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Part I

Geometries with (totally skew-symmetric and
parallel) torsion
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Geometries with torsion

Let M be a smooth manifold and ∇ a connection on TM. The
torsion of ∇ is the (2, 1)-tensor

T∇X Y := ∇XY −∇YX − [X ,Y ].

If g is a Riemannian metric on M =⇒ unique torsion-free metric
connection ∇g . Every other connection ∇ can be written

∇ = ∇g + τ

for some (2, 1)-tensor τ . Its torsion is T∇X Y = τXY − τYX .

∇ is metric (∇g = 0) ⇐⇒ τX is skew-symmetric ∀X .
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Geometries with torsion

Using the Riemannian metric g we identify:

vectors and 1-forms

skew-symmetric endomorphisms and 2-forms

totally skew-symmetric tensors of type (2, 1) and 3-forms:

g(τXY ,Z ) = τ(X ,Y ,Z ), ∀ X ,Y ,Z ∈ TM .
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Geometries with torsion

Remark

The torsion of ∇g + τ is totally skew-symmetric ⇐⇒ τ is totally
skew-symmetric. In this case, the torsion of ∇g + τ is 2τ .

Definition

A geometry with parallel skew-symmetric torsion (or simply
geometry with torsion) on M is a Riemannian metric g with
Levi-Civita connection ∇g and a 3-form τ ∈ Ω3(M) which is
parallel with respect to the metric connection ∇τ := ∇g + τ , i.e.
∇ττ = 0.
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Examples of geometries with torsion

Examples of geometries with torsion:

Naturally reductive homogeneous spaces. The homogeneous
connection ∇ has skew-symmetric torsion T and moreover
∇T = 0, ∇R = 0. The converse also holds (Ambrose-Singer).

Nearly Kähler (NK) manifolds: almost Hermitian manifolds
(M, g , J) with (∇X J)X = 0 ∀X . The canonical Hermitian
connection

∇ := ∇g − 1
2J ◦ ∇

gJ

has ∇-parallel skew-symmetric torsion (Gray, Kirichenko).
Examples of NK manifolds:

Twistor bundles over positive QK manifolds
3-symmetric spaces with naturally reductive metric
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Examples of geometries with torsion

Sasakian manifolds (M, g , ξ), where ξ is a unit Killing vector
field satisfying the condition ∇g

Xdξ = −2X ∧ ξ, ∀X . The
metric connection

∇ := ∇g + 1
2ξ ∧ dξ

has skew-symmetric torsion T = ξ ∧ dξ which is ∇-parallel
(Friedrich). Examples of Sasakian structures: S1-bundles over
Hodge manifolds.

3-Sasakian manifolds.
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Examples of geometries with torsion

Nearly parallel G2-structures in dimension 7: a positive 3-form
ϕ on a 7-dimensional manifold M, which induces a
Riemannian metric g on M and such that dϕ = λ ∗ ϕ for
some λ ∈ R. Then

∇ := ∇g + λ
12ϕ

is a metric connection with totally skew-symmetric and
∇-parallel torsion (Friedrich - Ivanov). Examples of nearly
parallel G2-manifolds:

SO(5)/SO(3), where the embedding of SO(3) into SO(5) is
given by the 5-dimensional irreducible representation of SO(3)
the Aloff-Wallach spaces SU(3)/U(1)k,l
On any 7-dimensional 3-Sasakian manifold there exists a
second Einstein metric defined by a nearly parallel G2-structure
(Friedrich, Kath, –, Semmelmann).
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The Cleyton-Swann theorem

Key idea: irreducible holonomy group =⇒ classification results.

Theorem (Berger - Simons)

Riemannian manifolds with non-generic irreducible holonomy
representation of the Levi-Civita connection:

manifolds with holonomy Um, SUm, Spk , SpkSp1, G2, Spin7.

irreducible locally symmetric spaces.

Theorem (Cleyton - Swann)

Metric connections with parallel skew-symmetric torsion and
irreducible holonomy:

NK 6-dimensional manifolds or nearly parallel G2-manifolds.

irreducible naturally reductive homogeneous spaces.
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Reducibility versus decomposability

In contrast to the Riemannian case, there are two different notions
of reducibility for geometries with parallel skew-symmetric torsion:

Definition

A geometry with parallel skew-symmetric torsion (M, g , τ) is:

reducible if the holonomy representation of ∇τ is reducible,
i.e. the tangent bundle of M decomposes in a (non-trivial)
orthogonal direct sum of ∇τ -parallel distributions
TM = T1 ⊕ T2.

decomposable if it is reducible, TM = T1 ⊕ T2, and the
torsion form satisfies τ = τ1 + τ2 ∈ Λ3T1 ⊕ Λ3T2.
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Irreducible case =⇒ Cleyton - Swann.

Decomposable case =⇒ de Rham-type decomposition theorem:

Lemma

Assume that (M, g , τ) is decomposable, with ∇τ -parallel
orthogonal decomposition TM = T1 ⊕ T2 and such that
τ = τ1 + τ2 ∈ Λ3T1 ⊕ Λ3T2. Then (M, g , τ) is locally isometric to
a product of two manifolds with parallel skew-symmetric torsion
(Mi , gi , τi ).

Remaining problem: understand reducible and indecomposable
geometries with parallel skew-symmetric torsion.
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The standard decomposition
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The standard decomposition

Assume from now on that (M, g , τ) is reducible: TM = T1 ⊕ T2,

τ ∈ Λ3T1 ⊕ (Λ2T1 ⊗ T2)⊕ (T1 ⊗ Λ2T2)⊕ Λ3T2.

TM may have several such splittings. However:

Theorem (Cleyton, –, Semmelmann)

There exists a canonically defined ∇τ -parallel orthogonal
decomposition TM = HM ⊕ VM such that τ is a section of
Λ3HM ⊕ (Λ2HM ⊗ VM)⊕ Λ3VM.

Definition

The above decomposition TM = HM ⊕ VM is called the standard
decomposition of the reducible geometry with torsion (M, g , τ).
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Proof of the standard decomposition

Lemma (Cleyton, –, Semmelmann)

If k ⊂ so(n) is a faithful orthogonal representation of a Lie algebra
k and h ⊂ Rn is an irreducible summand such that so(h) ∩ k 6= 0,
then the representation of k on h⊗ Λ2(h⊥) has no invariant vector.

Let k be the holonomy algebra of ∇τ . The holonomy
representation of k on Rn decomposes into an orthogonal sum of
irreducible k-modules hα and vj with so(hα) ∩ k 6= 0 and
so(vj) ∩ k = 0. We define h := ⊕αhα and v := ⊕jvj .

HM and VM are the associated bundles to h and v. The
∇τ -parallel torsion τ defines a k-invariant vector of Λ3Rn, whose
projection to h⊗ Λ2v vanishes by the above lemma.
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Denote by τh ∈ Λ3HM, τ v ∈ Λ3VM and τm ∈ Λ2HM ⊗ VM the
projections of τ wrt the standard decomposition.

Theorem (Cleyton, –, Semmelmann)

The distribution VM is the vertical distribution of a locally
defined Riemannian submersion (M, g)

π→ (N, gN) with
totally geodesic fibers, called the standard submersion.

The horizontal part τh of τ is projectable to the base N of the
standard submersion: τh = π∗σ.

The metric connection ∇σ := ∇gN
+ σ on N has parallel

skew-symmetric torsion.

The restriction of the curvature tensor Rτ : Λ2 TM → Λ2 TM
to Λ2VM is ∇τ -parallel. In particular, the fibres of the
standard submersion are naturally reductive homogeneous
spaces.
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Remark

If one of the summands in the standard decomposition
TM = HM ⊕ VM is trivial, then either HM = 0 and (M, g) is
locally a naturally reductive homogeneous space, or VM = 0, in
which case (M, g) is locally a product of irreducible geometries
with torsion. By Cleyton - Swann, each factor is either naturally
reductive homogeneous, or has a nearly Kähler structure in
dimension 6, or a nearly parallel G2-structure in dimension 7.

We will thus implicitly assume from now on that the standard
decomposition TM = HM ⊕ VM is non-trivial.
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We have seen that the base space N of the standard submersion
M → N of a manifold M with parallel skew-symmetric torsion
inherits a geometry with parallel skew-symmetric torsion. This
geometry carries an additional structure, which can be understood
in terms of principal bundles:

Fix some orthonormal frame u on M and denote with K the
holonomy group of ∇τ at u, with k its Lie algebra, and with
πM : Q → M the reduction of the frame bundle of M to a principal
K -fibre bundle. Denote by Rn = h⊕ v the above k-invariant
decomposition of Rn.

The connection form of ∇τ is denoted by α ∈ Ω1(Q, k), and the
soldering form is denoted by θ ∈ Ω1(Q,Rn).
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Any A ∈ k induces a fundamental vertical vector field A∗ on Q.

As Q is a subbundle of the frame bundle of M, any ξ ∈ Rn induces
a standard horizontal vector field ξ∗ defined at u ∈ Q by ξ∗u := ũξ.

For A,B ∈ k and ξ ∈ Rn we have

[A∗,B∗] = [A,B]∗, [A∗, ξ∗] = (A ξ)∗ .
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Key idea: define a Lie algebra structure on l := k⊕ v induced from
the Lie algebra structure on the space of vector fields on Q by the
injective map

Φ : l = k⊕ v→ Γ(TQ), A + ξ 7→ A∗ + ξ∗,

for A ∈ k and ξ in v.

Lemma

The image of the map Φ is closed under the bracket of vector
fields.

Proof: Use the above properties of the torsion and curvature of
∇τ .
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The decomposition TQ = ThorQ ⊕ TkQ of the tangent bundle of
Q given by the connection α can be refined as

TQ = ThQ ⊕ TvQ ⊕ TkQ ,

where ThQu = {η∗u | η ∈ h}, TvQu = {ξ∗u | ξ ∈ v}, and
TkQu = {A∗u | A ∈ k}.

The map Φ : l→ Γ(TQ) is by definition a Lie algebra
homomorphism, i.e. it defines a structure of infinitesimal
l-principal bundle on Q over some locally defined manifold N,
whose fibers are the leaves of the integrable distribution
Φ(l) = TvQ ⊕ TkQ. Since (πM)−1

∗ (VM) = TvQ ⊕ TkQ, this
locally defined manifold N is the same as the locally defined
manifold N introduced in the previous section.
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Lemma

The 1-form β := α+ θv ∈ Ω1(Q, l) is a connection form on Q with
respect to the infinitesimal l–principal bundle structure, i.e. it
satisfies β(B∗) = B for every B ∈ l and

(LB∗β)(U) = −[B, β(U)], ∀ B ∈ l, ∀ U ∈ Γ(TQ) .

Some components of the curvature form of β, viewed as a 2-form
with values in the adjoint bundle, are parallel but not all of them
(the structure group L is too large, and contains unnecessary
information). After a reduction procedure =⇒ a principal fibre
bundle over N with parallel curvature form, containing enough
information in order to recover the geometry of M.
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Geometries with parallel curvature
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The principal bundle with parallel curvature

Consider the linear map

l = k⊕ v→ so(v)⊕ v := g.

∃! Lie algebra structure on g making this map a Lie algebra
morphism. Let L and G be the simply connected Lie groups with
Lie algebras l and g respectively, and λ : L→ G the corresponding
group morphism. The associated G -principal bundle

P := Q ×λ G

over N carries a connection 1-form γ ∈ Ω1(P, g) (induced by β).
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Theorem (Cleyton, –, Semmelmann)

The section Rγ of Λ2 TN ⊗ ad(P) is parallel wrt ∇σ ⊗∇γ and
satisfies some extra conditions.
Conversely, given a geometry with parallel skew-symmetric torsion
(N, gN , σ) and a G-principal bundle with parallel curvature form
(+ some extra conditions), one obtains a geometry with parallel
skew-symmetric torsion on quotients of P by compact subgroups
of G.
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Example

Let (M2k+1, g , ξ) be the Sasakian S1-bundle over a Hodge
manifold (N, gN , ω), such that dξ[ = ω. Then (generically):

the holonomy group of the connection ∇ = ∇g + 1
2ξ ∧ dξ is

K = U(k) ⊂ SO(2k + 1),

the standard decomposition is VM =< ξ >, HM = ξ⊥,

the standard Riem. submersion is just the fibration M → N,

the extended Lie algebra l := u(k)⊕ u(1)→ 0⊕ u(1) =: g,

the K -principal bundle Q over M is the holonomy bundle of
∇, also seen as (U(k)× U(1))-bundle over N,

the G -principal bundle with parallel curvature P := M → N.
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Definition

A geometry with torsion (M, g , τ) is special if v is a trivial
k-representation (i.e. VM is spanned by ∇-parallel vector fields ξi ).

Remark

Any ∇-parallel vector field ξ is Killing, since 0 = ∇ξ = ∇gξ + τξ.

In this case the projection of the holonomy algebra k on so(v)
vanishes, so the Lie algebra g = v. In fact it is easy to see directly
that the set of ∇-parallel vector fields is closed under Lie bracket:

[ξi , ξj ] = ∇g
ξi
ξj −∇g

ξj
ξi = −2τ(ξi , ξj)

is also ∇-parallel. Like in the previous example, M is (locally)
identified to a principal bundle over the space of leaves of VM.
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Parallel g-structures

Definition

Let G be a compact Lie group with Lie algebra g. A parallel
g-structure on a manifold N is given by:

1 a Riemannian metric gN on N;

2 a locally defined G -principal bundle P → N with adjoint
bundle ad(P);

3 an adg-invariant scalar product 〈., .〉 on g, thus on ad(P);

4 a connection form γ ∈ Ω1(P, g) with parallel curvature tensor
Rγ : Λ2 TN → ad(P), s.t. the metric adjoint of −Rγ is a Lie
algebra bundle morphism ψ : ad(P)→ Λ2 TN.
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Theorem (Cleyton, –, Semmelmann)

There is a 1-1 correspondence between special geometries with
torsion and parallel g-structures.

There are several types of natural operations that one can make
with parallel g-structures: products, reductions to ideals of the Lie
algebra, restrictions to Riemannian factors of the manifold N, or
Whitney products.

Definition

A parallel g-structure is non-degenerate if it is not locally a product
of parallel g-structures.
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The classification

Theorem (Cleyton, –, Semmelmann)

Let g be a Lie algebra of compact type and (gN ,P, g, γ, ψ) a
non-degenerate parallel g-structure on a manifold N. Then either:

N is quaternion-Kähler with positive scalar curvature,
g = sp(1) and P is the Konishi bundle, or

N = L/H is an irreducible locally symmetric space of compact
type, g is isomorphic to a semi-simple factor of h, or

N is locally a Riemannian product
N = N1 × . . .× Np × S1 × . . .× Sq with Nα Kähler,
Sβ = Lβ/U(1)Hβ Hermitian symmetric of compact type, and
g = u(1)m ⊕ k1 ⊕ . . .⊕ kq with kβ a non-zero factor of hβ.
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