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LCK structures:

Definition and first properties

Andrei Moroianu, CNRS – Univ. Paris-Saclay Open problems in LCK geometry



Prologue
LCK structures

Definition and first properties
Examples
Open problems

Kähler structures

Definition

A Kähler metric on a complex manifold (M, J) is a Riemannian
metric g such that

g is Hermitian : g(J·, ·) = −g(·, J·)
the associated 2-form ω := g(J·, ·) is closed : dω = 0.

Remark

If M is compact =⇒ topological obstructions:

odd degree Betti numbers are even : b2k+1 ∈ 2Z.

even degree Betti numbers are non-zero : b2k > 0,
∀k ≤ dimCM.
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LCK structures

Corollary

No Kähler metrics on simple complex manifolds, e.g. S1 × S2n−1

for n ≥ 2.

Definition (Vaisman, 80’s)

An LCK metric on (M, J) is a Hermitian metric which is conformal
to a Kähler metric around each point.
Equivalently, the fundamental 2-form satisfies dω = θ ∧ ω for some
closed 1-form θ (the Lee form).

Remark

The Lee form θ = 0 ⇐⇒ ω is Kähler.
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LCK structures

Remark

Conformal invariance: (ω, θ) LCK ⇐⇒ (ef ω, θ + df ) LCK.

Corollary

θ exact =⇒ g is globally conformally Kähler (GCK). The converse
holds if the complex dimension is at least 2.

Theorem (Vaisman)

If (M, J) satisfies the ∂∂̄-Lemma (in particular if it carries a Kähler
metric), then any LCK metric on (M, J) is GCK.
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Examples of LCK manifolds

Example (Compact complex manifolds admitting LCK metrics)

Hopf manifolds: Z-quotients of Cn \ {0}, diffeomorphic to
S1 × S2n−1 (Vaisman)

Most complex surfaces (Gauduchon-Ornea, LeBrun, Belgun...)

Some OT manifolds (Oeljeklaus-Toma): quotients of Ct ×Hs

by co-compact lattices sitting in the ring of algebraic integers
OK of a number field K with s real embeddings and 2t
complex embeddings. OT manifolds are LCK for t = 1.

LCK metrics with potential: If (M̃, J) has a positive PSH
function ϕ which is automorphic wrt the action of a discrete
co-compact group Γ of holomorphisms of M̃ (i.e. γ∗ϕ = cγϕ,

∀γ ∈ Γ), then ω := i ∂∂̄ϕϕ defines an LCK structure on

M := M̃/Γ, with Lee form θ = −d lnϕ.
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(Counter)-examples of LCK manifolds

Example (Compact complex manifolds not admitting LCK metrics)

S2m−1 × S2n−1 for m, n ≥ 2 (Calabi-Eckmann)

Some Inoue surfaces (Belgun)

OT manifolds (Ct ×Hs)/Γ for t > s > 1 (Vuletescu).
Conjecturally for t > 1.
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Part III

Conjectures and open problems
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The topology of LCK manifolds

Definition

An LCK structure (g , J, ω, θ) is Vaisman if θ is ∇g -parallel.

Conjecture (Vaisman)

The first Betti number of a strict LCK manifold is odd.

True for Vaisman manifolds (Kashiwada, Vaisman, Tsukada,
Ornea-Verbitsky...) and for complex surfaces (Buchdal, Lamari).

False in general (OT).

Remark

No topological obstruction for the existence of (strict) LCK metrics
is known, except b1 > 0.
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LCK structures on products of compact complex manifolds

Remark

A product of LCK structures is never LCK (unless they are both
Kähler).

Indeed, if dωi = θi ∧ ωi , i = 1, 2, and d(ω1 + ω2) = θ ∧ (ω1 + ω2),
then (θ1 − θ) ∧ ω1 = (θ − θ2) ∧ ω2, whence θ = θ1 = θ2 = 0.

Conjecture (Ornea)

A product of two compact complex manifolds carries an LCK
metric if and only if they are both of Kähler type.
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Partial results

Theorem (Tsukada, 1999)

If M1 and M2 are compact complex manifolds which carry Vaisman
metrics, then M1 ×M2 has no LCK metric.

The proof uses properties of the canonical foliation on Vaisman
manifolds. Stronger version:

Theorem (Istrati, 2018)

If M1 is compact and carries a Vaisman metric and M2 is any
compact complex manifold, then M1 ×M2 has no LCK metric.

Remark (Istrati, 2018)

If M1 and M2 are compact complex manifolds, then M1 ×M2 has
no Vaisman metric.
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Partial results

Ornea’s conjecture thus holds when one of the factors is of
Vaisman type. It also holds when one of the factors is Kähler:

Theorem (Istrati, Vuletescu, 2018)

If M1 and M2 are compact complex manifolds and M1 is of Kähler
type, then M1×M2 has an LCK metric ⇐⇒ M2 is of Kähler type.

Idea of the proof: Assume that (ω, θ) is an LCK structure on
M1 ×M2. Its restriction to M1 is GCK (Vaisman). If
k := dimC(M1) ≥ 2, the restriction of θ to M1 × {y} is exact for
every y ∈ M2. By Künneth, one can assume θ = p∗2θ2. The LCK
condition shows that the push-forward f := (p2)∗(ωk) satisfies
df = kθ2f , so θ2 is exact.
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Partial results

If M1 is a complex curve, the argument is more involved
(Vuletescu):

M2 has an LCK metric with potential (Istrati)

M2 has a complex curve C (Ornea-Verbitsky)

The restriction of the LCK structure to M1 × C is GCK, so
the restriction of the Lee form to M1 × C is exact, so by
Künneth θ is cohomologous to a pullback p∗2θ2.

�
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Thank you for your attention!
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Happy birthday, Liviu!
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