3.3) g12(x, y) = ef1(x,y,z)h1(x) + ef23(y,z)h2(y, z), ∀(x, y, z) ∈ M1 ×M2 ×M3.

Differentiating the Equality (3.3) in the direction of a vector field Z ∈ Γ(TM3), we obtain:

(3.4) 0 = Z(f1)e
f1h1 + LZ(e

f23h2),

where Z(f1)e
f1h1 belongs to Sym2(M1) and LZ(e

f23h2) belongs to Sym2(M2 ×M3), implying
thus that each of the terms in the right-hand side of (3.4) has to vanish. Thus Z(f1) = 0, for
all vector fields Z tangent to M3, implying that f1 ∈ C∞(M1 ×M2), and also LZ(e

f23h2) = 0
for all Z ∈ Γ(TM3), which implies that ef23h2 =: g2 is a metric on M2 which does not depend
on M3. Altogether, we have showed that the metric g can be written as follows:

g = ef1g1 + g2 + g3,

with g1 := h1. By the above considerations, gi is a metric on Mi, for i ∈ {1, 2, 3}, and
f1 ∈ C∞(M1 ×M2), so (M, g) is a triple product. □

4. A scalar identity for conformal product structures on reducible
manifolds

The purpose of this section is to prove the following result:

Proposition 4.1. Let M be a manifold satisfying Hypothesis 2.5. Then the following identity
holds:

0 =
1

2
∥θ∥2(n2 + (tr(S))2 − (tr(P ))2 − (tr(SP ))2 + tr(SPSP )− n)

+ ⟨θ, Pθ − SPSθ⟩tr(P )− ⟨θ, Sθ⟩(ntr(S)− tr(P )tr(SP )) + δ(β),
(4.1)

where β := tr(S)Sθ − (n+ 1)θ − tr(SP )PSθ + PSPSθ + tr(U)Pθ ∈ Ω1(M).

This formula will be obtained roughly speaking by taking traces in an identity obtained by
applying the Riemannian curvature tensor of g to S and using its commutation with P . In
order to obtain this identity we start in a more general setting with the following definition:

Definition 4.2. For any endomorphisms F,G ∈ End(TM), we define F ·G ∈ End(Λ2(TM))
by the following formula:

(F ·G)(X ∧ Y ) :=
1

2
(F (X) ∧G(Y ) +G(X) ∧ F (Y )), for all tangent vectors X, Y.

Note that if F,G are symmetric endomorphisms of TM, g), then F ·G is up to a constant
factor exactly the Kulkarni-Nomizu product of F and G. It follows directly from the above
definition that (F · F )(X ∧ Y ) = F (X) ∧ F (Y ) and F ·G = G · F , for all F,G ∈ End(TM).
We will need the following general identities:

Lemma 4.3. For any F,G, F ′, G′ ∈ End(TM) the following relations hold:

(i) tr(F ·G) =
1

2
(tr(F )tr(G)− tr(F ◦G)) .
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(ii) (F ·G)◦ (F ′ ·G′) =
1

2
((F ◦F ′) · (G◦G′)+(G◦F ′) · (F ◦G′)). In particular, for F ′ = G′,

we obtain:

(4.2) (F ·G) ◦ (F ′ · F ′) = (F ◦ F ′) · (G ◦ F ′).

Proof. (i) If {ei}1≤i≤n is a local orthonormal basis of TM , then {ei ∧ ej}1≤i<j≤n is a local
orthonormal basis of Λ2(TM), and the trace of the endomorphism F ·G ∈ End(Λ2(TM)) can
be computed as follows:

tr(F ·G) =
1

2

n∑
i,j=1

⟨(F ·G)(ei ∧ ej), ei ∧ ej⟩ =
1

4

n∑
i,j=1

⟨F (ei) ∧G(ej) +G(ei) ∧ F (ej), ei ∧ ej⟩

=
1

2

n∑
i,j=1

(⟨F (ei), ei⟩⟨G(ej), ej⟩ − ⟨F (ei), ej⟩⟨G(ej), ei⟩)

=
1

2

(
tr(F )tr(G)−

n∑
j=1

⟨F (G(ej)), ej⟩

)
=

1

2
(tr(F )tr(G)− tr(F ◦G)) .

(ii) We compute by definition, for any tangent vectors X and Y :

4((F ·G) ◦ (F ′ ·G′))(X ∧ Y ) =2(F ·G)(F ′(X) ∧G′(Y ) +G′(X) ∧ F ′(Y ))

=F (F ′(X)) ∧G(G′(Y )) +G(F ′(X)) ∧ F (G′(Y ))

+ F (G′(X)) ∧G(F ′(Y )) +G(G′(X)) ∧ F (F ′(Y ))

=2((F ◦ F ′) · (G ◦G′) + (G ◦ F ′) · (F ◦G′))(X ∧ Y ).

□

We assume now that M satisfies Hypothesis 2.5 and determine the compositions of P · P
and S · S with the Riemannian curvature tensor.

Lemma 4.4. If R : Λ2(TM) → Λ2(TM) denotes the Riemannian curvature tensor of the
metric g, seen as a symmetric endomorphism of Λ2(TM), then the following identities hold:

(4.3) (P · P ) ◦R−R = 0 = R ◦ (P · P )−R,

(4.4) (S · S) ◦R−R = −2ST · S + 2T · I + 2S · (θ⊗ Sθ)− 2I · (θ⊗ θ) + ∥θ∥2(I · I − S · S),
where T := ∇θ and I := IdTM denotes the identity endomorphism of TM .

Proof. Since P is a ∇-parallel symmetric involution of TM and P · P is symmetric with
respect to the induced metric on Λ2(TM), we obtain for all tangent vector fields X, Y, Z,W :

⟨((P · P ) ◦R)(X ∧ Y ), Z ∧W ⟩ = ⟨R(X ∧ Y ), (P · P )(Z ∧W )⟩ = ⟨R(X ∧ Y ), PZ ∧ PW ⟩

= ⟨RX,Y PZ, PW ⟩ ∇P=0
= ⟨PRX,YZ, PW ⟩

= ⟨RX,YZ,W ⟩ = ⟨R(X ∧ Y ), Z ∧W ⟩,
yielding the first equality in (4.3). The second equality in (4.3) then follows by taking the
transpose of the first equality, since both R and P · P are symmetric endomorphisms.
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In order to prove (4.4), we start similarly by computing for all tangent vector fields
X, Y, Z,W :

⟨((S · S) ◦R)(X ∧ Y ), Z ∧W ⟩ = ⟨R(X ∧ Y ), (S · S)(Z ∧W )⟩ = ⟨RX,Y SZ, SW ⟩
= ⟨(RX,Y S)Z, SW ⟩+ ⟨SRX,YZ, SW ⟩
= ⟨(S ◦RX,Y S)Z,W ⟩+ ⟨R(X ∧ Y ), Z ∧W ⟩.

(4.5)

Using (2.4) composed with S on the left and regrouping the terms in order to use the operation
introduced in Definition 4.2, we obtain:

S ◦RX,Y S =SY ⊗ STX + TX ⊗ Y − SX ⊗ STY − TY ⊗X + STY ⊗ SX +X ⊗ TY

− STX ⊗ SY − Y ⊗ TX + ⟨θ, Y ⟩(SX ⊗ Sθ + θ ⊗X − Sθ ⊗ SX +X ⊗ θ)

+ ⟨θ,X⟩(Sθ ⊗ SY + Y ⊗ θ − SY ⊗ Sθ + θ ⊗ Y )

− ∥θ∥2(SX ⊗ SY + Y ⊗X − SY ⊗ SX −X ⊗ Y )

=− STX ∧ SY − SX ∧ STY + TX ∧ Y +X ∧ TY + ⟨θ, Y ⟩(SX ∧ Sθ + θ ∧X)

+ ⟨θ,X⟩(Sθ ∧ SY + Y ∧ θ)− ∥θ∥2(SX ∧ SY −X ∧ Y )

=− 2(ST · S)(X ∧ Y ) + 2(T · I)(X ∧ Y ) + SX ∧ (θ ⊗ Sθ)(Y )−X ∧ (θ ⊗ θ)(Y )

+ (θ ⊗ Sθ)(X) ∧ SY − (θ ⊗ θ)(X) ∧ Y + ∥θ∥2(I · I − S · S)(X ∧ Y )

=(−2ST · S + 2T · I + 2S · (θ ⊗ Sθ)− 2I · (θ ⊗ θ) + ∥θ∥2(I · I − S · S))(X ∧ Y ),

which together with (4.5) yields (4.4). □

With the same notation as in Lemma 4.4 we may now formulate the following direct con-
sequence:

Corollary 4.5. The endomorphism (S · S) ◦R−R can be expressed as follows:

(S · S) ◦R−R
(4.3)
= ((S · S) ◦R−R) ◦ (P · P )

(4.4),(4.2)
= − 2STP · SP + 2TP · P + 2SP · (Pθ ⊗ Sθ)

− 2P · (Pθ ⊗ θ) + ∥θ∥2(P · P − SP · SP ).

(4.6)

From the above formulas we obtain:

Proof of Proposition 4.1. Taking the trace in both expressions obtained for the endomor-
phism (S · S) ◦ R − R, namely in (4.4) and (4.6), and applying Lemma 4.3 (i), yields after
some simplification:

− tr(ST )tr(S) + ntr(T ) + tr(S)⟨θ, Sθ⟩+ 1

2
∥θ∥2(n2 − 2n− (tr(S))2) =

− tr(PST )tr(SP ) + tr(PSPST ) + tr(PT )tr(P )− tr(T ) + tr(SP )⟨Pθ, Sθ⟩

− ⟨Pθ, SPSθ⟩ − tr(P )⟨θ, Pθ⟩+ 1

2
∥θ∥2(2 + (tr(P ))2 − n− (tr(SP ))2 + tr(SPSP )).

(4.7)

We first express separately the term tr(PST )tr(SP ) occuring in this equality, because the
trace of the endomorphism SP is not necessarily constant. For this, we start by computing
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the following codifferential:

−δ(tr(SP )PSθ) = −tr(SP )δ(PSθ) + ⟨PSθ, d(tr(SP ))⟩
(2.9)
= −tr(SP )δ(PSθ) + 2⟨PSθ, (SP − PS)θ⟩
= −tr(SP )δ(PSθ) + 2⟨SPSPθ, θ⟩+ 2∥θ∥2,

(4.8)

which together with the computations in the Appendix yields:

tr(PST )tr(SP )
(7.4)
= (−δ(PSθ)− ∥θ∥2tr(SP ) + ⟨θ, Sθ⟩tr(P ))tr(SP )

(4.8)
= −δ(tr(SP )PSθ)− 2⟨SPSPθ, θ⟩+ 2∥θ∥2 − ∥θ∥2(tr(SP ))2 + ⟨θ, Sθ⟩tr(P )tr(SP ).

(4.9)

If we replace the traces computed in the Appendix, Lemma 7.1, as well as the identity (4.9),
in Equality (4.7), we then obtain:

∥θ∥2(tr(S))2 − n⟨θ, Sθ⟩tr(S) + ⟨θ, Sθ⟩tr(S) + 1

2
∥θ∥2(n2 − 2n− (tr(S))2)

− 2⟨SPSPθ, θ⟩+ 2∥θ∥2 − ∥θ∥2(tr(SP ))2 + ⟨θ, Sθ⟩tr(P )tr(SP )

− ∥θ∥2(1− tr(PSPS)) + ⟨θ, PSPSθ⟩
+ ⟨Pθ, Sθ⟩tr(PS)− ⟨θ, SPSθ⟩tr(P )− ⟨θ, Sθ⟩tr(S)
− tr(SP )⟨Pθ, Sθ⟩+ ⟨θ, SPSPθ⟩+ tr(P )⟨θ, Pθ⟩

− 1

2
∥θ∥2(2 + (tr(P ))2 − n− (tr(SP ))2 + tr(SPSP )) + δ(β) = 0,

(4.10)

where β := tr(S)Sθ − (n+ 1)θ − tr(SP )PSθ + PSPSθ + tr(P )Pθ. Regrouping the terms of
the same kind, Equation (4.10) yields (4.1) and finishes the proof of Proposition 4.1. □

5. An integral formula

We assume throughout this section that M satisfies Hypothesis 2.5. In order to state the
next results, we introduce the following two functions on M :

(5.1) A+ := n2+(tr(S))2− (tr(P ))2− (tr(SP ))2+tr(SPSP )−n− 2ntr(S)+2tr(P )tr(SP ),

(5.2) A− := n2+(tr(S))2− (tr(P ))2− (tr(SP ))2+tr(SPSP )−n+2ntr(S)− 2tr(P )tr(SP ).

Remark 5.1. Let us notice that in general the functions A+ and A− are not constant on M ,
because although involutions of TM have constant trace on M , the traces of SP and SPSP
are not necessarily constant. However, if S and P commute, then A+ and A− are constant,
because in this case SP is an involution itself, so tr(SP ) is constant, and SPSP = I, so
tr(SPSP ) = n.

We denote by volg the volume form of (M, g) and consider the following condition, which
will be referred to in the sequel as the condition (∗):

(∗) tr(P ) ·
∫
M

⟨θ, Pθ − SPSθ⟩volg = 0.

Let us first show that this condition holds under various assumptions:
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Lemma 5.2. Each of the following assumptions:

(i) Sθ = εθ, for some ε ∈ {−1, 1},
(ii) δSθ = εδθ, for some ε ∈ {−1, 1},
(iii) SP = PS,
(iv) tr(SP ) is constant,
(v) δ(Sθ) = 0,
(vi) tr(P ) = 0,

implies that condition (∗) is satisfied.

Proof. It is clear that (i) implies (ii) and that (iii) implies (iv). It is also obvious that (vi)
implies condition (∗).
If (iv) holds, then the endomorphism α defined by (2.5) satisfies α(θ)

(2.9)
=

1

2
d(tr(SP )) = 0,

so the integrand in condition (∗) vanishes: ⟨θ, Pθ − SPSθ⟩ = ⟨Sθ, α(θ)⟩ = 0.
Using Stokes’ Theorem we compute:∫

M

⟨θ, Pθ − SPSθ⟩volg =
∫
M

⟨Sθ, α(θ)⟩volg (2.9)
=

1

2

∫
M

⟨Sθ, d(tr(SP ))⟩volg

=
1

2

∫
M

δ(Sθ) · tr(SP )volg.

(5.3)

If (v) holds, then (5.3) yields condition (∗). Finally, if (ii) holds, then we compute further in
(5.3) to obtain:∫

M

⟨θ, Pθ − SPSθ⟩volg = 1

2

∫
M

δ(Sθ) · tr(SP )volg
(ii)
=

1

2

∫
M

δ(θ) · tr(SP )volg

=
1

2

∫
M

⟨θ, d(tr(SP ))⟩volg (2.9)
=

∫
M

⟨θ, α(θ))volg = 0,

where the last equality follows from the fact that α is skew-symmetric. □

Lemma 5.3. If the condition (∗) is satisfied and θ = θ+ + θ− is the decomposition given
by (2.3), then the following integral vanishes:

(5.4)

∫
M

(A+∥θ+∥2 + A−∥θ−∥2)volg = 0,

where the functions A+ and A− are defined by (5.1) and (5.2).

Proof. Under the assumption (∗), integrating Equality (4.1) over the compact manifold M
yields

0 =

∫
M

∥θ∥2(n2 + (tr(S))2 − (tr(P ))2 − (tr(SP ))2 + tr(SPSP )− n)volg

− 2

∫
M

⟨θ, Sθ⟩(ntr(S)− tr(P )tr(SP ))volg.

(5.5)

Replacing ∥θ∥2 = ∥θ+∥2 + ∥θ−∥2 and ⟨θ, Sθ⟩ = ∥θ+∥2 −∥θ−∥2 into Equality (5.5) yields (5.4),
where the coefficients A+ and A− are given by (5.1) and (5.2). □
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Theorem 5.4. The functions A+ and A− defined by (5.1) and (5.2) have the following
properties:

(i) A+ and A− are non-negative.
(ii) If rk(E+(S)) = 1, then A− ≡ 0. If rk(E+(S)) ≥ 2, then the following equivalence

holds at each point x ∈ M :

(5.6) A−(x) = 0 ⇐⇒ ∃ ε ∈ {−1, 1} such that E+(S) ⊆ Eε(P ) at x.

(iii) If rk(E−(S)) = 1, then A+ ≡ 0. If rk(E−(S)) ≥ 2, then the following equivalence
holds at each point x ∈ M :

(5.7) A+(x) = 0 ⇐⇒ ∃ ε ∈ {−1, 1} such that E−(S) ⊆ Eε(P ) at x.

Proof. Let r denote the rank of E+(S).
(i) If {ξi}i=1,r is a local orthonormal basis of E+(S), then the endomorphisms occurring in
(5.1) and (5.2) and their traces can be locally expressed as follows:

(5.8) S = −I + 2
r∑

i=1

ξi ⊗ ξi, tr(S) = 2r − n,

(5.9) SP = −P + 2
r∑

i=1

Pξi ⊗ ξi, tr(SP ) = 2
r∑

i=1

⟨Pξi, ξi⟩ − tr(P ),

(5.10) PSP = −I + 2
r∑

i=1

Pξi ⊗ Pξi, tr(PSP ) = tr(S),

SPSP = −S + 2
r∑

i=1

Pξi ⊗ SPξi

(5.9)
= −S + 2

r∑
i=1

Pξi ⊗

(
−Pξi + 2

r∑
j=1

⟨Pξi, ξj⟩ξj

)

= −S − 2
r∑

i=1

Pξi ⊗ Pξi + 4
r∑

i,j=1

⟨Pξi, ξj⟩Pξi ⊗ ξj,

(5.11)

tr(SPSP )
(5.8)
= n− 4r + 4

r∑
i,j=1

⟨Pξi, ξj⟩2.(5.12)
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Altogether, replacing these traces in (5.2), we obtain:

A− = n2 + (n− 2r)2 − (tr(P ))2 −

(
2

r∑
i=1

⟨Pξi, ξi⟩ − tr(P )

)2

+ n− 4r + 4
r∑

i,j=1

⟨Pξi, ξj⟩2

− n+ 2n(2r − n)− 2tr(P )

(
2

r∑
i=1

⟨Pξi, ξi⟩ − tr(P )

)

= 4r2 − 4r − 4

(
r∑

i=1

⟨Pξi, ξi⟩

)2

+ 4
r∑

i,j=1

⟨Pξi, ξj⟩2.

Thus, the coefficient A− is given by the following formula:

(5.13) A− = 4

r2 − r +
r∑

i,j=1
i ̸=j

(
⟨Pξi, ξj⟩2 − ⟨Pξi, ξi⟩⟨Pξj, ξj⟩

) .

For the coefficient A+ there is similar formula, which can actually be deduced from (5.13).
Namely, if we replace S by −S, hence r by n− r, then A+ for S becomes A− for −S and thus
we obtain:

(5.14) A+ = 4

(n− r)2 − (n− r) +
n−r∑
i,j=1
i ̸=j

(
⟨Pηi, ηj⟩2 − ⟨Pηi, ηi⟩⟨Pηj, ηj⟩

) ,

where {ηi}i=1,n−r is a local orthonormal basis of E−(S).

We notice that in (5.13) the sum
r∑

i,j=1
i̸=j

(
⟨Pξi, ξj⟩2 − ⟨Pξi, ξi⟩⟨Pξj, ξj⟩

)
has exactly r2−r terms

and each of them is greater or equal to −1 by the Cauchy-Schwarz inequality: |⟨Pξi, ξi⟩| ≤ 1,
so ⟨Pξi, ξj⟩2 − ⟨Pξi, ξi⟩⟨Pξj, ξj⟩ ≥ −1, for all distinct i, j ∈ {1, . . . , r}. Hence, A− ≥ 0. The
same argument applied to −S instead of S shows that A+ ≥ 0.

(ii) If r = 1, then it follows directly from (5.13) that the function A− vanishes identically.

Let x ∈ M . When r ≥ 2, we know from the proof of (i) that A−(x) = 0 if and only if in the
point x equality holds in all the above Cauchy-Schwarz inequalities, i.e. |⟨ξi, P ξi⟩| = 1, and
⟨ξi, P ξi⟩⟨ξj, P ξj⟩ = 1 for all i, j ∈ {1, . . . , r}, meaning that there exists ε ∈ {−1, 1} such that
for all i ∈ {1, . . . , r} we have Pξi = εξi, so E+(S) ⊆ Eε(P ) at x. This proves the equivalence
(5.6).

(iii) Follows from (ii) by duality, if we consider −S instead of S. □
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6. Conformal product structures on reducible compact Riemannian
manifolds

In this section we prove the following result, which together with Proposition 3.4 and
Lemma 5.2 will imply Theorem 1.3:

Theorem 6.1. If M is a compact manifold satisfying Hypothesis 2.5, then the following
assertions hold:

(i) SP = PS.
(ii) Eε(S) ⊆ Eε′(P ), for some ε, ε′ ∈ {−1, 1}.

In order to prove Theorem 6.1 we distinguish two cases, depending on the rank of the
conformal product structure, namely if this rank is greater or equal to 2, or if it is 1. This
distinction is imposed by the equivalences obtained in Theorem 5.4, (ii) and (iii).

Case 1. We assume that the rank of the conformal product structure is greater or equal
to 2.

(i) We consider the closed subset C of M where θ vanishes, C := {x ∈ M | θ(x) = 0}.
We first show that S and P commute on the complement M \ C. For this let x ∈ M \ C,
i.e. θ(x) ̸= 0. Hence, θ+(x) ̸= 0 or θ−(x) ̸= 0. By replacing S with −S if necessary, we may
assume without loss of generality that the latter holds. Then (5.4) yields that A−(x) = 0.
Since the rank of the conformal product structure is assumed to be greater or equal to 2,
the equivalence (5.7) implies that E+(S) ⊆ Eε(P ) at the point x, for some ε ∈ {−1, 1}. By
replacing this time P with −P if necessary, we may assume without loss of generality that
ε = 1, so E+(S) ⊆ E+(P ) at x. Looking at the orthogonal complements of these subspaces
yields the inclusion E−(P ) ⊆ E−(S) at x, hence the tangent space at x splits as an orthogonal
direct sum TxM = E+(S)x⊕E−(P )x⊕K, where K is the orthogonal complement of E−(P )x
in E−(S)x. On each of these three subspaces the endomorphisms S and P act either as
identity or minus identity, thus S and P commute at the point x.
If the interior of C is empty, then, since S and P commute onM\C, they commute everywhere
on M .

If
◦
C ̸= ∅, then by Lemma 2.6, the function ∥SP − PS∥2 is constant on any connected

component V of
◦
C. Let V denote the closure of V and ∂V = V \ V its boundary. If

∂V = ∅, then V is both open and closed, so the connectedness of M yields V = M , whence
C = M , which is impossible since θ is assumed not to vanish identically. Thus ∂V ̸= ∅.
Since ∂V ⊆ ∂C = ∂(M \ C), for any point x ∈ ∂V we can find two sequences (xn)n with
xn ∈ V and (yn)n with yn ∈ M \C and lim

n→+∞
xn = lim

n→+∞
yn = x. Hence, because the function

∥SP − PS∥2 is continuous, it vanishes on M \C and is constant on V , it follows that it also
vanishes at x and its constant value on V must be zero. This proves that S and P commute
everywhere on M in this case as well.

(ii) Since S and P commute, we know by Remark 5.1 that the coefficients A+ and A− are
constant on M . Then Equality (5.4) implies that at least one of A+ or A− must vanish, which
according to the equivalences (5.6) and (5.7) yields (ii).
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Case 2. We assume that the conformal product structure has rank 1.

In order to fix the notation, we assume that rk(E−(S)) = 1 (otherwise we replace S by
−S). Up to taking a finite cover, we can assume that the conformal product structure is
orientable, so both D-parallel distributions E+(S) and E−(S) are orientable and we choose a
unit length vector field ξ spanning the 1-dimensional distribution E−(S).

We start by a few general results about conformal product structures of rank 1, that will
be needed in our proof. Recall first the following result, which was proven in [21, Lemma
2.7]:

Lemma 6.2. The unit length vector field ξ spanning the D-parallel 1-dimensional distribution
satisfies:

(6.1) ∇Xξ = −θ(ξ)X + ⟨X, ξ⟩θ, ∀X ∈ Γ(TM),

and in particular:

(6.2) ∇θξ = 0, δξ = (n− 1)θ(ξ), dξ = ξ ∧ θ.

A direct consequence of Lemma 6.2 is the following computation for any vector field X:

X(⟨ξ, Pξ⟩) = ⟨∇Xξ, Pξ⟩+ ⟨ξ, P∇Xξ⟩
= −θ(ξ)⟨X,Pξ⟩+ ⟨X, ξ⟩θ(Pξ)− θ(ξ)⟨X,Pξ⟩+ ⟨X, ξ⟩θ(Pξ)

= 2θ(Pξ)⟨ξ,X⟩ − 2θ(ξ)⟨Pξ,X⟩,

which yields the equality:

(6.3) d(⟨ξ, Pξ⟩) = 2 (θ(Pξ)ξ − θ(ξ)Pξ) .

Lemma 6.3. If Ric denotes the Ricci curvature of the metric g, seen as a symmetric endo-
morphism of TM , then the following equalities hold:

(6.4) Ric(ξ) = (n− 2)d(θ(ξ))− (δθ)ξ,

(6.5) Ric(Pξ) = θ(Pξ)θ − θ(ξ)Pθ − (δPθ)ξ − d(θ(Pξ))− Pd(θ(ξ)) + tr(P )d(θ(ξ)).

Proof. Using a local orthonormal basis {ei}i=1,n parallel at the point where the computation
is done, we obtain for any vector field X ∈ Γ(TM) assumed to be parallel at the given point:

Ric(X, ξ) =
n∑

i=1

⟨Rei,Xξ, ei⟩ =
n∑

i=1

(⟨∇ei∇Xξ, ei⟩ − ⟨∇X∇eiξ, ei⟩)

(6.1)
=

n∑
i=1

(⟨∇ei(−θ(ξ)X + ⟨X, ξ⟩θ), ei⟩ −X(⟨∇eiξ, ei⟩))

= −X(θ(ξ)) + ⟨X,∇θξ⟩ − ⟨X, ξ⟩δθ +X(δξ)

(6.2)
= −X(θ(ξ))− ⟨X, ξ⟩δθ + (n− 1)X(θ(ξ))

= (n− 2)X(θ(ξ))− ⟨X, ξ⟩δθ,
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which proves (6.4). For the expression of Ric(Pξ) we compute similarly:

Ric(X,Pξ) =
n∑

i=1

⟨Rei,XPξ, ei⟩ =
n∑

i=1

(⟨∇ei∇XPξ, ei⟩ − ⟨∇X∇eiPξ, ei⟩)

(6.1)
=

n∑
i=1

(⟨∇ei(−θ(ξ)PX + ⟨X, ξ⟩Pθ), ei⟩ −X(⟨∇eiPξ, ei⟩))

= −PX(θ(ξ)) + ⟨X,∇Pθξ⟩ − ⟨X, ξ⟩δ(Pθ) +X(δPξ)

(6.1)
= −P (d(θ(ξ)))(X)− θ(ξ)⟨X,Pθ⟩+ θ(Pξ)⟨X, θ⟩ − ⟨X, ξ⟩δ(Pθ) + (d(δPξ))(X).

This formula, together with

δ(Pξ) = −
n∑

i=1

ei⌟(P∇eiξ)
(6.1)
= −

n∑
i=1

ei⌟(−θ(ξ)Pεi + ⟨ei, ξ⟩Pθ) = tr(P )θ(ξ)− θ(Pξ).

yields (6.5). □

Since Ric and P commute, we have in particular Ric(Pξ) = PRic(ξ), which according to
(6.4) and (6.5) reads:

(6.6) θ(Pξ)θ− θ(ξ)Pθ− (δPθ)ξ+ (δθ)Pξ− d(θ(Pξ))− (n− 1)Pd(θ(ξ)) + tr(P )d(θ(ξ)) = 0.

We now establish some further results under the hypotheses of Theorem 6.1.

Proposition 6.4. If condition (∗) is satisfied, then ξ and Pξ are contained in the kernel of
the Lee form and have constant scalar product:

(6.7) θ(ξ) = 0,

(6.8) θ(Pξ) = 0,

(6.9) d(⟨ξ, Pξ⟩) = 0.

Proof. According to Theorem 5.4, the assumption rk(E−(S)) = 1 implies that A+ = 0, so
Equality (5.4) reads:

(6.10)

∫
M

A−∥θ−∥2volg = 0.

Since A− is non-negative, the above equality implies that at any point x ∈ M either θ−(x) = 0
or A−(x) = 0. We consider the following closed set of M :

C := {x ∈ M | θ−(x) = 0} = {x ∈ M | θ(ξ)(x) = 0}.
We claim that C = M . Assume for a contradiction that there exists x0 ∈ M \ C. Then
there exists a connected neighbourhood V0 ⊆ M \ C of x0 on which the function ∥θ−∥2 is
strictly positive. By (6.10) we obtain that the non-negative function A− must vanish on V0.
Furthermore, by the equivalence (5.6), A−(x) = 0 means that there exists ε ∈ {−1, 1}, such
that E+(S) ⊆ Eε(P ) at x. Again without loss of generality, we may assume that ε = 1 at
each point of the connected neighbourhood V0, so E+(S) ⊆ E+(P ) at each x ∈ V0. Taking
the orthogonal complements yields E−(P ) ⊆ E−(S), which implies E−(P ) = E−(S), because
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rk(E−(S)) = 1 and P is not the identity of TM . Thus, we obtain that P = S on V0. In
particular, since P is ∇-parallel, the vector field ξ must also be parallel on V0: ∇Xξ = 0, for
all vector fields X. Then (6.1) implies that on V0 the Lee form θ vanishes, so in particular
θ− = 0, but this contradicts the fact that V0 is contained in M \ C. Hence, our assumption
is false, which yields M = C and proves (6.7).

Substituting (6.7) into Equality (6.6) yields:

(6.11) θ(Pξ)θ − d(θ(Pξ))− (δPθ)ξ + (δθ)Pξ = 0.

On the other hand, applying the exterior derivative to Equality (6.3) yields:

0 = d2(⟨ξ, Pξ⟩) = 2d(θ(Pξ)) ∧ ξ + 2θ(Pξ)dξ
(6.2)
= 2 (d(θ(Pξ))− θ(Pξ)θ) ∧ ξ,

so taking the exterior product with ξ in (6.11), we obtain:

(δθ)Pξ ∧ ξ = 0.

Taking the interior product with θ in this formula and using (6.7) shows that (δθ)θ(Pξ) = 0.
Substituting now this term in the equality obtained by taking in (6.11) the scalar product
with θ yields

∥θ∥2θ(Pξ) = ⟨θ, d(θ(Pξ))⟩.
At any extremum point of the function θ(Pξ), the right-hand side of this equality vanishes. In
particular, this equality shows that at a maximum and minimum point of θ(Pξ), which exist
since the manifold is compact, the function θ(Pξ) vanishes (because at such a point x0 either
θ(Pξ)(x0) = 0 or θ(x0) = 0, which again implies in particular that θ(Pξ)(x0) = 0). Hence
θ(Pξ) is identically zero on M . Finally, (6.9) follows directly from (6.3), (6.7) and (6.8). □

Corollary 6.5. If condition (∗) is satisfied, then the covariant derivative of ξ and the Rie-
mannian curvature tensor of g applied to ξ are given by the following formulas, for all vector
fields X, Y :

(6.12) ∇Xξ = ⟨X, ξ⟩θ,
RX,Y ξ = ⟨Y, θ⟩⟨X, ξ⟩θ + ⟨Y, ξ⟩∇Xθ − ⟨X, θ⟩⟨Y, ξ⟩θ − ⟨X, ξ⟩∇Y θ.(6.13)

Proof. The formula (6.12) follows directly from (6.1) and (6.7). In order to show (6.13), we
compute for any vector fields X, Y parallel at the point where the computation is done:

RX,Y ξ = ∇X∇Y ξ −∇Y∇Xξ
(6.12)
= ∇X(⟨Y, ξ⟩θ)−∇Y (⟨X, ξ⟩θ)

= ⟨Y,∇Xξ⟩θ + ⟨Y, ξ⟩∇Xθ − ⟨X,∇Y ξ⟩θ − ⟨X, ξ⟩∇Y θ

(6.12)
= ⟨Y, θ⟩⟨X, ξ⟩θ + ⟨Y, ξ⟩∇Xθ − ⟨X, θ⟩⟨Y, ξ⟩θ − ⟨X, ξ⟩∇Y θ.

□

We consider the decomposition of the tangent bundle given by the fact that the holonomy
of g is reducible: TM = E+(P ) ⊕ E−(P ) and we denote by θ = θ1 + θ2 the corresponding
splitting of the Lee form, where

θ1 :=
1

2
(θ + Pθ) and θ2 :=

1

2
(θ − Pθ) .
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Also the vector field ξ decomposes as ξ = ξ1 + ξ2 with ξ1 :=
1
2
(ξ + Pξ) and ξ2 :=

1
2
(ξ − Pξ).

Let us notice that both components have constant lengths due to (6.9): ∥ξ1∥2 = 1
2
(1+⟨ξ, Pξ⟩)

and ∥ξ2∥2 = 1
2
(1−⟨ξ, Pξ⟩) are constant functions. In particular, each of them either vanishes

everywhere on M or has no zeros.

Claim. One of the vector fields ξ1 or ξ2 vanishes everywhere on M .

Proof of the Claim. Assume for a contradiction that both ξ1 and ξ2 are not identically
zero. By the above remark, ξ1 and ξ2 have no zeros. In this case applying equality (6.13) to
some vector field X = X1 ∈ E+(P ) and to Y = ξ2 ∈ E−(P ) and using the fact that θ(ξ2) = 0
(which is a consequence of (6.7) and (6.8)), we obtain:

0 = ∥ξ2∥2∇X1θ − θ1(X1)∥ξ2∥2θ − ⟨X1, ξ1⟩∇ξ2θ,(6.14)

yielding

∇X1θ = θ1(X1)θ +
⟨X1, ξ1⟩
∥ξ2∥2

∇ξ2θ.(6.15)

Choosing now X1 = θ1 and taking the scalar product with θ1 yields θ1(∥θ1∥2) = 2∥θ1∥4.
In particular, this equality shows that ∥θ1∥2 vanishes at its maximum, so θ1 vanishes on M .
The same argument (exchanging the indices 1 and 2) shows that θ2 vanishes on M . Thus
θ = 0, in contradiction to the hypothesis of Theorem 6.1. Thus our assumption was false,
which proves the Claim. □

By replacing P with −P if necessary, we can thus assume that ξ2 vanishes on M . This
means that ξ = ξ1 ∈ E+(P ), so in this case E−(S) ⊆ E+(P ), showing (ii) of Theorem 6.1.
In particular it follows that the tangent bundle splits as an orthogonal direct sum TM =
E−(S) ⊕K ⊕ E−(P ), where K is the orthogonal complement of E−(S) in E+(P ). On each
of these three subspaces the endomorphisms S and P act either as the identity or minus the
identity, thus S and P commute, proving (i) of Theorem 6.1.

7. Appendix

In this appendix we express all traces occurring in Equality (4.7) in terms of codifferentials:

Lemma 7.1. The following identities hold:

(7.1) tr(T ) = −δθ,

(7.2) tr(PT ) = −δ(Pθ),

(7.3) tr(ST ) = −δ(Sθ)− ∥θ∥2tr(S) + n⟨θ, Sθ⟩,

(7.4) tr(PST ) = −δ(PSθ)− ∥θ∥2tr(SP ) + ⟨θ, Sθ⟩tr(P ),

(7.5) tr(SPT ) = −δ(SPθ)− ⟨θ, Pθ⟩tr(S) + n⟨θ, SPθ⟩,

(7.6) tr(PSPT ) = −δ(PSPθ)− ⟨θ, PSPθ⟩ − ⟨θ, Pθ⟩tr(SP ) + ⟨θ, SPθ⟩tr(P ) + ⟨θ, Sθ⟩,
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tr(SPST ) =− δ(SPSθ) + (n+ 1)⟨θ, SPSθ⟩ − ⟨θ, SPθ⟩tr(S)
− ⟨θ, Pθ⟩ − ∥θ∥2tr(P ) + ⟨θ, Sθ⟩tr(SP ),

(7.7)

tr(SPSPT ) =− δ(SPSPθ) + (n+ 1)⟨θ, SPSPθ⟩ − ⟨θ, PSPθ⟩tr(S)
− ∥θ∥2 − ⟨θ, Pθ⟩tr(P ) + ⟨θ, SPθ⟩tr(SP ),

(7.8)

tr(PSPST ) =− δ(PSPSθ)− ⟨θ, SPSPθ⟩ − ⟨θ, SPθ⟩tr(SP ) + ⟨θ, SPSθ⟩tr(P )

+ ∥θ∥2(1− tr(SPSP )) + ⟨θ, Sθ⟩tr(S).
(7.9)

Proof. Equality (7.1) follows directly from the definition of T := ∇θ. Equality (7.2) follows
from (7.1) and the fact that P is ∇-parallel. For the remaining formulas, we use (2.2). If
{ei}i=1,n is a local orthonormal basis of TM , then we obtain:

tr(ST ) =
n∑

i=1

⟨STei, ei⟩ =
n∑

i=1

⟨S∇eiθ, ei⟩ =
n∑

i=1

⟨∇ei(Sθ), ei⟩ −
n∑

i=1

⟨(∇eiS)θ, ei⟩

(2.2)
= −δ(Sθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(θ), ei⟩

= −δ(Sθ)−
n∑

i=1

(
⟨Sei, θ⟩⟨θ, ei⟩+ ∥θ∥2⟨Sei, ei⟩ − ⟨Sθ, θ⟩⟨ei, ei⟩ − ⟨ei, θ⟩⟨Sθ, ei⟩

)
= −δ(Sθ)− tr(S)∥θ∥2 + n⟨θ, Sθ⟩.

We compute similarly the other traces:

tr(PST ) =
n∑

i=1

⟨PSTei, ei⟩ =
n∑

i=1

⟨PS∇eiθ, ei⟩ =
n∑

i=1

⟨∇ei(PSθ), ei⟩ −
n∑

i=1

⟨P (∇eiS)θ, ei⟩

(2.2)
= −δ(PSθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(θ), P ei⟩

= −δ(PSθ)−
n∑

i=1

⟨⟨Sei, θ⟩θ + ∥θ∥2Sei − ⟨Sθ, θ⟩ei − ⟨ei, θ⟩Sθ, Pei⟩

= −δ(PSθ)− ⟨Sθ, Pθ⟩ − ∥θ∥2tr(SP ) + ⟨θ, Sθ⟩tr(P ) + ⟨θ, PSθ⟩
= −δ(PSθ)− ∥θ∥2tr(SP ) + ⟨θ, Sθ⟩tr(P ).
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tr(SPT ) =
n∑

i=1

⟨SPTei, ei⟩ =
n∑

i=1

⟨SP∇eiθ, ei⟩ =
n∑

i=1

⟨∇ei(SPθ), ei⟩ −
n∑

i=1

⟨(∇eiS)Pθ, ei⟩

(2.2)
= −δ(SPθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(Pθ), ei⟩

= −δ(SPθ)−
n∑

i=1

⟨⟨Sei, Pθ⟩θ + ⟨θ, Pθ⟩Sei − ⟨Sθ, Pθ⟩ei − ⟨ei, Pθ⟩Sθ, ei⟩

= −δ(SPθ)− ⟨θ, SPθ⟩ − ⟨θ, Pθ⟩tr(S) + n⟨Sθ, Pθ⟩+ ⟨Sθ, Pθ⟩
= −δ(SPθ)− ⟨θ, Pθ⟩tr(S) + n⟨θ, SPθ⟩.

tr(PSPT ) =
n∑

i=1

⟨PSPTei, ei⟩ =
n∑

i=1

⟨PSP∇eiθ, ei⟩ =
n∑

i=1

⟨∇ei(PSPθ)− P (∇eiS)Pθ, ei⟩

(2.2)
= − δ(PSPθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(Pθ), P ei⟩

=− δ(PSPθ)−
n∑

i=1

(⟨Sei, Pθ⟩⟨θ, Pei⟩+ ⟨θ, Pθ⟩⟨Sei, P ei⟩)

+
n∑

i=1

(⟨Sθ, Pθ⟩⟨ei, P ei⟩+ ⟨ei, Pθ⟩⟨Sθ, Pei⟩)

=− δ(PSPθ)− ⟨θ, PSPθ⟩ − ⟨θ, Pθ⟩tr(SP ) + ⟨θ, SPθ⟩tr(P ) + ⟨θ, Sθ⟩.

tr(SPST ) =
n∑

i=1

⟨SPSTei, ei⟩ =
n∑

i=1

⟨SPS∇eiθ, ei⟩ =

=
n∑

i=1

⟨∇ei(SPSθ), ei⟩ −
n∑

i=1

⟨(∇eiS)PSθ, ei⟩ −
n∑

i=1

⟨SP (∇eiS)θ, ei⟩

(2.2)
= − δ(SPSθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(PSθ), ei⟩ −
n∑

i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(θ), PSei⟩

=− δ(SPSθ)−
n∑

i=1

⟨⟨Sei, PSθ⟩θ + ⟨θ, PSθ⟩Sei + ⟨Sθ, PSθ⟩ei + ⟨ei, PSθ⟩Sθ, ei⟩

−
n∑

i=1

⟨⟨Sei, θ⟩θ + ⟨θ, θ⟩Sei + ⟨Sθ, θ⟩ei + ⟨ei, θ⟩Sθ, PSei⟩

=− δ(SPSθ)− ⟨θ, SPSθ⟩ − ⟨θ, PSθ⟩tr(S) + n⟨θ, SPSθ⟩+ ⟨θ, SPSθ⟩
− ⟨θ, Pθ⟩ − ∥θ∥2tr(P ) + ⟨θ, Sθ⟩tr(SP ) + ⟨θ, SPSθ⟩

=− δ(SPSθ) + (n+ 1)⟨θ, SPSθ⟩ − ⟨θ, SPθ⟩tr(S)− ⟨θ, Pθ⟩ − ∥θ∥2tr(P ) + ⟨θ, Sθ⟩tr(SP ).
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tr(SPSPT ) =
n∑

i=1

⟨SPSPTei, ei⟩ =
n∑

i=1

⟨SPSP∇eiθ, ei⟩ =

=
n∑

i=1

⟨∇ei(SPSPθ), ei⟩ −
n∑

i=1

⟨(∇eiS)PSPθ, ei⟩ −
n∑

i=1

⟨SP (∇eiS)Pθ, ei⟩

(2.2)
= − δ(SPSPθ)−

n∑
i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(PSPθ), ei⟩

−
n∑

i=1

⟨(Sei ⊙ θ − Sθ ⊙ ei)(Pθ), PSei⟩

=− δ(SPSPθ)−
n∑

i=1

⟨⟨Sei, PSPθ⟩θ + ⟨θ, PSPθ⟩Sei + ⟨Sθ, PSPθ⟩ei + ⟨ei, PSPθ⟩Sθ, ei⟩

−
n∑

i=1

⟨⟨Sei, Pθ⟩θ + ⟨θ, Pθ⟩Sei + ⟨Sθ, Pθ⟩ei + ⟨ei, Pθ⟩Sθ, PSei⟩

=− δ(SPSPθ)− ⟨θ, SPSPθ⟩ − ⟨θ, PSPθ⟩tr(S) + n⟨θ, SPSPθ⟩+ ⟨θ, SPSPθ⟩ − ∥θ∥2

− ⟨θ, Pθ⟩tr(P ) + ⟨θ, SPθ⟩tr(SP ) + ⟨θ, SPSPθ⟩
=− δ(SPSPθ) + (n+ 1)⟨θ, SPSPθ⟩ − ⟨θ, PSPθ⟩tr(S)− ∥θ∥2

− ⟨θ, Pθ⟩tr(P ) + ⟨θ, SPθ⟩tr(SP ).

Finally, we compute :

tr(PSPST ) =
n∑

i=1

⟨PSPSTei, ei⟩ =
n∑

i=1

⟨PSPS∇eiθ, ei⟩ =

=
n∑

i=1

⟨∇ei(PSPSθ), ei⟩ −
n∑

i=1

⟨P (∇eiS)PSθ, ei⟩ −
n∑

i=1

⟨PSP (∇eiS)θ, ei⟩

(2.2)
= − δ(PSPSθ)−

n∑
i=1

⟨⟨Sei, PSθ⟩θ + ⟨θ, PSθ⟩Sei + ⟨Sθ, PSθ⟩ei + ⟨ei, PSθ⟩Sθ, Pei⟩

−
n∑

i=1

⟨⟨Sei, θ⟩θ + ⟨θ, θ⟩Sei + ⟨Sθ, θ⟩ei + ⟨ei, θ⟩Sθ, PSPei⟩

=− δ(PSPSθ)− ⟨θ, SPSPθ⟩ − ⟨θ, SPθ⟩tr(SP ) + ⟨θ, SPSθ⟩tr(P )

+ ∥θ∥2(1− tr(SPSP )) + ⟨θ, Sθ⟩tr(S).

□
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