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Paris, France.
e-mail: tlefeuvre@imj-prg.fr
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Abstract
The aim of this note is to establish the correspondence between the twisted localized

Pestov identity on the unit tangent bundle of a Riemannian manifold and the Weitzenböck
identity for twisted symmetric tensors on the manifold.

1. Introduction
The Weitzenböck and Pestov identities are two standard identities in Riemannian geometry.

While the former is usually phrased on the base manifold, the Pestov identity is given in terms
of functions on the unit tangent bundle. The latter can be further localized by considering
specific functions which are spherical harmonics in restriction to every fiber of the unit tangent
bundle: this is known as the localized Pestov identity. There is a tautological correspondence
between trace-free symmetric tensors on the base manifold and spherical harmonics; hence,
it is conceivable that the Weitzenböck identity should be related to the localized Pestov
identity but this correspondence has never been established anywhere formally. The purpose
of this note is therefore to show that the localized Pestov identity is indeed equivalent to
the Weitzenböck identity. More generally, we will consider this correspondence for twisted
objects, where we twist by an auxiliary vector bundle over the Riemannian manifold. As
both identities require a certain amount of notation before being stated, we refer the reader
to Proposition 3·3 below for the twisted Weitzenböck identity, and Proposition 6·2 for the
twisted localized Pestov identity. As for the introduction, we provide a brief account on the
history of these identities, and for which purposes they are used.
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The Pestov identity is an 𝐿2 energy identity on the unit tangent bundle of a Riemannian

manifold which was first introduced by Mukhometov [24, 25] and Amirov [1], then in a
more general form by Pestov and Sharafutdinov [28, 35], and later written in an intrinsic
way by Knieper [23]1. More recently, a twisted identity (that is, involving an auxiliary vector
bundle) was obtained by Guillarmou, Paternain, Salo and Uhlmann [32, 19]. The Pestov
identity was found to play an essential role in two problems of Riemannian geometry on
negatively-curved manifold, namely:

1. the marked length spectrum rigidity problem which consists in recovering a met-
ric from the knowledge of the lengths of its closed geodesics (marked by the free
homotopy of the manifold). Equally important and intimately related are the tensor
tomography question which asks to recover a tensor from its integrals along closed
geodesics, and inverse spectral problems, which ask if the spectrum of a geometric
operator determines the geometry; see [16, 14, 30, 31, 18] for references where the
Pestov identity is used; see also [13, 26, 7, 20] for further references on the marked
length spectrum.

2. the ergodicity of the frame flow which consists in showing that the only measurable
functions that are invariant by the frame flow on the frame bundle are the constant
functions, see [11, 12, 9] for references where the Pestov identity is used; see also
[2, 4, 6] for further references on frame flow ergodicity.

Let us also mention that there are other versions of the Pestov identity related to thermostat
flows [22], and that the (localized) twisted Pestov identity for non-metric connections can be
improved using Carleman estimates [29].

The Weitzenböck formula usually expresses a curvature term as a linear combination of
operators of the form 𝑃∗𝑃, where 𝑃 is a first-order differential operator, typically a projection
of the covariant derivative. It is an important tool for combining differential geometric aspects
with topological aspects on compact Riemannian manifolds, see [5] for a nice review. This is
prominently illustrated in the Bochner method, where the vanishing of Betti numbers follows
under suitable curvature assumptions, and also for the non-existence of metrics of positive
scalar curvature on spin manifolds with non-vanishing 𝐴̂-genus. Moreover, it is used to prove
eigenvalue estimates for Laplace and Dirac type operators.

In this note we give a self-contained proof of the Weitzenböck formula on trace-free
symmetric tensors. This is a special case of a more general method introduced in [36].
Here we will show in addition how to extend the Weitzenböck formula to the case of
symmetric tensors twisted with an auxiliary vector bundle 𝐸 . Finally, we show that this
twisted Weitenzenböck formula translates into the localized twisted Pestov identity on the
unit tangent bundle.

Acknowledgement: The authors wish to thank the CIRM, where part of this article was
written, for support and hospitality. M.C. acknowledges the support of an Ambizione grant
(project number 201806) from the Swiss National Science Foundation. A.M. was partly
supported by the PNRR-III-C9-2023-I8 grant CF 149/31.07.2023 Conformal Aspects of
Geometry and Dynamics. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon research and innovation programme

1We also remark that in [23, Appendix], Knieper argues that the Pestov identity is a “formula of Weitzenböck
type”. Somehow, the present paper makes this intuition rigorous.
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2. Symmetric tensors
In this section we recall basic formulas for symmetric tensors as well as the definition and

first properties of conformal Killing tensors. More details can be found in [21].

2·1. The symmetric algebra of a vector space
Let (T, 𝑔) := R𝑛 be the standard Euclidean vector space of dimension 𝑛. We denote with

Sym𝑘T ⊂ T⊗𝑘 the 𝑘-fold symmetric tensor product of T. Elements of Sym𝑘T are symmetrized
tensor products

𝑣1 · . . . · 𝑣𝑘 :=
∑︁
𝜎∈𝑆𝑘

𝑣𝜎 (1) ⊗ . . . ⊗ 𝑣𝜎 (𝑘 ) , (2·1)

where 𝑣1, . . . , 𝑣𝑘 are vectors in T. In particular we have 𝑣 · 𝑢 = 𝑣 ⊗ 𝑢 + 𝑢 ⊗ 𝑣 for 𝑢, 𝑣 ∈ T.
Some authors (see [33, page 156]) use another convention for the symmetric product and
divide by 𝑘! in (2·1).

Using the metric 𝑔, one can identify T with T∗. Under this identification, 𝑔 ∈ Sym2T∗ ≃
Sym2T can be written as 𝑔 = 1

2
∑

𝑖 e𝑖 · e𝑖 , for any orthonormal basis {e𝑖}. The direct sum
Sym T:=

⊕
𝑘≥0 Sym𝑘T is endowed with a commutative product making Sym T into a Z-

graded commutative algebra. The scalar product 𝑔 induces a scalar product on Sym𝑘T, also
denoted by 𝑔, defined by

𝑔(𝑣1 · . . . · 𝑣𝑘 , 𝑤1 · . . . · 𝑤𝑘) =
∑︁
𝜎∈𝑆𝑘

𝑔(𝑣1, 𝑤𝜎 (1) ) · . . . · 𝑔(𝑣𝑘 , 𝑤𝜎 (𝑘 ) ).

With respect to this scalar product, every element 𝐾 of Sym𝑘T can be identified with a
symmetric 𝑘-linear map (i.e. a polynomial of degree 𝑘) on T by the formula

𝐾 (𝑣1, . . . , 𝑣𝑘) = 𝑔(𝐾, 𝑣1 · . . . · 𝑣𝑘).

For every 𝑣 ∈ T, the metric adjoint of the linear map 𝑣· : Sym𝑘T → Sym𝑘+1T, 𝐾 ↦→ 𝑣 · 𝐾
is the contraction 𝑣⌟ : Sym𝑘+1T → Sym𝑘T, 𝐾 ↦→ 𝑣⌟ 𝐾 , defined by (𝑣⌟ 𝐾) (𝑣1, . . . , 𝑣𝑘−1) =
𝐾 (𝑣, 𝑣1, . . . , 𝑣𝑘−1). In particular we have 𝑣⌟ 𝑢𝑘 = 𝑘𝑔(𝑣, 𝑢)𝑢𝑘−1, for all 𝑣, 𝑢 ∈ T.

We introduce the linear map deg : Sym T → Sym T, defined by deg(𝐾) = 𝑘𝐾 for 𝐾 ∈
Sym𝑘T. Then we have∑︁

𝑖

e𝑖 · e𝑖⌟ 𝐾 = deg(𝐾),
∑︁
𝑖

e𝑖⌟e𝑖 · 𝐾 = 𝑛𝐾 + deg(𝐾),

where {e𝑖} denotes an orthonormal frame of (T, 𝑔). Note that if 𝐾 ∈ Sym𝑘T is considered
as a polynomial of degree 𝑘 then 𝑣⌟𝐾 corresponds to the directional derivative 𝜕𝑣𝐾 and the
last formula is nothing else than the well-known Euler formula on homogeneous functions.

Contraction and multiplication with the symmetric tensor L :=
∑

𝑖 e𝑖 · e𝑖 = 2𝑔 defines two
additional linear maps:

Λ : Sym𝑘T → Sym𝑘−2T, 𝐾 ↦→
∑︁
𝑖

e𝑖⌟ e𝑖⌟ 𝐾
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and

L : Sym𝑘−2T → Sym𝑘T, 𝐾 ↦→ L · 𝐾,

which are adjoint to each other. It is straightforward to check the following algebraic
commutator relations

[ Λ, L ] = 2𝑛 id + 4 deg, [ deg, L ] = 2 L, [ deg,Λ ] = − 2 Λ, (2·2)

and for every 𝑣 ∈ 𝑇 :

[ Λ, 𝑣 · ] = 2 𝑣 ⌟ , [ 𝑣⌟ , L ] = 2 𝑣· , [ Λ, 𝑣⌟ ] = 0 = [ L, 𝑣· ] . (2·3)

For T =R𝑛, the standard O(𝑛)-representation induces a reducible O(𝑛)-representation
on Sym𝑘T. We denote by Sym𝑘

0 T:= ker(Λ : Sym𝑘T → Sym𝑘−2T) the space of trace-free
symmetric 𝑘-tensors.

It is well known that Sym𝑘
0 T is an irreducible O(𝑛)-representation and we have the

following decomposition into irreducible summands

Sym𝑘T � Sym𝑘
0 T ⊕ Sym𝑘−2

0 T ⊕ . . . ,

where the last summand in the decomposition is R for 𝑘 even and T for 𝑘 odd. The summands
Sym𝑘−2𝑖

0 T are embedded into Sym𝑘T via the map L𝑖 . Corresponding to the decomposition
above any 𝐾 ∈ Sym𝑘T can be uniquely decomposed as

𝐾 = 𝐾0 + L𝐾1 + L2𝐾2 + . . .

with 𝐾𝑖 ∈ Sym𝑘−2𝑖
0 T, i.e. Λ𝐾𝑖 = 0. We will call this decomposition the standard decomposi-

tion of 𝐾 . In the following, the subscript 0 always denotes the projection of an element from
Sym𝑘T onto its component in Sym𝑘

0 T. Note that for any 𝑣 ∈ T and 𝐾 ∈ Sym𝑘
0 T we have the

following projection formula

(𝑣 · 𝐾)0 = 𝑣 · 𝐾 − 1
𝑛+2𝑘−2 L (𝑣⌟ 𝐾). (2·4)

Indeed, using the commutator relations (2·2) we haveΛ(L (𝑣⌟ 𝐾)) = (2𝑛 + 4(𝑘 − 1)) (𝑣⌟ 𝐾),
since Λ commutes with 𝑣⌟ and Λ𝐾 = 0. Moreover Λ(𝑣 · 𝐾) = 2 𝑣⌟ 𝐾 . Thus the right-hand
side of (2·4) is in the kernel of Λ, i.e. it computes the projection (𝑣 · 𝐾)0.

2·2. Conformal Killing tensors
Let (𝑀𝑛, 𝑔) be a Riemannian manifold with Levi-Civita connection ∇. All the algebraic

considerations above extend to vector bundles over 𝑀 , e.g. the O(𝑛)-representation Sym𝑘T
defines the real vector bundle Sym𝑘T𝑀 . The O(𝑛)-equivariant maps L and Λ define bundle
maps between the corresponding bundles. The same is true for the symmetric product · and
the contraction ⌟. We will use the same notation for the bundle maps on 𝑀 .

Next we will define first order differential operators on sections of Sym𝑝T𝑀 . We have

D :𝐶∞(𝑀, Sym𝑘T𝑀) →𝐶∞(𝑀, Sym𝑘+1T𝑀), 𝐾 ↦→
∑︁
𝑖

e𝑖 · ∇e𝑖𝐾,
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where {e𝑖} denotes from now on a local orthonormal frame. The symmetric tensor D𝐾 is
the complete symmetrisation of ∇𝐾 , in the sense that

𝑔(D𝐾, 𝑋 𝑘+1) =
∑︁
𝑖

𝑔(∇e𝑖𝐾, e𝑖⌟𝑋
𝑘+1) = (𝑘 + 1)

∑︁
𝑖

𝑔(∇e𝑖𝐾, 𝑔(e𝑖 , 𝑋)𝑋 𝑘)

= (𝑘 + 1)𝑔(∇𝑋𝐾, 𝑋
𝑘)

(2·5)

for every 𝑋 ∈ T𝑀 . The formal adjoint of D is the divergence operator D∗ defined by

D∗ :𝐶∞(𝑀, Sym𝑘+1T𝑀) →𝐶∞(𝑀, Sym𝑘T𝑀), 𝐾 ↦→ −
∑︁
𝑖

e𝑖⌟ ∇e𝑖𝐾.

As an immediate consequence of the definition we have that the operator D acts as a
derivation on the algebra of symmetric tensors, i.e. for any 𝐾1 ∈𝐶∞(𝑀, Sym𝑘T𝑀) and
𝐾2 ∈𝐶∞(𝑀, Sym𝑙T𝑀) the following equation holds

D(𝐾1 · 𝐾2) = D𝐾1 · 𝐾2 + 𝐾1 · D𝐾2.

Moreover, an easy calculation proves that the operators D and D∗ satisfy the commutator
relations:

[ Λ, D∗ ] = 0 = [ L, D ], [ Λ, D ] = −2D∗, [ L, D∗ ] = 2 D. (2·6)

We also consider the operator

D0 :𝐶∞(𝑀, Sym𝑘
0 T𝑀) →𝐶∞(𝑀, Sym𝑘+1

0 T𝑀), 𝐾 ↦→ (D𝐾)0.

According to (2·4), we have D0𝐾 = D𝐾 + 1
𝑛+2𝑘−2 L D∗𝐾 for every 𝐾 ∈𝐶∞(𝑀, Sym𝑘

0 T𝑀).
The formal adjoint D∗

0 :𝐶∞(𝑀, Sym𝑘+1
0 T𝑀) →𝐶∞(𝑀, Sym𝑘

0 T𝑀) is clearly equal to the
restriction of D∗ to 𝐶∞(𝑀, Sym𝑘+1

0 T𝑀).
A symmetric tensor𝐾 ∈𝐶∞(𝑀, Sym𝑘T𝑀) is called conformal Killing tensor if there exists

some symmetric tensor 𝑘 ∈𝐶∞(𝑀, Sym𝑘−1T𝑀) with D𝐾 = L 𝑘 . Note that 𝐾 is conformal
Killing if and only if its trace-free part is conformal Killing. Indeed, since D and L commute,
if 𝐾 =

∑
𝑖≥0 L𝑖𝐾𝑖 , with 𝐾𝑖 ∈𝐶∞(𝑀, Sym𝑘−2𝑖

0 T𝑀) is the standard decomposition of 𝐾 , then
D𝐾 =

∑
𝑖≥0 L𝑖D𝐾𝑖 , so D𝐾 is in the image of L if and only if D𝐾0 is in the image of L. More

precisely we have the following characterisation (see also [21, Lemma 3.3]): a symmetric
tensor 𝐾 ∈𝐶∞(𝑀, Sym𝑘T𝑀) is a conformal Killing tensor if and only if

D𝐾0 = − 1
𝑛+2𝑘−2 LD∗𝐾0. (2·7)

or, equivalently, if and only if the symmetric tensor 𝐾 satisfies the condition D0𝐾0 = 0.
Let 𝐸 be a real vector bundle over 𝑀 with connection ∇𝐸 . We extend D and D0 to twisted

operators

D :𝐶∞(𝑀, Sym𝑘T𝑀 ⊗ 𝐸) →𝐶∞(𝑀, Sym𝑘+1T𝑀 ⊗ 𝐸),

D0 :𝐶∞(𝑀, Sym𝑘
0 T𝑀 ⊗ 𝐸) →𝐶∞(𝑀, Sym𝑘+1

0 T𝑀 ⊗ 𝐸),

defined on decomposable elements by

D(𝐾 ⊗ 𝜉) = D𝐾 ⊗ 𝜉 +
∑︁
𝑖

(e𝑖 · 𝐾) ⊗ ∇𝐸
e𝑖𝜉, D0(𝐾 ⊗ 𝜉) = D0𝐾 ⊗ 𝜉 +

∑︁
𝑖

(e𝑖 · 𝐾)0 ⊗ ∇𝐸
e𝑖𝜉,
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obtained from the tensor product of Levi-Civita and ∇𝐸 connections. In this case, sections in
ker D are called twisted Killing tensors and sections in ker D0 are called twisted conformal
Killing tensors.

3. Weitzenböck formulas
Let (𝑀𝑛, 𝑔) be an oriented Riemannian manifold with Riemannian curvature tensor

𝑅. Let 𝑅 : Λ2T𝑀→Λ2T𝑀 be the curvature operator defined by 𝑔(𝑅(𝑋 ∧𝑌 ), 𝑍 ∧𝑈) =
𝑅(𝑋, 𝑌, 𝑍, 𝑈). With this convention we have 𝑅 = − id on the standard sphere.

Let 𝑃 = 𝑃SO(𝑛)𝑀 be the frame bundle of 𝑀 and let 𝑉𝑀 be the vector bundle associated
to 𝑃 via a SO(𝑛)-representation 𝜌 : SO(𝑛) → Aut(𝑉), where Aut(𝑉) denotes the isometries
of a Euclidean vector space (𝑉, 𝑔𝑉 ). Then the curvature endomorphism 𝑞(𝑅) ∈ End𝑉𝑀 is
defined as

𝑞(𝑅) := 1
2

∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗𝑅(e𝑖 ∧ e 𝑗)∗. (3·8)

Here {e𝑖}, 𝑖 = 1, . . . 𝑛, is a local orthonormal frame of T𝑀 and for 𝑋 ∧𝑌 ∈ Λ2T𝑀 we define
(𝑋 ∧𝑌 )∗ = 𝜌∗(𝑋 ∧𝑌 ), where 𝜌∗ : 𝔰𝔬(𝑛) → End(𝑉) is the differential of 𝜌. In particular, the
standard action of Λ2T𝑀 on T𝑀 is written as (𝑋 ∧𝑌 )∗ 𝑍 = 𝑔(𝑋, 𝑍) 𝑌 − 𝑔(𝑌, 𝑍) 𝑋 =

(𝑌 · 𝑋 ⌟ − 𝑋 ·𝑌 ⌟ )𝑍 . This is compatible with

𝑔((𝑋 ∧𝑌 )∗𝑍, 𝑈) = 𝑔(𝑋 ∧𝑌, 𝑍 ∧𝑈) = 𝑔(𝑋, 𝑍) 𝑔(𝑌, 𝑈) − 𝑔(𝑋,𝑈) 𝑔(𝑌, 𝑍).

Let T =R𝑛 be the standard representation of SO(𝑛) defining the tangent bundle T𝑀 . Then
any SO(𝑛)-equivariant endomorphism p ∈ EndSO(𝑛) (T ⊗ 𝑉) induces an SO(𝑛)-equivariant
element p̃ ∈ HomSO(𝑛) (T ⊗ T ⊗ 𝑉, 𝑉) defined by

p̃(𝑎 ⊗ 𝑏 ⊗ 𝑣) := (𝑎 ⌟ ⊗ id) p(𝑏 ⊗ 𝑣), ∀ 𝑎, 𝑏 ∈ T, 𝑣 ∈𝑉.

We note at this point that equivariant objects give rise to global parallel sections which we
will denote by the same letter; for instance 𝑝 defines a parallel section 𝑝 ∈𝐶∞(𝑀, End(T𝑀 ⊗
𝑉𝑀)). Important examples of such endomorphisms are the orthogonal projections p𝑖 , 𝑖 =
1, . . . , 𝑁 , onto the summands in an SO(𝑛)-invariant decomposition T ⊗ 𝑉 =𝑉1 ⊕ . . . ⊕ 𝑉𝑁 .
Another example is the so-called conformal weight operator 𝐵 ∈ End(T ⊗ 𝑉) introduced in
[15] (see also [8]) and defined as

𝐵(𝑏 ⊗ 𝑣) :=
∑︁
𝑖

e𝑖 ⊗ (e𝑖 ∧ 𝑏)∗𝑣.

The corresponding element 𝐵̃ ∈ Hom(T ⊗ T ⊗ 𝑉, 𝑉) is given by

𝐵̃(𝑎 ⊗ 𝑏 ⊗ 𝑣) = (𝑎 ∧ 𝑏)∗𝑣.

For every equivariant orthogonal projector p ∈ EndSO(𝑛) (T ⊗ 𝑉) we define a first order
differential operator 𝑃 := p∇.

If 𝐾 is a section of 𝑉𝑀 , then ∇2𝐾 =
∑

𝑖 e𝑖 ⊗ e 𝑗 ⊗ ∇2
e𝑖 ,e 𝑗

𝐾 is a section of the bundle
T𝑀 ⊗ T𝑀 ⊗ 𝑉𝑀 . Here for vector fields 𝑋, 𝑌 on 𝑀 we denote ∇2

𝑋,𝑌
𝐾 := ∇𝑋∇𝑌𝐾 − ∇∇𝑋𝑌𝐾;

then the curvature endomorphism is given by 𝑅𝑋,𝑌 = ∇2
𝑋,𝑌

− ∇2
𝑌,𝑋

. We can thus obtain natural
second order operators by applying elements of the bundle Hom(T𝑀 ⊗ T𝑀 ⊗ 𝑉𝑀, 𝑉𝑀) to
∇2𝐾 .
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Lemma 3·1. [34, Proposition 3.1 and Lemma 3.6] The following relations hold:

𝐵̃∇2 = 𝑞(𝑅), p̃∇2 = −𝑃∗𝑃,

where 𝑃∗ is the formal adjoint of 𝑃.

Proof. Let (e𝑖) be a local orthonormal frame of T𝑀 , parallel at the point where the
computations are done (i.e. satisfying ∇e𝑖e 𝑗 = 0 for all 𝑖, 𝑗). The first formula is immediate:

𝐵̃∇2 =
∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗∇2
e𝑖 ,e 𝑗

= 1
2

∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗𝑅e𝑖 ,e 𝑗
= 𝑞(𝑅).

In order to prove the second one, we first compute the formal adjoint of ∇. For all sections
𝜑 of 𝑉𝑀 and 𝜓 of T𝑀 ⊗ 𝑉𝑀 we have

𝑔(∇𝜑, 𝜓) = 𝑔
(∑︁

𝑖

e𝑖 ⊗ ∇e𝑖𝜑, 𝜓

)
=

∑︁
𝑖

𝑔(∇e𝑖𝜑, (e𝑖⌟ ⊗ id)𝜓)

=
∑︁
𝑖

e𝑖 (𝑔(𝜑, (e𝑖⌟ ⊗ id)𝜓)) −
∑︁
𝑖

𝑔(𝜑, (e𝑖⌟ ⊗ id)∇e𝑖𝜓).

Since the first term in the last equation is the codifferential of the 1-form 𝑋 ↦→ −𝑔(𝜑, (𝑋⌟ ⊗
id)𝜓), we obtain ∇∗ = −∑

𝑖 (e𝑖⌟ ⊗ id)∇e𝑖 . Using this formula, together with the fact that
∇p = 0, p2 = p and p∗ = p, we then compute:

p̃∇2 = p̃

(∑︁
𝑖, 𝑗

e𝑖 ⊗ e 𝑗 ⊗ ∇2
e𝑖 ,e 𝑗

)
=

∑︁
𝑖, 𝑗

(e𝑖⌟ ⊗ id)p(e 𝑗 ⊗ ∇2
e𝑖 ,e 𝑗

)

=
∑︁
𝑖, 𝑗

(e𝑖⌟ ⊗ id)∇e𝑖

(
p(e 𝑗 ⊗ ∇e 𝑗

)
)
=

∑︁
𝑖

(e𝑖⌟ ⊗ id)∇e𝑖 (p∇)

= −∇∗p∇ = −∇∗p∗p∇ = −𝑃∗𝑃.

□

Let us now consider the orthogonal projections p𝑠, 𝑠 = 1, . . . , 𝑁 , onto the summands
in an SO(𝑛)-invariant decomposition T ⊗ 𝑉 =𝑉1 ⊕ . . . ⊕ 𝑉𝑁 . The above result shows that
whenever the conformal weight operator 𝐵 can be expressed as a linear combination of the
projections p𝑠, i.e. 𝐵 =

∑
𝑠 𝑎𝑠p𝑠 for 𝑎𝑠 ∈ R, we obtain a corresponding Weitzenböck formula:

𝑞(𝑅) = −
∑︁
𝑠

𝑎𝑠 𝑃
∗
𝑠𝑃𝑠 (3·9)

on sections of 𝑉𝑀 , where 𝑃𝑠 are the first order differential operators defined by 𝑃𝑠 (𝐾) :=
p𝑠 (∇𝐾) for every section 𝐾 of 𝑉𝑀 , giving a section of T𝑀 ⊗ 𝑉𝑀 .

This universal Weitzenböck formula was considered for the first time in [15] and later
extended and generalised for other holonomy groups in [36]. In fact, the irreducible summands
𝑉𝑠 appearing in the decomposition of T ⊗ 𝑉 are all pairwise non-isomorphic as SO(𝑛)
representations. Thus the projections p𝑠 form a basis of EndSO(𝑛) (T ⊗ 𝑉) and there is an
explicit formula for expressing the coefficients 𝑎𝑠 in terms of the highest weights of 𝑉 and
𝑉𝑠 (see [36, Corollary 3.4]).

We consider now another SO(𝑛)-representation 𝐸 with an invariant scalar product and
the corresponding vector bundle 𝐸𝑀 over 𝑀 , together with the induced metric. Let ∇𝐸 be
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any metric connection on 𝐸 , with curvature tensor denoted by 𝑅𝐸 . For simplicity, we still
denote by ∇𝐸 the tensor product connection ∇ ⊗ id𝐸𝑀 + id𝑉𝑀 ⊗ ∇𝐸 on 𝑉𝑀 ⊗ 𝐸𝑀 . The
projections p𝑠 : T ⊗ 𝑉→ T ⊗ 𝑉 define projections p𝑠 ⊗ id : (T ⊗ 𝑉) ⊗ 𝐸→ (T ⊗ 𝑉) ⊗ 𝐸 and,
correspondingly, differential operators 𝑃𝐸

𝑠 := (p𝑠 ⊗ id)∇𝐸 , acting on 𝑉𝑀 ⊗ 𝐸𝑀 .
Since

∑
𝑠 𝑎𝑠 (p𝑠 ⊗ id) = 𝐵 ⊗ id on T ⊗ 𝑉 ⊗ 𝐸 , Lemma 3·1 yields at once�𝐵 ⊗ id(∇𝐸)2 = −

∑︁
𝑠

𝑎𝑠 (𝑃𝐸
𝑠 )∗𝑃𝐸

𝑠 , (3·10)

acting on sections of 𝑉𝑀 ⊗ 𝐸𝑀 . It remains to compute the action of the left-hand side
operator. If𝐾 ⊗ 𝜉 ∈𝐶∞(𝑀,𝑉𝑀 ⊗ 𝐸𝑀) is a decomposable section and (e𝑖) is an orthonormal
frame parallel at the point of interest, we have

(�𝐵 ⊗ id(∇𝐸)2) (𝐾 ⊗ 𝜉)

= �𝐵 ⊗ id

(∑︁
𝑖, 𝑗

e𝑖 ⊗ e 𝑗 ⊗ (∇𝐸)2
e𝑖 ,e 𝑗

(𝐾 ⊗ 𝜉)
)

= �𝐵 ⊗ id

(∑︁
𝑖, 𝑗

e𝑖 ⊗ e 𝑗 ⊗
(
∇2

e𝑖 ,e 𝑗
𝐾 ⊗ 𝜉 + ∇e𝑖𝐾 ⊗ ∇𝐸

e 𝑗
𝜉 +∇e 𝑗

𝐾 ⊗ ∇𝐸
e𝑖𝜉 + 𝐾 ⊗ (∇𝐸)2

e𝑖 ,e 𝑗
𝜉

))
=

∑︁
𝑖, 𝑗

(
((e𝑖 ∧ e 𝑗)∗∇2

e𝑖 ,e 𝑗
𝐾) ⊗ 𝜉 + ((e𝑖 ∧ e 𝑗)∗∇e𝑖𝐾) ⊗ ∇𝐸

e 𝑗
𝜉

+((e𝑖 ∧ e 𝑗)∗∇e 𝑗
𝐾) ⊗ ∇𝐸

e𝑖𝜉 + (e𝑖 ∧ e 𝑗)∗𝐾 ⊗ (∇𝐸)2
e𝑖 ,e 𝑗

𝜉

)
= (𝑞(𝑅)𝐾) ⊗ 𝜉 + 1

2

∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗𝐾 ⊗ 𝑅𝐸
e𝑖 ,e 𝑗

𝜉,

where the two middle terms cancel each other due to the skew-symmetry in 𝑖, 𝑗 . Denoting by
𝑞(𝑅)𝐸 the linear operator acting on (decomposable) sections of 𝑉𝑀 ⊗ 𝐸𝑀 by

𝑞(𝑅)𝐸 (𝐾 ⊗ 𝜉) := (𝑞(𝑅)𝐾) ⊗ 𝜉 + 1
2

∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗𝐾 ⊗ 𝑅𝐸
e𝑖 ,e 𝑗

𝜉, (3·11)

the previous relation (3·10) implies the twisted Weitzenböck-type formula

𝑞(𝑅)𝐸 = −
∑︁
𝑠

𝑎𝑠 (𝑃𝐸
𝑠 )∗𝑃𝐸

𝑠 on 𝐶∞(𝑀,𝑉𝑀 ⊗ 𝐸𝑀). (3·12)

We now consider the case of interest for us, namely𝑉 = Sym𝑘
0 T, where T:=R𝑛 is the stan-

dard O(𝑛) representation of highest weight (1, 0, . . . , 0). Recall the classical decomposition
into irreducible O(𝑛) representations (e.g. see [36], p. 511-512):

T ⊗ Sym𝑘
0 T � Sym𝑘+1

0 T ⊕ Sym𝑘−1
0 T ⊕ Sym𝑘,1T, (3·13)

where Sym𝑘
0 T is the irreducible representation of highest weight (𝑘, 0, . . . , 0) and Sym𝑘,1T

is the irreducible representation of highest weight (𝑘, 1, 0, . . . , 0). We note that Sym𝑘+1
0 T is

the so-called Cartan summand. Its highest weight is the sum of the highest weights of T and
Sym𝑘

0 T.
For later use, let us first express the operator 𝑞(𝑅) on symmetric tensors in a more

convenient way.
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Lemma 3·2. For every 𝐾 ∈ Sym𝑘T𝑀 , the following relation holds:

𝑞(𝑅) (𝐾) = −
∑︁
𝑖, 𝑗 ,𝑘

𝑅e𝑖 ,e 𝑗
e𝑘⌟(e 𝑗 · e𝑘 · (e𝑖⌟𝐾)).

Proof. For every skew-symmetric endomorphism 𝐴 of T𝑀 (identified with a section of
Λ2T𝑀) we have 𝐴∗𝐾 =

∑
𝐴e𝑖 · (e𝑖⌟𝐾). In particular, for 𝐴 = 𝑋 ∧𝑌 we get (𝑋 ∧𝑌 )∗𝐾 =

𝑌 · (𝑋⌟𝐾) − 𝑋 · (𝑌⌟𝐾). We then compute using the symmetries of the Riemannian curvature
tensor:

𝑞(𝑅) (𝐾) = 1
2

∑︁
𝑘,𝑙

(e𝑙 ∧ e𝑘)∗(𝑅e𝑙 ,e𝑘 )∗𝐾 = 1
2

∑︁
𝑖,𝑘,𝑙

(e𝑙 ∧ e𝑘)∗(𝑅e𝑙 ,e𝑘e𝑖 · (e𝑖⌟𝐾))

=
∑︁
𝑖,𝑘,𝑙

e𝑘 · e𝑙⌟(𝑅e𝑙 ,e𝑘e𝑖 · e𝑖⌟𝐾) =
∑︁
𝑖,𝑘,𝑙

e𝑙⌟(e𝑘 · 𝑅e𝑙 ,e𝑘e𝑖 · (e𝑖⌟𝐾))

=
∑︁

𝑖, 𝑗 ,𝑘,𝑙

e𝑙⌟(e𝑘 · e 𝑗 · e𝑖⌟𝐾)𝑔(𝑅e𝑙 ,e𝑘e𝑖 , e 𝑗) = −
∑︁
𝑖, 𝑗 ,𝑘

𝑅e𝑖 ,e 𝑗
e𝑘⌟(e𝑘 · e 𝑗 · (e𝑖⌟𝐾)).

□

Next we want to describe projections and embeddings of the three summands. By (2·4),
the map q1 : T ⊗ Sym𝑘

0 T → Sym𝑘+1
0 T onto the first summand is defined as

q1(𝑣 ⊗ 𝐾) := (𝑣 · 𝐾)0 = 𝑣 · 𝐾 − 1
𝑛+2𝑘−2 L (𝑣⌟ 𝐾). (3·14)

The adjoint map q∗1 : Sym𝑘+1
0 T → T ⊗ Sym𝑘

0 T is easily computed to be

q∗1(𝐾) =
∑︁
𝑖

e𝑖 ⊗ (e𝑖⌟ 𝐾). (3·15)

Note that for any vector 𝑣 ∈ T, the symmetric tensor 𝑣⌟ 𝐾 is again trace-free, because 𝑣⌟
commutes with Λ. Since q1 q∗1 = (𝑘 + 1) id on Sym𝑘+1

0 T, we conclude that

p1 := 1
𝑘+1 q∗1 q1 : T ⊗ Sym𝑘

0 T → Sym𝑘+1
0 T ⊂ T ⊗ Sym𝑘

0 T (3·16)

is the orthogonal projection onto the irreducible summand of T ⊗ Sym𝑘
0 T isomorphic to

Sym𝑘+1
0 T.

Similarly the map q2 : T ⊗ Sym𝑘
0 T → Sym𝑘−1

0 T onto the second summand in the
decomposition (3·13) is given by the contraction map

q2(𝑣 ⊗ 𝐾) := 𝑣⌟ 𝐾. (3·17)

In this case the adjoint map q∗2 : Sym𝑘−1
0 T → T ⊗ Sym𝑘

0 T is computed to be

q∗2(𝐾) =
∑︁
𝑖

e𝑖 ⊗ (e𝑖 · 𝐾)0 =
∑︁
𝑖

e𝑖 ⊗
(
e𝑖 · 𝐾 − 1

𝑛+2𝑘−4 L (e𝑖⌟ 𝐾)
)
. (3·18)

It follows that

q2 q∗2 = (𝑛 + 𝑘 − 1) id − 2𝑘−2
𝑛+2𝑘−4 id =

(𝑛+2𝑘−2) (𝑛+𝑘−3)
𝑛+2𝑘−4 id,

so the projection onto the irreducible summand in T ⊗ Sym𝑘
0 T isomorphic to Sym𝑘−1

0 T is
given by

p2 := 𝑛+2𝑘−4
(𝑛+2𝑘−2) (𝑛+𝑘−3) q∗2 q2 : T ⊗ Sym𝑘

0 T → Sym𝑘−1
0 T ⊂ T ⊗ Sym𝑘

0 T, (3·19)
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valid for 𝑛 ≥ 3 and 𝑘 ≥ 1. The projection p3 onto the third irreducible summand in T ⊗ Sym𝑘

0 T
is obviously given by p3 = id − p1 − p2 .

The algebraic considerations above extend to vector bundles over 𝑀 . In particular,
the operators D0 :𝐶∞(𝑀, Sym𝑘

0 T𝑀) →𝐶∞(𝑀, Sym𝑘+1
0 T𝑀) and D∗

0 :𝐶∞(𝑀, Sym𝑘
0 T𝑀) →

𝐶∞(𝑀, Sym𝑘−1
0 T𝑀) introduced above can be described as

D0𝐾 = q1∇𝐾, D∗
0𝐾 = −q2∇𝐾, (3·20)

for every section 𝐾 ∈𝐶∞(𝑀, Sym𝑘
0 T𝑀). By (2·7) together with (3·14) and (3·16) we see that

the kernel of 𝑃1 = p1∇ consists exactly of trace-free conformal Killing tensors. The kernel
of 𝑃2 = p2∇ are the divergence free tensors, i.e. tensors in ker D∗

0.
An easy calculation using the explicit formulas for q1 and q2 proves the following relation

on T ⊗ Sym𝑘
0 T (see [21, Proposition 6.1]):

𝐵 = 𝑘 p1 − (𝑛 + 𝑘 − 2) p2 − p3.

As explained above, this yields the Weitzenböck-type formula.

𝑞(𝑅)𝐾 = −𝑘 𝑃∗
1𝑃1𝐾 + (𝑛 + 𝑘 − 2) 𝑃∗

2𝑃2𝐾 + 𝑃∗
3𝑃3 𝐾. (3·21)

for any section 𝐾 of Sym𝑘
0 T𝑀 . In the present situation it is easy to get the coefficients for

𝐵 by a direct calculation. Alternatively one can use the general formula in terms of highest
weights mentioned above.

Now, if 𝐸𝑀 is a Euclidean vector bundle associated to a representation 𝐸 of SO(𝑛) with
metric connection ∇𝐸 , we denote by p𝐸

𝑖
:= p𝑖 ⊗ id𝐸 , by q𝐸

𝑖
:= q𝑖 ⊗ id𝐸 and by

𝑃𝐸
𝑖 := p𝐸

𝑖 ∇𝐸 , 𝑖 = 1, 2, 3, (3·22)

and obtain as before the twisted counterpart of (3·21)

𝑞(𝑅)𝐸 = −𝑘 (𝑃𝐸
1 )

∗𝑃𝐸
1 + (𝑛 + 𝑘 − 2) (𝑃𝐸

2 )
∗𝑃𝐸

2 + (𝑃𝐸
3 )

∗𝑃𝐸
3 , (3·23)

acting on sections of Sym𝑘
0 T𝑀 ⊗ 𝐸𝑀 .

Since p𝐸
𝑖

are orthogonal projectors, we have (p𝐸
𝑖
)∗p𝐸

𝑖
= p𝐸

𝑖
, so using (3·16) and recalling

that D0 = q𝐸
1 ∇

𝐸 (similarly to (3·20)), we obtain

(𝑃𝐸
1 )

∗𝑃𝐸
1 = (∇𝐸)∗(p𝐸

1 )
∗(p𝐸

1 )∇
𝐸 = (∇𝐸)∗(p𝐸

1 )∇
𝐸 = 1

𝑘+1 (∇
𝐸)∗(q𝐸

1 )
∗q𝐸

1 ∇
𝐸 = 1

𝑘+1 D∗
0D0,

and similarly using (3·19), yields

(𝑃𝐸
2 )

∗𝑃𝐸
2 = 𝑛+2𝑘−4

(𝑛+2𝑘−2) (𝑛+𝑘−3) D0D∗
0.

From these last two equations, together with (3·23) we obtain the following

Proposition 3·3 (Twisted Weitzenböck formula). The following formula holds for sections
of Sym𝑘

0 T𝑀 ⊗ 𝐸𝑀:

𝑞(𝑅)𝐸 = − 𝑘
𝑘+1 D∗

0D0 + (𝑛+𝑘−2) (𝑛+2𝑘−4)
(𝑛+2𝑘−2) (𝑛+𝑘−3) D0D∗

0 + (𝑃𝐸
3 )

∗𝑃𝐸
3 . (3·24)

4. Fourier analysis in the fibers of the unit tangent bundle
Further details on this section can be found in [27], [32, Section 2].
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4·1. Functions on the unit tangent bundle

We denote by 𝑆𝑀 the unit tangent bundle of (𝑀, 𝑔) and by 𝜋 : 𝑆𝑀→𝑀 the projection
on the base. There is a canonical splitting of the tangent bundle to 𝑆𝑀 as:

𝑇 (𝑆𝑀) =V ⊕ H ⊕ R𝑋,

where 𝑋 is the geodesic vector field, V := ker 𝑑𝜋 is the vertical space and H is the horizontal
space defined in the following way. Define the connection map K :𝑇 (𝑆𝑀) → T𝑀 as follows:
let 𝑣 ∈ 𝑆𝑀, 𝑤 ∈ 𝑇𝑣 (𝑆𝑀) and a curve (−𝜀, 𝜀) ∋ 𝑡 ↦→ 𝑣(𝑡) ∈ 𝑆𝑀 such that 𝑣(0) = 𝑣, ¤𝑣(0) = 𝑤.
Denoting 𝑥(𝑡) := 𝜋(𝑣(𝑡)), we have K𝑣 (𝑤) := ∇ ¤𝑥 (𝑡 )𝑣(𝑡) |𝑡=0. We denote by 𝑔Sas the Sasaki
metric on 𝑆𝑀 , which is the canonical metric on the unit tangent bundle, defined by:

𝑔Sas(𝑤, 𝑤′) := 𝑔(𝑑𝜋(𝑤), 𝑑𝜋(𝑤′)) + 𝑔(K(𝑤),K(𝑤′)).

Then the horizontal bundle H is defined as the orthogonal complement of 𝑋 inside ker K.
We define the normal bundle N → 𝑆𝑀 whose fiber at 𝑣 ∈ 𝑆𝑀 is given by N𝑣 := 𝑣⊥ ⊂

𝑇𝜋 (𝑣)𝑀 . Then 𝑑𝜋 : H→N ,K : V→N are both isometries and all these bundles over 𝑆𝑀
are isomorphic. We will freely identify them in the following. In particular, we will think of
the normal bundle N as the tangent bundle to the spheres.

For 𝑥 ∈ 𝑀 , the unit sphere

𝑆𝑥𝑀 =
{
𝑣 ∈ 𝑇𝑥𝑀 | |𝑣 |2𝑥 = 1

}
⊂ 𝑆𝑀

(endowed with the Sasaki metric) is isometric to the canonical sphere (S𝑛−1, 𝑔can). We
denote its Laplace operator by Δ𝑥 . Let ΔV be the vertical Laplacian acting on 𝑓 ∈𝐶∞(𝑆𝑀)
as ΔV 𝑓 (𝑣) := Δ𝜋 (𝑣) ( 𝑓 |𝑆𝜋 (𝑣)𝑀 ) (𝑣), for every 𝑣 ∈ 𝑆𝑀 . For 𝑘 ≥ 0 and 𝑥 ∈ 𝑀 , we introduce

Ω𝑘 (𝑥) = ker (Δ𝑥 − 𝑘 (𝑛 + 𝑘 − 2)id) ,

the spherical harmonics of degree 𝑘 . Observe that Ω𝑘 →𝑀 defines a vector bundle over 𝑀 ,
and that𝐶∞(𝑀,Ω𝑘) is naturally identified with a subspace of𝐶∞(𝑆𝑀). Given 𝑓 ∈𝐶∞(𝑆𝑀),
it can be decomposed as 𝑓 =

∑
𝑘≥0 𝑓𝑘 where 𝑓𝑘 ∈𝐶∞(𝑀,Ω𝑘) is the projection of 𝑓 onto

spherical harmonics of degree 𝑘 . We call Fourier degree of 𝑓 , denoted by deg( 𝑓 ), the
maximal integer 𝑘0 ∈ Z≥0 (if it exists) such that 𝑓𝑘0 ≠ 0; otherwise we set deg( 𝑓 ) =∞. We
will also say that 𝑓 has finite Fourier content if its degree is finite, that it is odd (resp. even)
if it only contains odd (resp. even) spherical harmonics.

It can be proved that the operator 𝑋 has the following mapping properties (see [32, Section
3]):

𝑋 :𝐶∞(𝑀,Ω𝑘) →𝐶∞(𝑀,Ω𝑘+1) ⊕ 𝐶∞(𝑀,Ω𝑘−1).

This is understood in the following sense: a section 𝑓𝑘 ∈𝐶∞(𝑀,Ω𝑘) defines in particular
a smooth function in 𝐶∞(𝑆𝑀) which we can differentiate in the 𝑋-direction and this only
contains spherical harmonics of degree 𝑘 − 1 and 𝑘 + 1. Taking the projection on higher
degree (resp. lower degree), we obtain an operator 𝑋+ :𝐶∞(𝑀,Ω𝑘) →𝐶∞(𝑀,Ω𝑘+1) of
gradient type i.e. with injective principal symbol (resp. 𝑋− :𝐶∞(𝑀,Ω𝑘) →𝐶∞(𝑀,Ω𝑘−1) of
divergence type) such that 𝑋 = 𝑋+ + 𝑋− and 𝑋∗

+ = −𝑋− (the latter being a mere consequence
of the fact that 𝑋∗ = −𝑋 as 𝑋 preserves the Sasaki volume (also known as the Liouville
measure) on 𝑆𝑀). As 𝑋+ acting on spherical harmonics of degree 𝑘 has injective principal
symbol, its kernel is finite dimensional by elliptic theory. As a consequence of Lemma 5·3
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we will later see that elements in the kernel of 𝑋+ correspond to conformal Killing tensors,
i.e. elements in the kernel of D0 as defined in Section 2·2.

4·2. Twist by a vector bundle
Let 𝐸→𝑀 be a real vector bundle over𝑀 equipped with a metric connection∇𝐸 . Consider

the pullback bundle E := 𝜋∗𝐸→ 𝑆𝑀 equipped with the pullback connection ∇E := 𝜋∗∇𝐸 and
introduce the first order differential operator

X := ∇E
𝑋 :𝐶∞(𝑆𝑀, E) →𝐶∞(𝑆𝑀, E).

The connection ∇E also gives rise to differential operators:

∇E
H , ∇

E
V :𝐶∞(𝑆𝑀, E) →𝐶∞(𝑆𝑀,N ⊗ E),

defined in the following way: for every section 𝑓 ∈𝐶∞(𝑆𝑀, E), the covariant derivative
∇E 𝑓 ∈𝐶∞(𝑆𝑀, 𝑇∗(𝑆𝑀) ⊗ E) can be identified with an element of 𝐶∞(𝑆𝑀, 𝑇 (𝑆𝑀) ⊗ E)
by applying the musical isomorphism 𝑇∗(𝑆𝑀) →𝑇 (𝑆𝑀) induced by the Sasaki metric.
Using the orthogonal projections •H and •V of 𝑇 (𝑆𝑀) onto H and V, respectively, one can
then define the operators:

∇E
H 𝑓 := 𝑑𝜋((∇E 𝑓 )H), ∇E

V 𝑓 :=K((∇E 𝑓 )V),

which take values in the bundle N ⊗ E → 𝑆𝑀 . In local coordinates, these operators have
explicit expressions in terms of the connection 1-form and we refer to [19, Lemma 3.2] for
further details.

If (𝜉1, . . . , 𝜉𝑟 ) is a local orthonormal frame of 𝐸 , then smooth local sections 𝑓 of E can
be written as:

𝑓 (𝑣) =
𝑟∑︁
𝑗=1

𝑓 ( 𝑗 ) (𝑣)𝜉 𝑗 (𝑥) ∈ E𝑥 , ∀𝑣 ∈ 𝑆𝑥𝑀,

where 𝑓 ( 𝑗 ) ∈𝐶∞(𝑆𝑀) are locally defined functions. As before, each 𝑓 ( 𝑗 ) can be in turn
decomposed into spherical harmonics. In other words, we can write 𝑓 =

∑
𝑘≥0 𝑓𝑘 , where

𝑓𝑘 ∈𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸).
As before, we can define the degree of 𝑓 ∈𝐶∞(𝑆𝑀, E) and we say that 𝑓 has finite Fourier

content if its expansion in spherical harmonics only contains a finite number of terms. The
operator X maps

X :𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸) →𝐶∞(𝑀,Ω𝑘−1 ⊗ 𝐸) ⊕ 𝐶∞(𝑀,Ω𝑘+1 ⊗ 𝐸) (4·25)

and can be decomposed as X =X+ +X− , where, if 𝑢 ∈𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸), X±𝑢 ∈
𝐶∞(𝑀,Ω𝑘±1 ⊗ 𝐸) denote the orthogonal projections on the twisted spherical harmonics
of degree 𝑘 ± 1. The operator X+ is elliptic and thus has finite-dimensional kernel whereas
X− is of divergence type. Moreover, X∗

+ = −X− , where the adjoint is computed with respect
to the canonical 𝐿2 scalar product on 𝑆𝑀 induced by the Sasaki metric and the metric on 𝐸 .
We also refer to the original articles of Guillemin-Kazhdan [16, 17] for a description of these
facts and to [19] for a more modern exposition. It was shown in [19, Theorem 4.1] (see also
[10, Corollary 4.2] for a short argument) that flow-invariant sections, i.e. smooth sections in
ker X have finite Fourier content.
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5. Symmetric tensors versus polynomial functions

Considering symmetric tensors in Sym𝑘T𝑀 as (pointwise) homogeneous polynomials of
degree 𝑘 on T𝑀 , gives linear maps

𝜋∗𝑘 :𝐶∞(𝑀, Sym𝑘T𝑀) →𝐶∞(𝑆𝑀), (𝜋∗𝑘𝐾) (𝑣) := 1
𝑘!𝑔(𝐾, 𝑣

𝑘). (5·26)

Note here that 1
𝑘!𝑣

𝑘 = 𝑣 ⊗ · · · ⊗ 𝑣, where the tensor product is repeated 𝑘 times.

Lemma 5·1. The linear map

𝜋∗ :=
⊕
𝑘≥0

𝜋∗𝑘 :𝐶∞ (
𝑀, SymT𝑀

)
→𝐶∞(𝑆𝑀)

is an algebra homomorphism.

Proof. Using the bilinearity of the symmetric product it suffices to prove 𝜋∗(𝑎 · 𝑏) =
(𝜋∗𝑎) (𝜋∗𝑏) where 𝑎 = 𝑎1 · · · 𝑎𝑘 and 𝑏 = 𝑏1 · · · 𝑏𝑙 , for some 𝑎𝑖 , 𝑏 𝑗 ∈𝐶∞(𝑀, Sym1T𝑀). But
this follows from

(𝜋∗𝑎) (𝜋∗𝑏) = 1
𝑘!𝑔(𝑎, 𝑣

𝑘) 1
𝑙!𝑔(𝑏, 𝑣

𝑙) = 𝑔(𝑎1, 𝑣) · · · 𝑔(𝑎𝑘 , 𝑣)𝑔(𝑏1, 𝑣) · · · 𝑔(𝑏𝑙 , 𝑣)
= 1

(𝑘+𝑙)!𝑔(𝑎 · 𝑏, 𝑣
𝑘+𝑙) = 𝜋∗(𝑎 · 𝑏),

which completes the proof. □

The following is standard and is a consequence of the identification of spherical harmonics
with harmonic homogeneous polynomials (e.g. see [3], Chapter C.I).

Lemma 5·2. The above maps induce pointwise isomorphisms

𝜋∗𝑘 : Sym𝑘
0 T𝑥𝑀

∼−→Ω𝑘 (𝑥), (5·27)

for every 𝑥 ∈ 𝑀 and for every integer 𝑘 ≥ 0.

If 𝐸 is any vector bundle over 𝑀 and E is its pull-back to 𝑆𝑀 , the spaces of sections
𝐶∞(𝑀, SymT𝑀 ⊗ 𝐸) and 𝐶∞(𝑆𝑀, E) are modules over the algebras 𝐶∞(𝑀, SymT𝑀) and
𝐶∞(𝑆𝑀) respectively, and we can extend the linear maps above to linear maps

𝜋∗𝑘 :𝐶∞(𝑀, Sym𝑘T𝑀 ⊗ 𝐸) →𝐶∞(𝑆𝑀, E), 𝜋∗𝑘 (𝐾 ⊗ 𝜉) (𝑣) := 𝜋∗𝑘 (𝐾)𝜋
∗𝜉 (5·28)

compatible with the module structures in sense that

𝜋∗𝑘 (𝐾) · 𝜋
∗
𝑙 (𝐾

′ ⊗ 𝜉) = 𝜋∗𝑘+𝑙 ((𝐾 · 𝐾 ′) ⊗ 𝜉) (5·29)

for every 𝐾 ∈𝐶∞(𝑀, Sym𝑘T𝑀), 𝐾 ′ ∈𝐶∞(𝑀, Sym𝑙T𝑀) and 𝜉 ∈𝐶∞(𝑀, 𝐸). In particular,
since

𝜋∗2(L) (𝑣) = 1
2𝑔(L, 𝑣 · 𝑣) =

1
2𝑔(𝑣⌟L, 𝑣) = 1

2𝑔(2𝑣, 𝑣) = 1, ∀𝑣 ∈ 𝑆𝑀,

we have 𝜋∗
𝑘+2(L𝐾) = 𝜋

∗
𝑘
(𝐾) for every 𝐾 ∈𝐶∞(𝑀, Sym𝑘T𝑀).

We now relate the operators X, X+ and X− with the operators D, D0 and D∗
0 defined in

Section 2·2.
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Lemma 5·3. The following relation holds on sections of Sym𝑘T𝑀 ⊗ 𝐸:

X𝜋∗𝑘 = 𝜋
∗
𝑘+1D, (5·30)

while on sections of Sym𝑘
0 T𝑀 ⊗ 𝐸 we have:

X+𝜋
∗
𝑘 = 𝜋∗

𝑘+1D0, (5·31)
X−𝜋

∗
𝑘 = − 1

𝑛+2𝑘−2𝜋
∗
𝑘−1D∗

0. (5·32)

Proof. For the first equation, it is enough to check it on decomposable sections Ψ = 𝐾 ⊗ 𝜉,
with 𝐾 ∈𝐶∞(𝑀, Sym𝑘T𝑀) and 𝜉 ∈𝐶∞(𝑀, 𝐸). Then

X𝜋∗𝑘Ψ = ∇E
𝑋 (𝜋

∗
𝑘 (𝐾)𝜋

∗𝜉) = 𝑋 (𝜋∗𝑘 (𝐾))𝜋
∗𝜉 + 𝜋∗𝑘 (𝐾)𝜋

∗(∇𝐸
𝑋𝜉)

and

𝜋∗𝑘+1DΨ = 𝜋∗𝑘+1(D𝐾 ⊗ 𝜉 + e𝑖 · 𝐾 ⊗ ∇𝐸
e𝑖𝜉) = 𝜋

∗
𝑘+1(D𝐾)𝜋

∗𝜉 + 𝑔(e𝑖 , 𝑣)𝜋∗𝑘 (𝐾)∇
E
e𝑖𝜋

∗𝜉

= 𝜋∗𝑘+1(D𝐾)𝜋
∗𝜉 + 𝜋∗𝑘 (𝐾)∇

E
𝑋𝜋

∗𝜉 = 𝜋∗𝑘+1(D𝐾)𝜋
∗𝜉 + 𝜋∗𝑘 (𝐾)𝜋

∗(∇𝐸
𝑣 𝜉),

where we identified e𝑖 with their horizontal lifts to 𝑆𝑀 and used that 𝑑𝜋(𝑋) = 𝑣. It remains
to prove that 𝑋 (𝜋∗

𝑘
(𝐾)) = 𝜋∗

𝑘+1(D𝐾). Let 𝑣 ∈ 𝑆𝑀 be any vector and denote by 𝑥 := 𝜋(𝑣). The
geodesic in 𝑀 determined by (𝑥, 𝑣) will be denoted by 𝛾𝑡 . Then the integral curve of 𝑋
through 𝑣 is ¤𝛾𝑡 . We can thus compute

𝑋 (𝜋∗𝑘 (𝐾)) (𝑣) =
𝑑

𝑑𝑡

����
𝑡=0
𝜋∗𝑘 (𝐾) ( ¤𝛾𝑡 ) =

1
𝑘!
𝑑

𝑑𝑡

����
𝑡=0
𝑔(𝐾, ¤𝛾𝑘𝑡 )

=
1
𝑘!
𝑔(∇ ¤𝛾0𝐾, ¤𝛾𝑘0 )

(2·5)
=

1
(𝑘 + 1)!𝑔(D𝐾, 𝑣

𝑘+1) = 𝜋∗𝑘+1(D𝐾) (𝑣),

where in the third equality we used that ∇ ¤𝛾0 ¤𝛾0 = 0. This proves (5·30). Using this equation
applied to some twisted trace-free symmetric tensor Ψ ∈𝐶∞(𝑀, Sym𝑘

0 T𝑀 ⊗ 𝐸) together
with (2·4) we then obtain

X+𝜋
∗
𝑘Ψ +X−𝜋

∗
𝑘Ψ = 𝜋∗𝑘+1DΨ = 𝜋∗𝑘+1

(
D0(Ψ) − 1

𝑛+2𝑘−2 LD∗
0(Ψ)

)
= 𝜋∗𝑘+1(D0(Ψ)) − 1

𝑛+2𝑘−2𝜋
∗
𝑘−1(D

∗
0(Ψ)).

Comparing the components in Ω𝑘+1 ⊗ 𝐸 and Ω𝑘−1 ⊗ 𝐸 yields (5·31)–(5·32) at once. □

Consider now the operator ∇V :𝐶∞(𝑆𝑀, E) →𝐶∞(𝑆𝑀,N ⊗ E) ⊂ 𝐶∞(𝑆𝑀, 𝜋∗(T𝑀) ⊗
E) and its formal adjoint ∇∗

V :𝐶∞(𝑆𝑀, 𝜋∗(T𝑀) ⊗ E) →𝐶∞(𝑆𝑀, E). Define the bundle
map

𝑆𝑘 : Sym𝑘T𝑀 ⊗ 𝐸→ Sym𝑘−1T𝑀 ⊗ (𝐸 ⊗ T𝑀), 𝑆𝑘 (𝐾 ⊗ 𝜉) :=
∑︁
𝑖

(e𝑖⌟𝐾) ⊗ (𝜉 ⊗ e𝑖),

where (e𝑖) is some local orthonormal frame of T𝑀 . Let 𝜋N : 𝜋∗T𝑀→N be the orthogonal
projection. By definition, for every section 𝐾 ⊗ 𝜉 of Sym𝑘T𝑀 ⊗ 𝐸 and at any 𝑣 ∈ 𝑆𝑀 we
have:

𝜋∗𝑘−1𝑆𝑘 (𝐾 ⊗ 𝜉) = 𝜋N𝜋∗𝑘−1𝑆𝑘 (𝐾 ⊗ 𝜉) +
∑︁
𝑖

1
(𝑘 − 1)!𝑔(e𝑖⌟𝐾, 𝑣

𝑘−1) (𝑔(e𝑖 , 𝑣)𝑣 ⊗ 𝜉)

= 𝜋N𝜋
∗
𝑘−1𝑆𝑘 (𝐾 ⊗ 𝜉) + 𝑘𝜋∗𝑘 (𝐾 ⊗ 𝜉) ⊗ 𝑣,
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thus showing that for every Ψ ∈𝐶∞(𝑀, Sym𝑘T𝑀 ⊗ 𝐸),

𝜋∗𝑘−1𝑆𝑘Ψ = 𝜋N𝜋
∗
𝑘−1𝑆𝑘Ψ + 𝑘 𝜋∗𝑘Ψ ⊗ 𝑣. (5·33)

It is possible to give a formula relating 𝑆𝑘 and ∇V:

Lemma 5·4. The following relation holds for sections of Sym𝑘
0 T𝑀 ⊗ 𝐸:

∇V𝜋
∗
𝑘 = 𝜋N𝜋

∗
𝑘−1𝑆𝑘 . (5·34)

Moreover, for every 𝐾 ⊗ 𝜉 ∈𝐶∞(𝑀, Sym𝑘
0 T𝑀 ⊗ 𝐸), and 𝑤 ∈𝐶∞(𝑀, T𝑀),

∇∗
V𝜋

∗
𝑘 (𝐾 ⊗ (𝑤 ⊗ 𝜉)) = −𝜋∗𝑘−1((𝑤⌟𝐾) ⊗ 𝜉) + 𝑘𝜋

∗
𝑘+1((𝑤 · 𝐾) ⊗ 𝜉). (5·35)

Proof. Let 𝑣, 𝑤 ∈ 𝑆𝑥𝑀 with 𝑤 ⊥ 𝑣. We denote by 𝑣𝑡 := cos 𝑡 𝑣 + sin 𝑡 𝑤 the curve in 𝑆𝑥𝑀
which satisfies 𝑣0 = 𝑣 and ¤𝑣0 = 𝑤. We then compute

𝑤(𝜋∗𝑘 (𝐾)) = 𝑑
𝑑𝑡

��
𝑡=0𝜋

∗
𝑘 (𝐾) (𝑣𝑡 ) = 1

𝑘!
𝑑
𝑑𝑡

��
𝑡=0𝑔(𝐾, 𝑣

𝑘
𝑡 ) = 1

(𝑘−1)!𝑔(𝐾, 𝑤 · 𝑣𝑘−1)

= 1
(𝑘−1)!𝑔(𝑤⌟𝐾, 𝑣

𝑘−1),
(5·36)

whence for Ψ := 𝐾 ⊗ 𝜉 we have

∇V𝜋
∗
𝑘 (Ψ) (𝑤) = ∇E

𝑤 (𝜋∗𝑘 (𝐾)𝜋
∗𝜉) = 𝑤(𝜋∗𝑘 (𝐾))𝜋

∗𝜉 = 1
(𝑘−1)!𝑔(𝑤⌟𝐾, 𝑣

𝑘−1)𝜋∗𝜉,

where we identified 𝑤 with its vertical lift. Then, computing the right hand side at the point
𝑣 yields

𝜋N𝜋
∗
𝑘−1𝑆𝑘 (Ψ) (𝑤) = 𝜋∗𝑘−1

(∑︁
𝑖

(e𝑖⌟𝐾) ⊗ (e𝑖 ⊗ 𝜉)
)
(𝑤) =

∑︁
𝑖

𝜋∗𝑘−1(e𝑖⌟𝐾)𝑔(e𝑖 , 𝑤)𝜋
∗𝜉

= 1
(𝑘−1)!

∑︁
𝑖

𝑔(e𝑖⌟𝐾, 𝑣𝑘−1)𝑔(e𝑖 , 𝑤)𝜋∗𝜉 = 1
(𝑘−1)!𝑔(𝑤⌟𝐾, 𝑣

𝑘−1)𝜋∗𝜉,

thus proving (5·34).
We now remark that since 𝑆𝑀→𝑀 is a Riemannian submersion, the formal adjoint

of the operator ∇V can be written as ∇∗
V(𝜎 ⊗ 𝜓) = −∑

𝑖 f𝑖⌟∇E
f𝑖 (𝜎 ⊗ 𝜓) for all sections 𝜎 ∈

𝐶∞(𝑆𝑀, 𝜋∗T𝑀), and 𝜓 ∈𝐶∞(𝑆𝑀, E), where (f𝑖) denotes a local orthonormal frame of
V ⊂ T(𝑆𝑀) and the interior product is taken with respect to the bilinear formV ⊗ 𝜋∗T𝑀→R
determined by the metric 𝑔, after identification of V𝑣 with the orthogonal complement of 𝑣
in 𝜋∗(T𝑀)𝑣 for every 𝑣 ∈ 𝑆𝑀 . We then denote by 𝑤⊥ := 𝑤 − 𝑔(𝑤, 𝑣)𝑣 ∈V𝑣 at some 𝑣 ∈ 𝑆𝑀
and compute:

∇∗
V𝜋

∗
𝑘 (𝐾 ⊗ (𝑤 ⊗ 𝜉)) = −

∑︁
𝑖

f𝑖⌟∇E
f𝑖
(
𝜋∗𝑘 (𝐾 ⊗ (𝑤 ⊗ 𝜉))

)
= −

∑︁
𝑖

f𝑖⌟
(
f𝑖 (𝜋∗𝑘 (𝐾))𝜋

∗(𝑤 ⊗ 𝜉)
)

= −𝑤⊥(𝜋∗𝑘 (𝐾))𝜋
∗(𝜉) (5·36)

= − 1
(𝑘−1)!𝑔(𝑤

⊥⌟𝐾, 𝑣𝑘−1)𝜋∗(𝜉)

= −𝜋∗𝑘−1(𝑤⌟𝐾)𝜋
∗(𝜉) + 1

(𝑘−1)!𝑔(𝐾, 𝑣
𝑘)𝜋∗1(𝑤)𝜋

∗(𝜉)
= −𝜋∗𝑘−1((𝑤⌟𝐾) ⊗ 𝜉) + 𝑘𝜋

∗
𝑘+1((𝑤 · 𝐾) ⊗ 𝜉).

□

Finally, we compute the action of the operator 𝑃𝐸
3 pulled back to the unit sphere bundle.
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Lemma 5·5. For every Ψ ∈𝐶∞(𝑀, Sym𝑘

0 T𝑀 ⊗ 𝐸), and 𝑤 ∈𝐶∞(𝑀, T𝑀),

𝑍𝑘𝜋
∗
𝑘Ψ = 𝜋∗𝑘𝑃

𝐸
3 Ψ, 𝑍∗

𝑘𝜋
∗
𝑘 (𝑤 ⊗ Ψ) = 𝜋∗𝑘 ((𝑃

𝐸
3 )

∗(𝑤 ⊗ Ψ)) (5·37)

where 𝑍𝑘 :𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸) →𝐶∞(𝑆𝑀,N ⊗ E) ⊂ 𝐶∞(𝑆𝑀, 𝜋∗T𝑀 ⊗ E) is the operator
defined by

𝑍𝑘 𝑓 := ∇H 𝑓 − 1
𝑘+1∇VX+ 𝑓 + 1

𝑛+𝑘−3∇VX− 𝑓 (5·38)

and

𝑃𝐸
3 :𝐶∞(𝑀, Sym𝑘

0 T𝑀 ⊗ 𝐸) →𝐶∞(𝑀, Sym𝑘
0 T𝑀 ⊗ (T𝑀 ⊗ 𝐸))

is the first order differential operator appearing in (3·22).

Proof. It is enough to check the first relation, the second following by taking the met-
ric adjoints. By definition we have 𝑃𝐸

3 = ∇𝐸 − 𝑃𝐸
1 − 𝑃𝐸

2 . Let us first explicit the last two
operators. Using (3·14)–(3·16) we compute

𝑃𝐸
1 Ψ =

1
𝑘 + 1

(q𝐸
1 )

∗q𝐸
1 (∇𝐸Ψ) = 1

𝑘 + 1

∑︁
𝑖

(e𝑖⌟D0Ψ) ⊗ e𝑖 =
1

𝑘 + 1
𝑆𝑘+1D0Ψ.

From (5·31), (5·33) and (5·34) we thus get at any 𝑣 ∈ 𝑆𝑀:

𝜋∗𝑘𝑃
𝐸
1 Ψ =

1
𝑘 + 1

𝜋N𝜋
∗
𝑘𝑆𝑘+1D0Ψ + 𝜋∗𝑘+1D0Ψ ⊗ 𝑣 = 1

𝑘 + 1
∇VX+𝜋

∗
𝑘Ψ +X+𝜋

∗
𝑘Ψ ⊗ 𝑣. (5·39)

Similarly, from (3·17)–(3·19) we obtain

𝑃𝐸
2 Ψ = 𝑛+2𝑘−4

(𝑛+2𝑘−2) (𝑛+𝑘−3) (q
𝐸
2 )

∗q𝐸
2 (∇𝐸Ψ) = − 𝑛+2𝑘−4

(𝑛+2𝑘−2) (𝑛+𝑘−3) (q
𝐸
2 )

∗D∗
0Ψ

= − 𝑛+2𝑘−4
(𝑛+2𝑘−2) (𝑛+𝑘−3)

∑︁
𝑖

(
(e𝑖 · D∗

0Ψ) ⊗ e𝑖 − 1
𝑛+2𝑘−4 L(e𝑖⌟D∗

0Ψ) ⊗ e𝑖
)
.

Applying this equation at some 𝑣 ∈ 𝑆𝑀 and using (5·32), (5·33) and (5·34) we get:

𝜋∗𝑘𝑃
𝐸
2 Ψ = − 𝑛+2𝑘−4

(𝑛+2𝑘−2) (𝑛+𝑘−3)

∑︁
𝑖

(
(𝜋∗1e𝑖 · 𝜋∗𝑘−1D∗

0Ψ) ⊗ e𝑖 − 1
𝑛+2𝑘−4𝜋

∗
𝑘−2(e𝑖⌟D∗

0Ψ ⊗ e𝑖)
)

= 𝑛+2𝑘−4
𝑛+𝑘−3

∑︁
𝑖

(𝑔(e𝑖 , 𝑣) · X−𝜋
∗
𝑘Ψ) ⊗ e𝑖 + 1

(𝑛+2𝑘−2) (𝑛+𝑘−3) (𝜋
∗
𝑘−2𝑆𝑘−1D∗

0Ψ)

= 𝑛+2𝑘−4
𝑛+𝑘−3 X−𝜋

∗
𝑘Ψ ⊗ 𝑣 + 1

(𝑛+2𝑘−2) (𝑛+𝑘−3) (∇V𝜋
∗
𝑘−1D∗

0Ψ + (𝑘 − 1)𝜋∗𝑘−1D∗
0Ψ ⊗ 𝑣)

=X−𝜋
∗
𝑘Ψ ⊗ 𝑣 − 1

𝑛+𝑘−3∇VX−𝜋
∗
𝑘Ψ.

(5·40)

Finally, using the fact that 𝜋 : 𝑆𝑀→𝑀 is a Riemannian submersion, we readily obtain at
any 𝑣 ∈ 𝑆𝑀:

𝜋∗𝑘 (∇
𝐸Ψ) = ∇H𝜋

∗
𝑘Ψ +X𝜋∗𝑘Ψ ⊗ 𝑣. (5·41)

From (5·39)–(5·41) we thus get:

𝜋∗𝑘𝑃
𝐸
3 Ψ = 𝜋∗𝑘 (∇

𝐸Ψ − 𝑃𝐸
1 Ψ − 𝑃𝐸

2 Ψ) = ∇H𝜋
∗
𝑘Ψ − 1

𝑘 + 1
∇VX+𝜋

∗
𝑘Ψ + 1

𝑛+𝑘−3∇VX−𝜋
∗
𝑘Ψ,

which proves the lemma. □
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We note that as a consequence of the preceding lemma, the operator 𝑍𝑘 defined in (5·38)

does not change the degree of the section it acts on (since 𝑃𝐸
3 does not change the degree).

6. Twisted Pestov identity
The Pestov identity is a classical identity in Riemannian geometry, see [16, 14, 32] and

[19] for the twisted version. Our aim is to obtain a pointwise version of this identity from the
twisted Weitzenböck formula. Let us start with introducing the relevant curvature operators
in our setting.

If (𝐸, ∇𝐸) is a vector bundle with metric connection, we denote by

𝑅𝐸 ∈𝐶∞(𝑀,Λ2T∗𝑀 ⊗ End(𝐸)),

its curvature. Let E := 𝜋∗𝐸 denote as before the pull-back of 𝐸 to 𝑆𝑀 endowed with the
pull-back connection ∇E := 𝜋∗∇𝐸 and curvature

𝑅E ∈𝐶∞(𝑆𝑀,Λ2T∗𝑀 ⊗ End(E)),

satisfying 𝑅E
𝑋,𝑌

(𝜋∗𝜉) = 𝜋∗(𝑅𝐸
𝑋,𝑌

𝜉) for all 𝑋, 𝑌 ∈ T𝑀 (identified with their horizontal lifts)
and ∀𝜉 ∈𝐶∞(𝑀, 𝐸). Consider the vector bundle morphism F E : E →N ⊗ E defined by:

⟨F E (𝜓), 𝑤 ⊗ 𝜓′⟩ := ⟨𝑅E
𝑣,𝑤𝜓, 𝜓

′⟩, (6·42)

for every 𝑣 ∈ 𝑆𝑀, 𝑤 ∈ N𝑣 and 𝜓, 𝜓′ ∈ E𝑣 . The value of F E on pull-backs of sections of 𝐸
can be explicitly computed as

F E (𝜋∗𝜉) =
∑︁
𝑖

e⊥𝑖 ⊗ 𝜋∗(𝑅𝐸
𝑣,e𝑖𝜉), (6·43)

where (e𝑖) is a local orthonormal frame. We also define a vector bundle morphism R :
N ⊗ E →N ⊗ E by:

R(𝑤 ⊗ 𝜓) := (𝑅𝑤,𝑣𝑣) ⊗ 𝜓, (6·44)

for every 𝑣 ∈ 𝑆𝑀, 𝑤 ∈ N𝑣 and 𝜓 ∈ E𝑣 , where 𝑅 is the Riemann curvature tensor of (𝑀, 𝑔).
We will now give the relations between the operators R and F E on one side, and 𝑞(𝑅)

and 𝑅𝐸 on the other side.

Lemma 6·1. For every 𝐾 ∈𝐶∞(𝑀, Sym𝑘
0 T𝑀) and 𝜉 ∈𝐶∞(𝑀, 𝐸), the following relations

hold:

∇∗
VR∇V𝜋

∗
𝑘 (𝐾 ⊗ 𝜉) = 𝜋∗𝑘 ((𝑞(𝑅)𝐾) ⊗ 𝜉), (6·45)

∇∗
VF

E𝜋∗𝑘 (𝐾 ⊗ 𝜉) = 1
2𝜋

∗
𝑘

(∑︁
𝑖, 𝑗

(e𝑖 ∧ e 𝑗)∗𝐾 ⊗ 𝑅𝐸
e𝑖 ,e 𝑗

𝜉

)
. (6·46)
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Proof. Using (5·34) we compute at some 𝑣 ∈ 𝑆𝑀 the left-hand side of (6·45) as:

∇∗
VR∇V𝜋

∗
𝑘 (𝐾 ⊗ 𝜉) =

∑︁
𝑖

∇∗
VR

(
𝜋N

(
𝜋∗𝑘−1(e𝑖⌟𝐾) ⊗ (e𝑖 ⊗ 𝜉)

) )
=

∑︁
𝑖

∇∗
VR

(
𝜋∗𝑘−1(e𝑖⌟𝐾)𝜋N (e𝑖) ⊗ 𝜋∗𝜉

)
=

∑︁
𝑖

∇∗
V

(
𝜋∗𝑘−1(e𝑖⌟𝐾)𝑅e𝑖 ,𝑣𝑣 ⊗ 𝜋∗𝜉

)
=

∑︁
𝑖, 𝑗 ,𝑙

∇∗
V

(
(𝜋∗1e 𝑗) (𝜋∗1e𝑙)𝜋∗𝑘−1(e𝑖⌟𝐾)𝑅e𝑖 ,e 𝑗

e𝑙 ⊗ 𝜋∗𝜉
)

=
∑︁
𝑖, 𝑗 ,𝑙

∇∗
V

(
𝜋∗𝑘+1(e 𝑗 · e𝑙 · (e𝑖⌟𝐾))𝑅e𝑖 ,e 𝑗

e𝑙 ⊗ 𝜋∗𝜉
)
.

Using (5·35) we can rewrite this last sum as

−
∑︁
𝑖, 𝑗 ,𝑙

𝜋∗𝑘

(
𝑅e𝑖 ,e 𝑗

e𝑙⌟(e 𝑗 · e𝑙 · (e𝑖⌟𝐾)) ⊗ 𝜉
)
+ (𝑘 + 1)

∑︁
𝑖, 𝑗 ,𝑙

𝜋∗𝑘+2

(
𝑅e𝑖 ,e 𝑗

e𝑙 · e 𝑗 · e𝑙 · (e𝑖⌟𝐾) ⊗ 𝜉
)
.

By Lemma 3·2 the first summand is equal to 𝜋∗
𝑘
((𝑞(𝑅)𝐾) ⊗ 𝜉). The second summand

vanishes since
∑

𝑙 𝑅e𝑖 ,e 𝑗
e𝑙 · e𝑙 = 0. This proves (6·45). Similarly, using (6·43) we compute at

𝑣 ∈ 𝑆𝑀:

∇∗
VF

E𝜋∗𝑘 (𝐾 ⊗ 𝜉) =
∑︁
𝑖

∇∗
V

(
𝜋∗𝑘 (𝐾) (e

⊥
𝑖 ⊗ 𝜋∗(𝑅𝐸

𝑣,e𝑖𝜉))
)

=
∑︁
𝑖

∇∗
V

(
𝜋∗𝑘 (𝐾) (e𝑖 ⊗ 𝜋

∗(𝑅𝐸
𝑣,e𝑖𝜉))

)
=

∑︁
𝑖, 𝑗

∇∗
V

(
𝜋∗𝑘 (𝐾)𝜋

∗
1(e 𝑗) (e𝑖 ⊗ 𝜋∗(𝑅𝐸

e 𝑗 ,e𝑖𝜉))
)

=
∑︁
𝑖, 𝑗

∇∗
V

(
𝜋∗𝑘+1(e 𝑗 · 𝐾) (e𝑖 ⊗ 𝜋∗(𝑅𝐸

e 𝑗 ,e𝑖𝜉))
)

(5·35)
= −

∑︁
𝑖, 𝑗

𝜋∗𝑘 (e𝑖⌟(e 𝑗 · 𝐾))𝜋∗(𝑅𝐸
e 𝑗 ,e𝑖𝜉)

+(𝑘 + 1)
∑︁
𝑖, 𝑗

𝜋∗𝑘+2(e𝑖 · e 𝑗 · 𝐾)𝜋∗(𝑅𝐸
e 𝑗 ,e𝑖𝜉).

The second summand vanishes because of the skew-symmetry of 𝑅𝐸
e 𝑗 ,e𝑖 in 𝑖 and 𝑗 , whereas

the first summand is equal to

−
∑︁
𝑖, 𝑗

𝜋∗𝑘

(
e𝑖⌟(e 𝑗 · 𝐾) ⊗ 𝑅𝐸

e 𝑗 ,e𝑖𝜉
)
=

∑︁
𝑖, 𝑗

𝜋∗𝑘

(
e 𝑗 · (e𝑖⌟𝐾) ⊗ 𝑅𝐸

e𝑖 ,e 𝑗
𝜉

)
= 1

2

∑︁
𝑖, 𝑗

𝜋∗𝑘

(
(e𝑖 ∧ e 𝑗)∗𝐾 ⊗ 𝑅𝐸

e𝑖 ,e 𝑗
𝜉

)
.

□

Combining (3·11) with Lemma 6·1, we obtain for every section of Sym𝑘
0 T𝑀 ⊗ 𝐸 :

𝜋∗𝑘𝑞(𝑅)
𝐸 = (∇∗

VR∇V + ∇∗
VF

E)𝜋∗𝑘 . (6·47)
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Then, using Lemma 5·3 we compute for every section of Sym𝑘

0 T𝑀 ⊗ 𝐸 :

𝜋∗𝑘D∗
0D0 = −(𝑛 + 2𝑘)X−𝜋

∗
𝑘+1D0 = −(𝑛 + 2𝑘)X−X+𝜋

∗
𝑘 , (6·48)

and similarly

𝜋∗𝑘D0D∗
0 =X+𝜋

∗
𝑘−1D∗

0 = −(𝑛 + 2𝑘 − 2)X+X−𝜋
∗
𝑘 . (6·49)

Finally, by (5·37) we obtain

𝜋∗𝑘 (𝑃
𝐸
3 )

∗𝑃𝐸
3 = 𝑍∗

𝑘𝜋
∗
𝑘𝑃

𝐸
3 = 𝑍∗

𝑘𝑍𝑘𝜋
∗
𝑘 . (6·50)

Altogether, we obtain the following:

Proposition 6·2 (Pointwise Localized Pestov identity). On𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸) ⊂ 𝐶∞(𝑆𝑀, E),
the following relation holds:

∇∗
VR∇V + ∇∗

VF
E =

𝑘 (𝑛+2𝑘 )
𝑘+1 X−X+ − (𝑛+𝑘−2) (𝑛+2𝑘−4)

(𝑛+𝑘−3) X+X− + 𝑍∗
𝑘𝑍𝑘 . (6·51)

Proof. Every section ofΩ𝑘 ⊗ 𝐸 can be written as 𝜋∗
𝑘
Ψ for some twisted symmetric tensorΨ ∈

𝐶∞(𝑀, Sym𝑘
0 T𝑀 ⊗ 𝐸). Then the twisted Weitzenböck formula (Proposition 3·3) together

with (6·47)–(6·50) gives directly (6·51). □

Applying (6·51) toΨ ∈𝐶∞(𝑀,Ω𝑘 ⊗ 𝐸), pairing withΨ and then integrating over 𝑆𝑀 with
respect to the Liouville measure, we retrieve the localized Pestov identity in its integrated
version [11, Lemma 2.3].
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