# The Heterotic $G_2$ System on 2-step Nilmanifolds endowed with Principal Torus Bundles

Andrei Moroianu (CNRS and Paris-Saclay University)

Based on joint work with Alberto Raffero and Luigi Vezzoni

Universidad San Antonio de Abad del Cuzco, October 21, 2025



#### Outline

- Introduction
  - Motivation and setting
  - Basic properties of G<sub>2</sub>
  - G<sub>2</sub>-structures on manifolds
- - ullet The definition of the heterotic  $G_2$ -system
  - Invariant solutions on 2-step nilmanifolds
- Main results
  - Statements of the results
  - The case dim  $\mathfrak{n}'=1$
  - The case dim  $\mathfrak{n}'=2$  or 3



## Motivation and setting

- The heterotic system couples a  $G_2$ -structure  $\varphi$  on a manifold  $M^7$ , a K-principal bundle  $P \to M$  with connection  $\theta$ , and a bilinear form  $\langle \cdot, \cdot \rangle_{\mathfrak{k}}$  on the Lie algebra  $\mathfrak{k}$  of K.
- We consider the case where  $M=\Gamma\backslash N$  is a 2-step nilmanifold,  $K=\mathbb{T}^k$  is a torus and solutions are left-invariant.
- Goal: study the existence of invariant solutions for each 2-step nilpotent Lie algebra of dimension 7, with focus on:
  - $\bullet$  the possible dimensions of K,
  - the possible signatures of the bilinear form  $\langle \cdot, \cdot \rangle_{\mathfrak{k}}$ ,
  - the (non)-vanishing of the cosmological constant  $\lambda$ .

## Basic properties of $G_2$

- The group  $G_2$  is the automorphism group of the octonions  $\mathbb{O}$ . Recall that  $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$ ,  $(a,b)(c,d) := (ac \bar{d}b, da + b\bar{c})$ .
- $G_2$  preserves the center  $\mathbb R$  of  $\mathbb O$  and  $\mathrm{Im}(\mathbb O)=\mathrm{Im}(\mathbb H)\oplus \mathbb H.$
- ullet It can be realized as the subgroup of  $\mathrm{GL}(7,\mathbb{R})$  preserving

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{245} - e^{146} - e^{236}.$$

• Indeed,  $G_2$  preserves the map  $\mathbb{R}^7 \times \mathbb{R}^7 \to \Lambda^7(\mathbb{R}^7)^*$ :

$$(X,Y) \mapsto (X \lrcorner \varphi) \land (Y \lrcorner \varphi) \land \varphi$$

- $\mathbb{R}^7 \to (\mathbb{R}^7)^* \otimes \Lambda^7(\mathbb{R}^7)^* \longrightarrow \Lambda^7 \mathbb{R}^7 \to (\Lambda^7(\mathbb{R}^7)^*)^{\otimes 8}$
- $G_2$  is automatically contained in SO(7).
- $G_2$  acts transitively on orthonormal pairs of vectors in  $\mathbb{R}^7$ .



## Basic properties of $G_2$ -structures

Equivalent expressions of  $\varphi$ :

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{245} - e^{146} - e^{236}.$$
  
$$\varphi = e^7 \wedge (e^{12} + e^{34} + e^{56}) + (e^{135} - e^{245} - e^{146} - e^{236}) = \xi \wedge \omega + \Psi,$$

where  $(\omega, \Psi)$  is an SU(3)-structure on  $\xi^{\perp}$ .

$$\varphi = e^{567} + e^5 \wedge (e^{13} - e^{24}) + e^6 \wedge (-e^{14} - e^{23}) + e^7 \wedge (e^{12} + e^{34})$$
$$= \xi^1 \wedge \xi^2 \wedge \xi^3 + \sum_{i=1}^3 \xi^i \wedge \omega_i,$$

where  $\{\omega_1, \omega_2, \omega_3\}$  is a basis of  $\Lambda^+\mathbb{R}^4$  whose corresponding complex structures  $J_1$ ,  $J_2$ ,  $J_3$  satisfy  $J_1 \circ J_2 = -J_3$ .



#### $G_2$ -structures on manifolds

A  $G_2$ -structure on a 7-dim (compact) manifold M is a 3-form  $\varphi$ , s.t. in the neigbourhood of each point there exists a local frame  $\{e_1, \ldots, e_7\}$  with

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{245} - e^{146} - e^{236}.$$

 $\varphi \ \ \, \leadsto \ \ \, g^{\varphi}$  ,  $*_{\varphi}$  . The  $G_2$ -structure is *torsion-free* if

$$d\varphi = d(*_{\varphi}\varphi) = 0 \iff \nabla^{\varphi}\varphi = 0 \iff \operatorname{Hol}(\nabla^{\varphi}) \subseteq G_2$$

This is a very strong condition, for instance implies  $Ric_{g^{\varphi}} = 0$ .

Compact examples with  $\mathrm{Hol}(\nabla^\varphi)=G_2$  are difficult to construct [Joyce '96, Kovalev 03, Kovalev-Lee '11,

Corti-Haskins-Nordström-Pacini '15, Joyce-Karigiannis '18]



#### Torsion of a $G_2$ -structure

Given a  $G_2$ -structure  $\varphi$ ,  $\Lambda^5 \simeq \Lambda^2$  and  $\Lambda^4 \simeq \Lambda^3$  decompose as

$$\Lambda^4 = \, \Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{27}^4 \,, \qquad \Lambda^5 = \Lambda_7^5 \oplus \Lambda_{14}^5, \label{eq:lambda}$$

where (denoting  $\psi := *\varphi \in \Lambda^4$ ):

$$\begin{split} \Lambda_1^4 &= \left\{ f \, \psi \right\}, \quad \Lambda_7^4 &= \left\{ \alpha \wedge \varphi \right\}, \quad \Lambda_{27}^4 &= \left\{ * \gamma \ : \ \gamma \wedge \varphi = \gamma \wedge \psi = 0 \right\} \\ \Lambda_7^5 &= \left\{ \alpha \wedge \psi \right\}, \quad \Lambda_{14}^5 &= \left\{ \beta \wedge \varphi \ : \ \beta \wedge \varphi = - * \beta \right\}. \end{split}$$

Correspondingly

$$d\varphi = \tau_0 \, \psi + 3\tau_1 \wedge \varphi + *\tau_3$$
$$d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi.$$

where  $\tau_i \in \Omega^i(M)$  are the torsion forms.



#### Some Classes of $G_2$ -structures

- torsion-free:  $d\varphi = d\psi = 0$
- closed:  $d\varphi = 0$
- coclosed:  $d\psi = 0 \iff \tau_1 = \tau_2 = 0$ . Any  $G_2$ -manifold has a coclosed  $G_2$ -structure [Crowley–Nordström '15]
- integrable/ $G_2T$ :  $d\psi=4\tau_1\wedge\psi$  ( $\iff$   $\tau_2=0$ ). This condition is equivalent to require that there exits a  $G_2$ -connection  $\nabla$  with skew-symmetric torsion  $H_{\varphi}=\frac{1}{6}\tau_0\varphi-\tau_1\lrcorner\psi-\tau_3$  [Friedrich-Ivanov '02].
- strong  $G_2T$ :  $\tau_2=0$ ,  $dH_{\varphi}=0$ . The only known closed examples are  $S^3\times S^3\times S^1$  and  $S^3\times N^4$ , with  $N^4$  hyperkähler. These are the only compact homogeneous spaces [Fino–Martin-Merchan–Raffero '24].
- nearly parallel:  $d\varphi = \tau_0 \psi$  with  $\tau_0$  constant( $\Longrightarrow d\psi = 0$ ). The standard  $G_2$ -structure on  $S^7$  is nearly parallel [Gray '71].

### Some induced $G_2$ -structures

•  $(N^4, \omega_i)$  hyper-symplectic:

$$\varphi := dt^1 \wedge dt^2 \wedge dt^3 + \sum_i dt^i \wedge \omega_i$$

closed on  $T^3 \times N$ 

- $\bullet$   $(M, \omega, \Psi)$  Calabi-Yau:  $\varphi = dt \wedge \omega + \Psi$  closed on  $S^1 \times M$
- $(N^7, \xi_i, \Phi_i, \eta_i, g)$  3-Sasakian:  $\varphi = a \, \eta_1 \wedge \eta_2 \wedge \eta_3 + \sum_i a_i \eta_i \wedge d\eta_i$  on N [Kennon-Lotay '23],  $\varphi$  is coclosed and this family includes nearly parallel G<sub>2</sub>-str. [Friedrich-Kath-Moroianu-Semmelmann '97]

## The heterotic $G_2$ -system

A solution to the *Heterotic*  $G_2$ -system on  $M^7$  is a quadruple  $(\varphi, P, \theta, \langle \cdot, \cdot \rangle_{\mathfrak{k}})$  where:

- $\varphi$  is an integrable  $G_2$ -str. (i.e.  $\tau_2 = 0$ );
- $P \to M$  is a principal K-bundle with a nondeg. bilinear form  $\langle \cdot, \cdot \rangle_{\mathfrak{k}} \colon \mathfrak{k} \otimes \mathfrak{k} \to \mathbb{R}$ ,  $\theta$  is a connection on P with curvature  $F_{\theta}$ , and

$$\begin{cases} \tau_0 = const. & cosmological \ constant \\ F_\theta \wedge \psi = 0 & \text{G}_2\text{-instanton} \\ dH_\varphi = \langle F_\theta \wedge F_\theta \rangle_\mathfrak{k} & \textit{Anomaly cancellation} \end{cases}$$

where  $H_{\varphi}:=\frac{1}{6}\tau_0\varphi-\tau_1\lrcorner\psi-\tau_3$  [Friedrich–Ivanov '02, de la Ossa–Larfors–Svanes '20]

Example:  $\varphi$  strong  $G_2\mathsf{T}$  ( $dH_\varphi=0$ ),  $F_\theta=0$ . [Ivanov–Stanchev '23].

### The heterotic $G_2$ -system

The moduli space of solutions is finite-dimensional [Clarke–Garcia-Fernandez–Tipler '22]

Significative properties of a solution:

- $\tau_0 = 0 \text{ or } \tau_0 \neq 0.$
- the rank k of P.
- the signature  $(k_+, k_-)$  of  $\langle \cdot, \cdot \rangle_{\mathfrak{k}}$ .
- P trivial or P nontrivial.

## Some solutions to the heterotic system

- On Lie groups [Fernandez–Ivanov–Ugarte–Villacampa '11, Fernandez–Ivanov–Ugarte–Vassilev '15]
- Fu-Yau Ansatz [Clarke-Garcia-Fernandez-Tipler '22]
- On contact Calabi-Yau manifolds [Lotay–Sá Earp '23]
- Using 3-Sasakian geometry [de la Ossa–Galdeano '24]
- On 3- $(\alpha, \delta)$ -Sasakian manifolds [Galdeano–Stecker '24]
- ullet On 2-step nilmanifolds, when P is the ON frame bundle, and heta is the characteristic connection [Clarke–Del Barco–Moreno '23]

## Invariant solutions on 2-step nilmanifolds

Let  $M^7 = \Gamma \backslash N$  be a 2-step nilmanifold. A solution  $(\varphi, P, \theta, \langle \cdot, \cdot \rangle_{\mathfrak{k}})$  to the heterotic  $G_2$ -system on M is *invariant* if P is a *torus bundle* and  $\varphi$  and  $F_\theta$  are *left-invariant*.

7-dimensional 2-step nilmanifolds are classified [Gong '88]. In particular  $\dim \mathfrak{n}' \in \{1,2,3\}$ , where  $\mathfrak{n}' := [\mathfrak{n},\mathfrak{n}]$  is the derived algebra of  $\mathfrak{n}$ .

When  $\dim \mathfrak{n}'=3$  we assume that  $\mathfrak{n}'$  calibrates  $\varphi$ , i.e.  $\varphi$  restricts to a volume on  $\mathfrak{n}'$  (as in [Del Barco–Moroianu–Raffero '22]).

**Prop** [Moroianu–Raffero–Vezzoni '25]. *Under the assumption above, any left-invariant integrable*  $G_2$ -structure on M is coclosed.

### 2-step nilpotent Lie algebra decomposition

Let  $\mathfrak n$  be a 2-step nilpotent Lie algebra, and  $\varphi$  a  $G_2$ -structure on  $\mathfrak n$ .

- If  $\dim \mathfrak{n}' = 1$ : the decomposition  $\mathfrak{n} = \langle z \rangle \oplus \mathfrak{v}$  gives an induced SU(3)-structure on  $\mathfrak{v}$ .
- If  $\dim \mathfrak{n}'=2$ : decompose  $\mathfrak{n}=\langle z_1,z_2,z_3\rangle \oplus \mathfrak{r}$ , where  $z_1,z_2$  is an ON basis of  $\mathfrak{n}'$  and  $z_3:=\varphi(z_1,z_2)^\sharp$ ;the orthogonal complement  $\mathfrak{r}\cong \mathbb{R}^4$  carries an SU(2)-structure.
- If  $\dim \mathfrak{n}'=3$  and  $\mathfrak{n}'$  calibrated by  $\varphi$ :again, the orthogonal complement  $\mathfrak{r}\cong\mathbb{R}^4$  of  $\mathfrak{n}'$  carries an SU(2)-structure.

## Presentation of 2-step nilpotent metric Lie algebras

- If (n, g) is a 2-step nilpotent metric Lie algebra with derived algebra n' we denote by v the orthogonal complement of n'.
- Since  $[\mathfrak{n},\mathfrak{n}']=0$ , the only non-zero commutators are  $[\mathfrak{v},\mathfrak{v}]\subset\mathfrak{n}'$ .
- For every  $\alpha \in \mathfrak{n}^*$  and  $x,y \in \mathfrak{n}$  one has  $d\alpha(x,y) = -\alpha([x,y])$ .
- Consequently, if  $\{v_1,\ldots,v_l,z_1,\ldots,z_p\}$  is a basis of  $\mathfrak{n}=\mathfrak{v}\oplus\mathfrak{n}'$ , then for the dual basis we have  $dv_i^\flat=0$  and  $dz_i^\flat\in\Lambda^2\mathfrak{v}$ .
- The Lie algebra structure of  $\mathfrak n$  is completely described by  $(0,\ldots,0,dz_1^{\flat},\ldots,dz_n^{\flat}).$

## Classification of 2-step nilpotent Lie algebras in dim. 7

$$\mathfrak{h}_{3} \oplus \mathbb{R}^{4} = (0,0,0,0,0,e^{12}) 
\mathfrak{h}_{5} \oplus \mathbb{R}^{2} = (0,0,0,0,0,e^{12} + e^{34}) 
\mathfrak{h}_{7} = (0,0,0,0,0,e^{12} + e^{34} + e^{56})$$

$$\begin{array}{rcl} \mathfrak{n}_{5,2} \oplus \mathbb{R}^2 & = & \left(0,0,0,0,0,e^{12},e^{13}\right) \\ \mathfrak{h}_3 \oplus \mathfrak{h}_3 \oplus \mathbb{R} & = & \left(0,0,0,0,0,e^{12},e^{34}\right) \\ \mathfrak{h}_3^{\mathbb{C}} \oplus \mathbb{R} & = & \left(0,0,0,0,0,e^{13}-e^{24},e^{14}+e^{23}\right) \\ \mathfrak{n}_{6,2} \oplus \mathbb{R} & = & \left(0,0,0,0,0,e^{12},e^{14}+e^{23}\right) \\ \mathfrak{n}_{7,2,A} & = & \left(0,0,0,0,0,e^{12},e^{14}+e^{35}\right) \\ \mathfrak{n}_{7,2,R} & = & \left(0,0,0,0,0,e^{12}+e^{34},e^{15}+e^{23}\right) \end{array}$$

## Classification of 2-step nilpotent Lie algebras in dim. 7

$$\begin{array}{lll} \mathfrak{n}_{6,3} \oplus \mathbb{R} &=& \left(0,0,0,0,e^{12},e^{13},e^{23}\right) \\ \mathfrak{n}_{7,3,A} &=& \left(0,0,0,0,e^{12},e^{23},e^{24}\right) \\ \mathfrak{n}_{7,3,B} &=& \left(0,0,0,0,e^{12},e^{23},e^{34}\right) \\ \mathfrak{n}_{7,3,B_1} &=& \left(0,0,0,0,e^{12}-e^{34},e^{13}+e^{24},e^{14}\right) \\ \mathfrak{n}_{7,3,C} &=& \left(0,0,0,0,e^{12}+e^{34},e^{23},e^{24}\right) \\ \mathfrak{n}_{7,3,D} &=& \left(0,0,0,0,e^{12}+e^{34},e^{13},e^{24}\right) \\ \mathfrak{n}_{7,3,D_1} &=& \left(0,0,0,0,e^{12}-e^{34},e^{13}+e^{24},e^{14}-e^{23}\right) \end{array}$$

#### The Case dim $\mathfrak{n}'=1$

**Thm** [Moroianu–Raffero–Vezzoni '25]. *Assume* dim  $\mathfrak{n}'=1$  (*i.e.* 

$$\mathfrak{n}=\mathfrak{h}_3\oplus\mathbb{R}^4$$
,  $\mathfrak{h}_5\oplus\mathbb{R}^2$ , or  $\mathfrak{h}_7$ ). Then:

- $k_{+}=0$  there are no invariant solutions;
- there are invariant solutions only when  $\mathfrak{n} = \mathfrak{h}_5 \oplus \mathbb{R}^2$  or  $\mathfrak{n} = \mathfrak{h}_7$ . For such solutions  $\tau_0 = 0$ . Moreover,
  - if  $\mathfrak{n} = \mathfrak{h}_7$ : P is necessarily trivial (but  $F_{\theta} \neq 0$ ),
  - if  $\mathfrak{n} = \mathfrak{h}_5 \oplus \mathbb{R}^2$ : there are solutions with P nontrivial;
- for every  $l \geq 2$  there are solutions with  $\tau_0 \neq 0$  and  $k_+ = l$  for all  $\mathfrak{n}$ .

## The Case dim $\mathfrak{n}'=2$ or 3 and $\tau_0\neq 0$

**Thm** [Moroianu–Raffero–Vezzoni '25]. Assume dim  $\mathfrak{n}'=2$  or 3 and  $\tau_0\neq 0$ . Then:

- k=1 there are no invariant solutions.
- k=2 the only invariant solutions occur on  $\mathfrak{n}=\mathfrak{n}_{6,3}\oplus\mathbb{R}$ , where there are solutions with positive definite bilinear form  $\langle\cdot,\cdot\rangle_{\mathfrak{k}}$ .
- there are invariant solutions on  $\mathfrak{n}=\mathfrak{n}_{5,2}\oplus\mathbb{R}^2$  with signature (3,0) or (2,1).

#### The Case dim $\mathfrak{n}'=2$ or 3 and $\tau_0=0$

If  $\tau_0 = 0$  there is more flexibility:

**Thm** [Moroianu–Raffero–Vezzoni '25]. *Assume* dim  $\mathfrak{n}'=2$  or 3 and  $\tau_0=0$ . Then:

- $k_{+}=0$  there are no invariant solutions.
- there are invariant solutions for every  $\mathfrak n$  admitting an invariant coclosed  $G_2$ -structure. The corresponding algebras were classified in [Del Barco–Moroianu–Raffero '22]: all Lie algebras above, except  $\mathfrak n_{7,2,A}$  and  $\mathfrak n_{7,2,B}$ .

#### The system as a system of invariant forms

The heterotic system for *invariant solutions* reduces to the following system

$$\begin{cases} &\tau_2(\varphi)=0\,,\\ &dF^r=0\quad\text{ for every }r\,,\\ &F^r\wedge\psi=0\quad\text{ for every }r\,,\\ &dH_\varphi=\sum_{r=1}^k\varepsilon_r\,F^r\wedge F^r\,, \end{cases}$$

#### where

- $\varphi$  is a left-invariant  $G_2$ -structure;
- $F^r$  are integral left-invariant forms;
- $\varepsilon_r$  are non-zero real numbers.

#### The case dim $\mathfrak{n}'=1$

Idea: Using SU(3)-Geometry

$$\mathfrak{n}=\langle z
angle\oplus\mathfrak{v}\,,\quad arphi=\omega\wedge z^{lat}+\Psi\,,\quad (\omega,\Psi)\quad ext{SU(3)-structure on }\mathfrak{v}$$

Denote  $dz^b =: \alpha, \ \lambda := \frac{1}{3}g(\alpha,\omega)$ . For  $r=1,\ldots,k$  there exist  $\mu^r, \eta^r \in \mathfrak{v}^*, \ \sigma^r \in \Lambda^{1,1}\mathfrak{v}^*$  s.t.

$$F^{r} = *_{\mathfrak{v}}(\mu^{r} \wedge \Psi) + \sigma^{r} + \eta^{r} \wedge z^{\flat}.$$

$$\begin{cases} \tau_2(\varphi) = 0 \\ dF^r = 0 \\ F^r \wedge \psi = 0 \\ dH_{\varphi} = \sum_{r=1}^k \varepsilon_r F^r \wedge F^r \end{cases} \iff \langle$$

$$\begin{cases} &\tau_2(\varphi)=0\\ &dF^r=0\\ &F^r\wedge\psi=0\\ &dH_\varphi=\sum_{r=1}^k\varepsilon_r\,F^r\wedge F^r \end{cases} \iff \begin{cases} \alpha\in\Lambda^{1,1}\mathfrak{v}^*(\Longrightarrow d\psi=0)\\ \eta^r=2\mu^r \text{ and } \eta^r\wedge\alpha=0\\ \sum_{r=1}^k\varepsilon_r*_\mathfrak{v}\left(\eta^r\wedge\Psi\right)\wedge\sigma^r=0\\ \sum_{r=1}^k\varepsilon_r\left(*_\mathfrak{v}(\eta^r\wedge\Psi)\wedge\eta^r+2\sigma^r\wedge\eta^r\right)=0\\ \alpha_0^2-4\lambda^2\omega^2=\sum_{r=1}^k\varepsilon_r(\sigma^r)^2. \end{cases}$$

#### The case dim $\mathfrak{n}'=2$ or 3

Idea: Using SU(2)-Geometry

$$\mathfrak{n} = \langle z_1, z_2, \varphi(z_1, z_2)^{\sharp} \rangle \oplus \mathfrak{r} \,, \quad \varphi = \sum_{i=1}^{3} \omega_i \wedge z_i^{\flat} + z_1^{\flat} \wedge z_2^{\flat} \wedge z_3^{\flat} \,,$$

 $(\omega_1,\omega_2,\omega_3)$  is an SU(2)-structure on  $\mathfrak{r}$ .Let  $\alpha_i:=dz_i^\flat$  and  $\lambda:=\frac{1}{3}\sum g(\alpha_i,\omega_i)$ . Then  $F^r = F_0^r + \sum v_i^r \wedge z_i^{\flat}$  with  $v_i^r \in \mathfrak{r}^*$ ,  $F_0^r \in \Lambda^2 \mathfrak{r}^*$ .

$$\begin{cases} \tau_2(\varphi) = 0 \\ dF^r = 0 \\ F^r \wedge \psi = 0 \\ dH_{\varphi} = \sum_{r=1}^k \varepsilon_r F^r \wedge F^r \end{cases} \iff$$

$$\begin{cases} \tau_{2}(\varphi) = 0 \\ dF^{r} = 0 \\ F^{r} \wedge \psi = 0 \\ dH_{\varphi} = \sum_{r=1}^{k} \varepsilon_{r} F^{r} \wedge F^{r} \end{cases} \iff \begin{cases} \begin{cases} F_{0}^{r} \wedge \omega_{i} = 0, & i = 1, 2, 3 \\ \sum_{i=1}^{3} v_{i}^{r} \wedge \alpha_{i} = 0, & i = 1, 2, 3 \\ \sum_{i=1}^{3} v_{i}^{r} \wedge \omega_{i} = 0, & i = 1, 2, 3 \\ \sum_{r=1}^{k} \varepsilon_{r} |F_{0}^{r}|^{2} = -12\lambda^{2} + \sum_{i=1}^{3} |\alpha_{i}|^{2} \\ \sum_{r=1}^{k} \varepsilon_{r} \nabla_{i}^{r} \wedge v_{i}^{r} = 0, & i = 1, 2, 3 \\ \sum_{r=1}^{k} \varepsilon_{r} v_{i}^{r} \wedge v_{i}^{r} = 0, & i = 1, 2, 3 \\ \sum_{r=1}^{k} \varepsilon_{r} v_{i}^{r} \wedge v_{i}^{r} = 0, & i = 1, 2, 3 \\ \sum_{r=1}^{k} \varepsilon_{r} v_{i}^{r} \wedge v_{i}^{r} = 0, & i = 1, 2, 3 \end{cases}$$

### Explicit construction of solutions

- Once a solution to the algebraic system is constructed on the Lie algebra n, one still nedds to check whether it induces a solution on the compact quotients of the corresponding simply connected Lie group N.
- ullet One first needs to construct co-compact lattices of N.This is done using the Baker-Campbell-Hausdorff formula.
- For 2-step nilpotent Lie groups, the BCH formula is very simple:

$$e^A e^B = e^{A+B+\frac{1}{2}[A,B]}$$

for every  $A, B \in \mathfrak{n}$ .

• Therefore, if  $\Lambda \subset \mathfrak{n}$  is a lattice determined by a basis  $\mathcal{B}$  with integer structure constants, then  $\Gamma := e^{2\Lambda}$  is a lattice of N.



#### Explicit construction of solutions

**Question:** if  $F \in \Omega^2 N$  is a closed left-invariant 2-form, when is the induced 2-form on  $M := \Gamma \backslash N$  integral in cohomology?

Thm: Let  $\mathfrak n$  be a 2-step nilpotent Lie algebra having integer structure constants with respect to a basis  $\mathcal B$ . Let N be the simply connected nilpotent Lie group with Lie algebra  $\mathfrak n$ , and let  $\Gamma:=e^{2\Lambda}$  be the lattice of N determined by  $\mathcal B$ . Then, for every  $\mathcal B$ -integral closed 2-form  $F\in\Lambda^2\mathfrak n^*$  there exists a principal  $S^1$ -bundle over  $M=\Gamma\backslash N$  admitting a connection 1-form  $\theta$  with curvature  $F_\theta=F$ .

### Open questions

- $T^2$  bundles: are there examples with  $\mathfrak{n} \cong \mathfrak{n}_{6,3} \oplus \mathbb{R}$  and signature  $(k_+,k_-)=(1,1)$ ?
- $T^3$  bundles, dim  $\mathfrak{n}'=2$ :
  - is the Lie algebra necessarily isomorphic to  $\mathfrak{n}_{5,2} \oplus \mathbb{R}^2$ ?
  - are there examples with signature  $(k_+,k_-)=(1,2)$  on this Lie algebra?
- $T^3$  bundles,  $\dim \mathfrak{n}'=3$ : does the system impose that  $\mathfrak{n}'$  must be calibrated by  $\varphi$ ?

#### Thank you

Thank you! Muchas gracias!