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Abstract. We study left invariant locally conformally product structures on simply

connected Lie groups and give their complete description in the solvable unimodular

case. Based on previous classification results, we then obtain the complete list of solvable

unimodular Lie algebras up to dimension 5 which carry LCP structures, and study the

existence of lattices in the corresponding simply connected Lie groups.

1. Introduction

A locally conformally product (LCP) structure on a compact connected manifold M is
a non-flat Riemannian metric h with reducible holonomy on the universal cover M̃ such
that π1(M) acts by homotheties with respect to h, not of all which are isometries. In
particular (M̃, h) has to be incomplete, so the fundamental group of M is infinite.

It is worth noting that there is a strong similarity between LCP structures and locally
conformally Kähler (LCK) structures, which is reflected in the terminology used. Indeed,
an LCK structure on a compact connected manifold M can be defined as a Kähler metric
h on the universal cover M̃ with respect to which π1(M) acts by homotheties, not of all
which are isometries.

Just like in the LCK setting, an LCP manifold is not canonically endowed with a
Riemannian metric. Instead, it carries a canonical conformal structure c (induced by h)
and a closed, non-exact Weyl structureD with reducible holonomy, which is the projection
of the Levi-Civita connection of h.

Conversely, every conformal manifold (M, c) with a closed non-exact Weyl structure D
with reducible but non-flat holonomy is LCP, the metric h on the universal cover being
defined as the unique (up to a scalar factor) Riemannian metric on M̃ whose Levi-Civita
connection is the lift of D.

Note that LCP structures are not easy to construct. In fact it was conjectured in [4]
that they simply do not exist, based on some evidence related to a result of Gallot on
the irreducibility or flatness of cone metrics over compact manifolds [10], and the fact
that every closed non-exact tame Weyl connection is irreducible or flat. The tameness
condition here is related to the life-time of incomplete geodesics of the connection (see [4,
Definition 3.2] for details).
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However, shortly after, an example of LCP structure was constructed by Matveev and
Nikolayevsky on a 3-dimensional solvmanifold [15]. The same authors then proved that in
the analytic setting, the universal cover (M̃, h) of any LCP manifold is globally isometric
to a Riemannian product Rq × (N, gN) where Rq is a flat Euclidean space of dimension
q ≥ 1 and (N, gN) is a (necessarily incomplete) Riemannian manifold [16]. The analiticity
assumption was later removed by Kourganoff [12], who also showed that the metric of the
non-flat factor N is irreducible.

Note that although the universal cover (M̃, h) of any LCP manifold is a simply con-
nected Riemannian manifold with reducible holonomy, the global de Rham decomposition
theorem does not hold in the incomplete setting, so it is already remarkable that (M̃, h)
has a global product decomposition. Even more striking, Kourganoff’s result says that
one of the factors of this product is flat and complete, and the other factor is irreducible.

It turns out that examples of LCP manifolds existed in the literature since 2005, but
were not recognized as such until recently, since they were defined within the realm of
complex geometry. These examples are the so-called OT manifolds, introduced by Oel-
jeklaus and Toma [19] by means of number fields with s real embeddings and 2t complex
embeddings. For t = 1 the corresponding OT manifolds carry LCK structures, whose
corresponding Kähler metrics are reducible (with a flat factor of dimension 2). In fact,
building on previous works by Oeljeklaus and Toma [19] and Dubickas [8], Deaconu and
Vuletescu [7] have recently shown that an OT manifold carries LCK metrics if and only
if t = 1.

LCP structures have been thoroughly investigated by Flamencourt, who showed that
every OT manifold carries LCP structures [9, Corollary 4.6] and constructed several new
families of examples using number fields theory, generalising the OT examples. He also
proved a number of interesting features of LCP structures, like the fact that all homothety
factors of the action of the fundamental group on the universal cover are algebraic numbers
[9, Proposition 3.11]. This is a remarkable difference with the case of LCK manifolds,
where no restriction exists on the homothety factors.

It was noticed by Kasuya [11, Section 6] that every OT manifold is isomorphic, as a
complex manifold, to a solvmanifold – i.e. to the quotient of a simply connected solvable
Lie group by a lattice – with left invariant complex structure. It is thus natural to study
the more general problem of LCP structures on solvmanifolds. This is the main topic of
the present paper. Here is an outline of our results.

In Section 2 we recall the basics of Riemannian Lie groups, and some extensions to
the conformal settings. In Section 3 we define LCP structures on Lie algebras and show
that they correspond to left invariant LCP structures on the compact quotients of the
corresponding simply connected Lie groups, whenever such compact quotients exist.

A general construction method for unimodular LCP Lie algebras is given in Section 4,
starting from a non-unimodular metric Lie algebra h and an orthogonal representation of
h/[h, h]. We also define amalgamated products of adapted LCP Lie algebras and show
that they are again LCP.
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In Section 5 we focus on the unimodular solvable case and show that every solvable LCP
algebra is obtained by the previous construction. In particular, we obtain the classification
of almost abelian unimodular LCP Lie algebras.

In Section 6 we describe LCP algebras with flat space of codimension at most 3, and in
Section 7 we obtain the full list of unimodular solvable Lie algebras of dimension up to 5
which carry LCP structures whose flat space is non-trivial and of positive codimension.

Finally, in Section 8 we study the problem of existence of lattices in the simply connected
Lie groups corresponding to the LCP Lie algebras constructed above.
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2. LCP structures on Riemannian Lie groups

2.1. LCP structures on compact Riemannian manifolds. As explained in the Intro-
duction, an LCP structure on a compact manifold M is a conformal structure c together
with a closed non-exact Weyl structure D with reducible holonomy. We will assume
throughout the paper that the dimension of M is at least 3.

To make things more precise, let us fix any Riemannian metric g in the conformal class
c. Then the Weyl structure D can be written as D = ∇θ := ∇g + Θ, where Θ is a (2, 1)
tensor determined by some 1-form θ, called the Lee form of D with respect to g, by the
formula

(2.1) ΘXY := θ(X)Y + θ(Y )X − g(X, Y )θ♯g ,

where θ♯g denotes the vector field which is the metric dual of θ. The Weyl structure is
called closed or exact if θ is closed or exact respectively. Note that this does not depend
on the choice of g in the conformal class, since by the formulas of conformal change of
the Levi-Civita connection ([5, Theorem 1.159]), the Lee form of D with respect to any
other metric e2fg ∈ c is θ − df . We can thus make the following alternative:

Definition 2.1. An LCP structure on a compact manifold M is a pair (g, θ) consisting
in a Riemannian metric g and a closed non-exact 1-form θ, called the Lee form, such that
the holonomy group of the connection ∇θ := ∇g + Θ – where Θ is given by (2.1) – is
reducible.

The advantage of this definition is that it can be stated only in terms of familiar objects
(a Riemannian metric and a closed 1-form). However, one should notice that the map
(g, θ) 7→ (c,D) given by c := [g] and D := ∇θ is not one-to-one, since the conformal
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structure and Weyl connection defined by a pair (g, θ) are the same as those defined by
(e2fg, θ−df), for every smooth function f . We will however adopt this point of view here.

Let (g, θ) be an LCP structure on M , and let π : M̃ → M denote the universal cover.

We consider the pull-back (g̃ := π∗g, θ̃ := π∗θ) of the LCP structure to M̃ . Since M̃ is

simply connected, there exists a function φ such that θ̃ = dφ. Using [5, Theorem 1.159]
again, we see that the Levi-Civita connection of h := e2φg̃ is given by

∇h = ∇g̃ + Θ̃ where Θ̃ = π∗Θ,

in other words, ∇h is the lift of the Weyl connection ∇θ to M̃ .
Note that every γ ∈ π1(M) acts on M̃ homothetically with respect to h. Indeed, since

γ∗θ̃ = θ̃ we get d(γ∗φ−φ) = 0, so there exists cγ ∈ R such that γ∗φ = φ+cγ, and therefore
γ∗h = e2cγh. Moreover, not all cγ vanish, since otherwise φ would be the pull-back of a
function on M , so θ would be exact.

By Definition 2.1, h has reducible holonomy. However, (M̃, h) is incomplete since other-
wise the elements γ ∈ π1(M) with cγ < 0 would have fixed points being contractions. We

thus cannot apply de Rham’s decomposition theorem, even though M̃ is simply connected.
Nonetheless, we have the following striking result:

Theorem 2.2. (Kourganoff [12, Theorem 1.5]) Let (M̃, g̃) be the universal cover of a
compact LCP manifold (M, g) and let h = e2φg̃ be the metric with reducible holonomy
in the conformal class of g̃ introduced above. Then either (M̃, h) is flat, or it is globally
isometric to a Riemannian product Rq × (N, gN), where Rq is the flat Euclidean space,
and (N, gN) is an incomplete Riemannian manifold with irreducible holonomy.

An LCP structure (g, θ) on M is called adapted if the lift of θ to the universal cover M̃
vanishes on the flat distribution Rq defined in the above result. Flamencourt proved that
for every LCP structure (g, θ) on M , there exists f ∈ C∞(M) such that (e2fg, θ − df) is
adapted [9, Proposition 3.6]. He used this result in order to construct LCP structures on
every Riemannian product where one of the factors carries an adapted LCP structure [9,
Definition 3.9].

Our main goal in this paper is to study LCP structures on compact Riemannian mani-
folds which can be written as quotients of Riemannian Lie groups by lattices (i.e. discrete
co-compact subgroups). We give the necessary prerequisites in the next subsection.

2.2. Riemannian Lie groups. A Riemannian Lie group is a Lie group G endowed with
a left invariant Riemannian metric g. The restriction of g to the Lie algebra g of G is a
scalar product, also denoted by g.

A left invariant 1-form on G is equivalent to an element θ ∈ g∗. The 1-form θ is closed
if and only if

(2.2) θ|g′ = 0,

where here, and throughout the paper, g′ denotes the commutator ideal [g, g].
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The Levi-Civita connection of g induces a linear map x 7→ ∇g
x, from g to so(g), defined

by the Koszul formula

(2.3) g(∇g
xy, z) =

1

2
(g([x, y], z)− g([x, z], y)− g([y, z], x)) ∀ x, y, z ∈ g.

Here and henceforth so(g) denotes the space of endomorphisms of g which are skew-
symmetric with respect to g.

Recall that for any Lie algebra g, one can define a 1-form Hg ∈ g∗ called the trace form
given by

(2.4) Hg(x) := tr(adx) ∀ x ∈ g.

For every x, y ∈ g we have

Hg([x, y]) = tr ad[x,y] = tr[adx, ady] = 0.

Thus Hg(g′) = 0, so Hg is closed. By definition, g is unimodular if and only if Hg = 0.
Let c denote the conformal structure on G defined by the left invariant metric g. As

explained above, every Weyl connection (i.e. torsion-free conformal connection) can be
expressed as ∇g+Θ, where Θ is defined by (2.1). If θ is left invariant, the Weyl connection
is called left invariant. We then identify θ with the corresponding linear form θ ∈ g∗.

Any left invariant Weyl connection defines a linear map ∇θ : g⊗ g → g satisfying

(2.5) ∇θ
xy = ∇g

xy + θ(x)y + θ(y)x− g(x, y)θ♯ ∀ x, y ∈ g,

where here and at several other places throughout the paper, θ♯ ∈ g denotes the g-dual
vector in g. In terms of the the skew-symmetric endomorphism θ ∧ x of g defined by
(θ ∧ x)(y) := θ(y)x− g(x, y)θ♯, this equation can also be written

(2.6) ∇θ
x = ∇g

x + θ ∧ x+ θ(x) Idg ∀ x ∈ g,

showing that

(2.7) ∇θ
x − θ(x) Idg ∈ so(g) ∀ x ∈ g.

Summarizing (2.3) and (2.5), the Weyl connection ∇θ is given by

(2.8) g(∇θ
xy, z) =

1

2
(g([x, y], z)− g([x, z], y)− g([y, z], x))

+ θ(x)g(y, z) + θ(y)g(x, z)− θ(z)g(x, y) ∀ x, y, z ∈ g.

2.3. Invariant LCP structures on Lie groups. We will now introduce the notion
of LCP structure on metric Lie algebras and prove that for every simply connected Lie
group G admitting lattices, there is a one-to-one correspondence between invariant LCP
structures on quotients of G by a lattice, and LCP structures on the (unimodular) Lie
algebra of G.

Let (g, g) be a metric Lie algebra, θ ∈ g∗ a closed 1-form and ∇θ the connection defined
in (2.8). We denote by Rθ the curvature tensor of ∇θ, that is

(2.9) Rθ
x,y = [∇θ

x,∇θ
y]−∇θ

[x,y] ∀ x, y ∈ g.
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We say that a subspace u ⊂ g is ∇θ-parallel if

(2.10) ∇θ
xu ∈ u ∀ u ∈ u, ∀ x ∈ g,

and ∇θ-flat if it is ∇θ-parallel and

(2.11) Rθ
x,yu = 0 ∀ u ∈ u, ∀ x, y ∈ g.

Definition 2.3. A locally conformally product (LCP) Lie algebra is a quadruple (g, g, θ, u)
where (g, g) is a metric Lie algebra, θ is a non-zero closed 1-form on g∗ and u is a ∇θ-flat
subspace of (g, g). The LCP structure (g, θ, u) on g is called adapted if θ|u = 0, degenerate
if u = 0, and conformally flat if u = g.

Since ∇θ does not change if the metric g is replaced by λg for some λ > 0, it follows
that the LCP condition is invariant to constant rescalings of the metric.

Note that the case of conformally flat Lie algebras has been studied by Maier [14].
As already mentioned, our main objective will be to study LCP structures on compact

Riemannian manifolds obtained as quotients of Riemannian Lie groups by lattices.
Let G be a simply connected Lie group with Lie algebra g and let Γ ⊂ G be any lattice.

It is well known that if G has a lattice then its Lie algebra g is unimodular [17].
We consider the quotient M := Γ\G. Recall that every element in the tensor algebra

of g defines a left invariant tensor on G, which is in particular Γ-invariant, so projects
to a tensor on M . From now on, let θ ∈ g∗ and g ∈ Sym2(g∗) be a closed 1-form and a
scalar product. We will denote by the same letters the corresponding closed 1-form and
Riemannian metric on G and on M . We then have:

Proposition 2.4. The pair (g, θ) ∈ Sym2(T ∗M) × Ω1(M) on M induced by a scalar
product g ∈ Sym2(g∗) and a closed non-zero 1-form g∗ is an LCP structure if and only if
there exists a vector subspace u ⊂ g such that (g, θ, u) is an LCP structure on g.

Proof. Assume first that (g, θ) is an LCP structure on M . Then its pull-back to the
universal cover G is a left invariant LCP structure on G. By Theorem 2.2, there exists a
∇θ-flat distribution U on the Riemannian Lie group (G, g). As the Weyl connection ∇θ

is left invariant, U is left-invariant too, so defines a subspace u of g which is ∇θ-flat.
Conversely, if (g, θ, u) is an LCP structure on g, the ∇θ-flat subspace u of g determines

by left translations a left invariant distribution U on G which is parallel with respect
to the connection ∇θ. This shows that the corresponding Weyl connection ∇θ on the
quotient M = Γ\G has reducible holonomy, so (M, g, θ) is LCP. □

3. LCP structures on Lie algebras

In view of Proposition 2.4, we will from now on study LCP structures on Lie alge-
bras. Then, in the last section, we will investigate the existence of lattices in the simply
connected groups corresponding to LCP Lie algebras. We start with some general results.
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Lemma 3.1. Let (g, g, θ, u) be an LCP Lie algebra. Then the subspaces u and its g-
orthogonal complement u⊥ are subalgebras of g.

Proof. From (2.3) and (2.5) we immediately obtain

(3.1) [x, y] = ∇θ
xy −∇θ

yx ∀ x, y ∈ g,

which of course just translates the fact that ∇θ is torsion-free. By (3.1), every ∇θ-parallel
space is a subalgebra of g. Moreover, (2.6) shows that the orthogonal complement of a
∇θ-parallel space is again ∇θ-parallel. □

We can now give a more explicit characterisation of LCP structures:

Proposition 3.2. Let (g, g) be a metric Lie algebra, θ ∈ g∗ a non-zero closed 1-form, and
u ⊂ g a vector subspace. Then u is ∇θ-parallel if and only if the following two conditions
hold:

(1) u and u⊥ are Lie subalgebras;
(2) for every u ∈ u and x ∈ u⊥,

(3.2) g([u, x], x) = θ(u)|x|2 and g([x, u], u) = θ(x)|u|2.

Moreover, (g, g, θ, u) is LCP if and only if in addition to (1) and (2), the following con-
dition holds:

(3) the map ∇θ : g → so(u) ⊕ R Idu ⊂ gl(u), defined by x 7→ ∇θ
x|u, is a Lie algebra

representation.

Proof. Assume that u is ∇θ-parallel. Then (1) follows from Lemma 3.1.
Taking x = z ∈ u⊥ and y ∈ u in (2.8) and using that g(∇θ

xu, x) = 0 since u is ∇θ-
parallel, yields the first part of (3.2). Similarly, taking x = z ∈ u and y ∈ u⊥ in (2.8)
yields the second part of (3.2).

If moreover (g, θ, u) is LCP, then u is ∇θ-flat, so (3) follows from (2.9).
Conversely, assume that (1)–(2) hold. We need to show that g(∇θ

xy, z) vanishes when-
ever y ∈ u and z ∈ u⊥. If x ∈ u, using (1) and (2.8) we get

g(∇θ
xy, z) =

1

2
(−g([x, z], y)− g([y, z], x))− θ(z)g(x, y)

=
1

2
(g([z, x], y) + g([z, y], x))− θ(z)g(x, y) = 0

by polarising the second part of (3.2). Similarly, for x ∈ u⊥, by (1) and (2.8) we obtain

g(∇θ
xy, z) =

1

2
(g([x, y], z)− g([y, z], x)) + θ(y)g(x, z)

=
1

2
(−g([y, x], z)− g([y, z], x))− θ(y)g(x, z) = 0

by polarising the first part of (3.2). Thus u is ∇θ-parallel.
If, in addition, (3) holds, the fact that u is ∇θ-flat follows directly from (2.9). □
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Corollary 3.3. Let (g, g, θ, u) be an LCP Lie algebra and denote by q and n the dimen-
sions of u and g respectively. If g is unimodular, the trace forms of u and u⊥ are related
to θ by the relations

(3.3) Hu = −(n− q) θ|u, Hu⊥ = −q θ|u⊥ .

Proof. Let (ei)1≤i≤q and (fj)1≤j≤n−q be some orthonormal bases of u and u⊥. Since g is
assumed to be unimodular, for every y ∈ g we have

0 = tr(ady) =

q∑
i=1

g([y, ei], ei) +

n−q∑
j=1

g([y, fj], fj),

whence

(3.4) Hu(y) +

n−q∑
j=1

g([y, fj], fj) = 0 ∀ y ∈ u,

and

(3.5)

q∑
i=1

g([y, ei], ei) +Hu⊥(y) = 0 ∀ y ∈ u⊥.

Then (3.3) follows immediately by taking x = fj in the first part of (3.2) and u = ei in
the second part of (3.2). □

Corollary 3.4. On an abelian Lie algebra of dimension n ≥ 3, every LCP structure is
degenerate.

Proof. Assume that (g, g, θ, u) is an LCP abelian Lie algebra. By Proposition 3.2 (2) and
the fact that θ ̸= 0, we see that either u = 0, so the LCP structure is degenerate, or
u⊥ = 0, so (g, g, θ) is conformally flat.
In the latter case, (2.6) together with Proposition 3.2 (2) show that

0 = [∇θ
x,∇θ

y] = [θ ∧ x, θ ∧ y] ∀ x, y ∈ g.

In particular, for every x, y non-zero vectors in ker(θ), this yields 0 = |θ|2x ∧ y, so ker(θ)
is 1-dimensional, which contradicts the fact that n ≥ 3. □

Corollary 3.5. If (g, g, θ, u) is an adapted LCP Lie algebra, then for every λ ∈ R such
that gλ := g + λθ ⊗ θ is positive definite, (g, gλ, θ, u) is also an adapted LCP Lie algebra.

Proof. Since (g, g, θ, u) is adapted (i.e. θ|u = 0)), the g-orthogonal of u coincides with
the gλ-orthogonal of u. Condition (1) in Proposition 3.2 is thus verified for gλ. Next, for
u ∈ u and x ∈ u⊥, we have by (3.2) and (2.2)

gλ([u, x], x) = g([u, x], x) + θ([u, x])θ(x) = θ(u)|x|2g = 0 = θ(u)|x|2gλ
and

gλ([x, u], u) = g([x, u], u) + θ([x, u])θ(u) = θ(x)|u|2g = θ(x)|u|2gλ ,
thus showing that Condition (2) in Proposition 3.2 holds for gλ.
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Finally, in order to check Condition (3) in Proposition 3.2, let us denote by ∇λ the
Weyl connection ∇gλ +Θ on (g, gλ), where Θ is defined by (2.1). Since g and gλ coincide
when one of the arguments is in u or in g′, (2.8) applied to z ∈ u immediately yields

(3.6) g(∇λ
xy, z) = gλ(∇λ

xy, z) = g(∇θ
xy, z).

This shows that u⊥ is invariant by ∇λ
x for every x ∈ g, so u is invariant too, as ∇λ is

a Weyl structure. Moreover, (3.6) shows that the restriction of ∇λ
x to u is equal to the

restriction of ∇θ
x to u for every x ∈ g, so Condition (3) in Proposition 3.2 holds. □

4. Constructions of LCP structures

In this section we introduce two different methods to construct LCP structures on
Lie algebras. Whilst the first one builds on pre-existing LCP structures, the second one
defines LCP structures on Lie algebras obtained as semidirect products.

4.1. Products of adapted LCP Lie algebras. Recall (Definition 2.3) that an LCP
Lie algebra (g, g, θ, u) is called adapted if θ|u = 0. In this setting, the extension procedure
of Flamencourt [9, Definition 3.9] can be stated as follows:

Proposition 4.1. If (g, g, θ, u) is an adapted LCP Lie algebra and (k, k) is an arbitrary

metric Lie algebra, then (g̃ := g ⊕ k, g̃ := g + k, θ̃ := θ, ũ := u) is again an LCP Lie
algebra.

Proof. We will check that (g̃, g̃, θ̃, ũ) satisfies the three conditions in Proposition 3.2, using
the fact that (g, g, θ, u) satisfies them.

By Condition (1), u and u⊥ are subalgebras of g, so u and its orthogonal complement
ũ⊥ := u⊥ ⊕ k in g̃ are subalgebras of g̃.
Equation (3.2) holds for every u ∈ u and x ∈ u⊥. Moreover, since the LCP structure is

adapted, θ|u = 0, so the first part in (3.2) reads g([u, x], x) = 0. For every x̃ in ũ⊥ written
as x̃ = x+ y with x ∈ u⊥ and y ∈ k we have [u, x̃] = [u, x], so

g̃([u, x̃], x̃) = g̃([u, x], x̃) = g([u, x], x) = 0 = θ(u)|x̃|2g̃.

Moreover, from the second part of (3.2) we get

g̃([x̃, u], u) = g([x, u], u) = θ(x)|u|2 = θ̃(x̃)|u|2g̃,

showing that (g̃, g̃, θ̃, ũ) satisfies Condition (2).

Finally, applying (2.8) to the Weyl connection ∇θ̃ on the metric algebra (g̃, g̃), we get

g̃(∇θ̃
xy, z) = 0 for every x ∈ k and y, z ∈ u. This shows that the map ∇θ̃ : g̃ → gl(ũ) is the

extension by 0 on k of the map ∇θ : g → gl(u), so it is a Lie algebra representation. □

In the context of Lie algebras, this construction can be generalised as follows.
Let (gi, gi, θi, ui), i = 1, 2, be adapted LCP Lie algebras. Consider the direct sum of

these Lie algebras g1 ⊕ g2 endowed with the inner product g1 + g2.
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The 1-forms θ1, θ2 extend in an obvious way to closed 1-forms on g1 ⊕ g2. It is easy to
check that g := ker(θ1 − θ2) is a codimension one ideal of g1 ⊕ g2. Indeed, θi(g

′
1 ⊕ g′2) =

θi((g1 ⊕ g2)
′) = 0 for i = 1, 2, since both θ1 and θ2 are closed, which implies g′1 ⊕ g′2 ⊂ g.

We denote by g := (g1 + g2)|g. In addition, θ := θ1|g = θ2|g is a non-zero 1-form in g,
which is closed because θ(g′1 ⊕ g′2) = 0. Finally, the fact that both LCP Lie algebras are
adapted implies u := u1 ⊕ u2 ⊂ g. Note that θ|u = 0, since if ui ∈ ui, i = 1, 2, then
θ(ui) = θi(ui) = 0 due to the definition of θ and the fact that both LCP Lie algebras are
adapted.

Proposition 4.2. For every adapted LCP Lie algebras (gi, gi, θi, ui), i = 1, 2, the quadru-
ple (g, g, θ, u) defined above is an adapted LCP Lie algebra. Moreover, if gi is unimodular
(respectively solvable) for i = 1, 2, then so is g.

Proof. We shall use Proposition 3.2. Since ui is a subalgebra of gi we have that u = u1⊕u2
is a subalgebra of g1⊕g2. Moreover, as u ⊂ g, it is clear that u is a subalgebra of g. On the
other hand, let us denote u⊥ the orthogonal complement of u in g. Then u⊥ = (u⊥1 ⊕u⊥2 )∩g,
which is a subalgebra of g since u⊥i is a subalgebra of gi for each i. Hence, Condition (1)
in Proposition 3.2 holds for (g, g, θ, u).

Next, let u = u1 + u2 ∈ u and x = x1 + x2 ∈ g, where each subscript indicates the
component in g1 and g2, respectively. Then:

g([u, x], x) = g([u1 + u2, x1 + x2], x1 + x2)

= g([u1, x1], x1) + g([u2, x2], x2)

= θ1(u1)|x1|2 + θ2(u2)|x2|2 (by Proposition 3.2(2))

= 0 (since θi|ui = 0)

= θ(u)|x|2 (since θ|u = 0),

and

g([x, u], u) = g([x1 + x2, u1 + u2], u1 + u2)

= g([x1, u1], u1) + g([x2, u2], u2)

= θ1(x1)|u1|2 + θ2(x2)|u2|2 (by Proposition 3.2(2))

= θ(x)|u|2 (since θ(x) = θ1(x1) = θ2(x2)).

Thus, Condition (2) in Proposition 3.2 holds for (g, g, θ, u).
Finally, we check Condition (3) in Proposition 3.2. For every x1 + x2 ∈ g, u1, v1 ∈ u1

and u2, v2 ∈ u2 we have θ(x1 + x2) = θ1(x1) = θ2(x2) and θi(ui) = θi(vi) = 0. Therefore
(2.8) shows immediately that

(g1 + g2)(∇θ
x1+x2

(u1 + u2), v1 + v2) = g1(∇θ1
x1
u1, v1) + g2(∇θ2

x2
u2, v2),

and this shows that ∇θ is the restriction to g of the representation

∇θ1 +∇θ2 : g1 ⊕ g2 → gl(u1)⊕ gl(u2) ⊂ gl(u).
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Thus, we have proved that (g, g, θ, u) is an LCP Lie algebra.
The last assertions follow immediately from the fact that if both g1 and g2 are unimod-

ular or solvable then g1⊕g2 has the same property. Solvability is inherited by subalgebras,
and since the derived algebra of g1 ⊕ g2 is contained in g, the latter inherits the unimod-
ularity property. □

The LCP Lie algebra constructed in Proposition 4.2 is called the amalgamated product
of the adapted LCP Lie algebras (g1, g1, θ1, u1) and (g2, g2, θ2, u2).

It turns out that the direct product of an LCP Lie algebra with an arbitrary metric Lie
algebra (which is LCP by Proposition 4.1) is in some sense a special case of amalgamated
product.

To see this, let (g1, g1, θ1, u1) be an adapted LCP Lie algebra and let (h, h) be any
metric Lie algebra. Consider g2 := Rb⊕h with the scalar product g2 which extends h and
makes b⊥h and b of unit norm. Then (g2, g2, θ2, u2) is a degenerate (and thus adapted)
LCP Lie algebra, with respect to the closed 1-form θ2 := g2(b, ·) and u2 := 0.

Let (g, g, θ, u) be the amalgamated product of (g1, g1, θ1, u1) and (g2, g2, θ2, u2). We
define f : g1 ⊕ h → g by

f((x1, x2)) := x1 + θ1(x1)b+ x2.

This is a Lie algebra isomorphism (since θ1 is closed), but not an isometry, since f ∗g =
(g1 + θ1 ⊗ θ1) + h. This means that the direct product LCP structure (g1 + h, θ1, u1) on
g1 ⊕ h coincides with the pull-back by f of the amalgamate LCP structure on g up to
adding an extra factor θ1 ⊗ θ1 to the metric, which by Corollary 3.5 does not change the
property of being LCP.

4.2. LCP structures on semidirect products. Motivated by a result which will be
proved in the next section, we give here a general construction procedure for LCP Lie
algebras.

Proposition 4.3. Let (h, h) be a non-unimodular metric Lie algebra with trace form
Hh ∈ h∗ and let q ≥ 1 be an integer. Assume that β : h → so(Rq) is a Lie algebra
representation such that β|h′ = 0.

Then α : h → gl(Rq) defined by α(x) := −1
q
Hh(x) IdRq +β(x) for x ∈ h is a Lie

algebra representation, and (g, g, θ, u) is a non-degenerate unimodular LCP Lie algebra
for g := h⋉α Rq, g := ⟨·, ·⟩Rq + h, θ := −1

q
Hh (extended by 0 on Rq), and u := Rq.

Moreover, g is solvable if and only if h is solvable.

Proof. Since β as well as the closed 1-form θ vanish on h′, we get

(4.1) α(g′) = 0.

Thus for every x ∈ g we can write

[α(x), α(y)] = [β(x), β(y)] = β([x, y]) = 0 = α([x, y]).

This shows that α is a Lie algebra representation, so g := h⋉α Rq is well defined.
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By the definition of a semidirect product, the bracket on g satisfies

(4.2) adx |Rq = α(x) = −1

q
Hh(x) IdRq +β(x) ∀ x ∈ h.

For every u ∈ Rq we clearly have tr(adu) = 0 since adu(Rq) = 0 and adu(h) ⊂ Rq. For
x ∈ h we compute using (4.2) and the fact that β(x) ∈ so(q):

tr adx = tr(adx |h) + tr(adx |Rq) = Hh(x) + tr(−1

q
Hh(x) IdRq +β(x)) = 0.

Thus g is unimodular.
In order to prove that (g, g, θ, u) is an LCP Lie algebra, we need to check the conditions

(1)–(3) from Proposition 3.2.
Since u = Rk is an ideal of g and u⊥ = h is a subalgebra, (1) is clearly verified.
For u ∈ u and x ∈ u⊥ we have [u, x] ∈ u, θ(u) = 0, and

g([x, u], u) = g(α(x)(u), u) = g(θ(x)u+ β(x)(u), u) = θ(x)|u|2,
(since β(x) ∈ so(q)), thus proving (2).

We now claim that

(4.3) g(∇θ
xy, z) = g([x, y], z) ∀ y, z ∈ u, x ∈ g.

For x ∈ u both terms vanish because u is an abelian ideal of g and θ|u = 0. For x ∈ u⊥

we have by (2.8)

g(∇θ
xy, z) =

1

2
(g(α(x)(y), z)− g(α(x)(z), y)) + θ(x)g(y, z)

= g(β(x)(y), z) + θ(x)g(y, z)

= g([x, y], z).

On the other hand, from the proof of Proposition 3.2, (1) and (2) show that u is ∇θ-
parallel, and since u is an ideal of g, (4.3) implies ∇θ

x|u = adx |u for every x ∈ g, so (3)
follows directly from the Jacobi identity.

For the last statement we notice that g′ ⊂ Rq⊕h′ and by (4.1) we have [g′, g′] ⊂ [h′, h′].
Thus if h is solvable, g is solvable as well. Conversely, since h is a Lie subalgebra of g, it
is solvable whenever g is solvable. □

Remark 4.4. The construction above shows that any non-unimodular Lie algebra h is
a codimension 1 subalgebra of an LCP Lie algebra. Indeed, it suffices to take q = 1 and
β = 0 in Proposition 4.3.

The proposition above gives a criterion for the existence of non-degenerate LCP struc-
tures on a given unimodular Lie algebra.

Corollary 4.5. Let g be an unimodular Lie algebra carrying a non-unimodular subalgebra
h and an abelian ideal u of dimension q ≥ 1 such that g = h ⊕ u. Consider the closed
1-form θ := −1

q
Hh, extended to g by 0 on u. Assume that adx |u = 0 for every x ∈ h′

and that there exists a scalar product gu on u such that adx |u − θ(x) Idu ∈ so(u) for every
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x ∈ h. Then for every scalar product gh on h, (g, gh + gu, θ, u) is a non-degenerate LCP
Lie algebra.

Proof. By definition, we can write g = h ⋉α u, where α(x) := adx |u for every x ∈ h. By
assumption, there is a map h ∋ x 7→ β(x) := α(x)− θ(x) Idu ∈ so(u). We claim that β is
a Lie algebra representation vanishing on h′. Indeed, since θ is closed, it vanishes on h′,
so for every x, y ∈ h we have

[β(x), β(y)] = [α(x), α(y)] = [adx |u, ady |u] = ad[x,y] |u = 0 = β([x, y]).

The statement thus follows directly from Proposition 4.3. □

In the remaining part of this section we will use Proposition 4.3 in order to construct
some explicit examples of LCP Lie algebras.

Example 4.6. Let A ∈ gl(p) with tr(A) ̸= 0, B ∈ so(q), and set h := Rb ⋉A Rp where,
by a slight abuse of notation, A denotes the representation of Rb on Rp sending b to A;
notice that h is not unimodular but solvable. The standard inner product ⟨·, ·⟩Rp on Rp

extends to an inner product h on h such that h(b,Rp) = 0 and h(b, b) = 1. It is easy to
check that Hh(·) = tr(A)h(b, ·).
The linear map β : h → so(q) defined by β(b) = B and β(Rp) = 0, is clearly a Lie

algebra representation vanishing on h′. According to Proposition 4.3, the Lie algebra
g := h⋉α Rq where α(x) := −1

q
tr(A)h(b, x) IdRq +β(x), for x ∈ h, is unimodular solvable

and

L(A,B) := (g, g,−1

q
tr(A)h(b, ·),Rq)

is an LCP Lie algebra for g := h + ⟨·, ·⟩Rq . The Lie algebra g is actually almost abelian,
since Rp ⊕ Rq is an abelian ideal of codimension 1. Notice that the action of b on this
ideal is just

adb |Rp⊕Rq =

[
A

B − 1
q
tr(A) IdRq

]
.

A slight modification of the previous example gives LCP structures on unimodular
solvable Lie algebras which are not almost abelian.

Example 4.7. Let A ∈ gl(p) with tr(A) ̸= 0, let B1, B2 ∈ so(q) be endomorphisms such
that B2 ̸= 0 and [B1, B2] = 0, and v ∈ Rp. Set h := Rb ⋉ Rp+1 where Rp+1 = Ry ⊕ Rp

and the semidirect product law satisfies

(adb)|Rp = A, [b, y] = v ∈ Rp;

again h is solvable and non-unimodular. Consider an inner product h on h such that
h(b,Rp) = h(y,Rp) = h(y, b) = 0 and h(b, b) = h(y, y) = 1. As before, we have Hh(·) =
tr(A)h(b, ·).

The linear map β : h → so(q) satisfying β(b) = B1, β(y) = B2 and β(Rp) = 0 is a Lie
algebra representation vanishing on h′.
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By Proposition 4.3, the Lie algebra g = h⋉αRq with α(x) := −1
q
tr(A)h(b, x) IdRq +β(x)

for every x ∈ h, is unimodular and solvable. Moreover, if g is the scalar product extending
h and making Rq⊥h, then

C(A,B1,B2,v) := (g, g,−1

q
tr(A)h(b, ·),Rq)

is an LCP Lie algebra.
Explicitly, the actions of b and y on g satisfy

(adb)|Rp = A, [b, y] = v ∈ Rp, (adb)|Rq = B1 − 1
q
tr(A) IdRq

(ady)|Rp = 0, [y, b] = −v ∈ Rp, (ady)|Rq = B2.

Notice that g is not almost abelian. Indeed, assume k is an abelian ideal of g of
codimension 1 and write g = Rξ⊕k for some ξ ∈ g, then, g′ = [Rξ⊕k,Rξ⊕k] = [Rξ, k] ⊂ k.

By definition of g, [y,Rp] = [Rp ⊕ Rq,Rp] = [Rp ⊕ Rq,Rq] = 0. So if an element of the
form λb + µy + x is in k, for some λ, µ ∈ R, x ∈ Rp+q, then for any u ∈ Rp such that
Au ̸= 0, we have [b, u] = Au ∈ g′ ⊂ k and thus

0 = [λb+ µy + x, u] = λAu ⇒ λ = 0.

Moreover, given w ∈ Rq such that [y, w] = A2w ̸= 0,

0 = [µy + x,w] = µB2w ⇒ µ = 0.

Therefore, k ⊂ Rp ⊕ Rq contradicting the codimension 1 hypothesis.
However, it is straightforward to check that Ry ⊕ Rp ⊕ Rq is an almost abelian ideal

of codimension 1 of g. Note that this ideal is not nilpotent, since B2 is a non-zero skew-
symmetric endomorphism.

5. LCP structures on unimodular solvable Lie algebras

In this section we focus on the structure of unimodular solvable Lie algebras carrying
LCP structures. We show that each such Lie algebra is a semidirect product of a non-
unimodular Lie subalgebra, acting on the (abelian) flat factor of the LCP structure, as in
Proposition 4.3.

In this way, we establish a one-to-one correspondence between unimodular solvable
LCP Lie algebras, and triples (h, h, β), where (h, h) is a non-unimodular solvable metric
Lie algebra, and β : h → so(q) is an orthogonal Lie algebra representation vanishing on
h′.

We start with the following:

Lemma 5.1. Let (g, g, θ, u) be a non-degenerate solvable LCP Lie algebra. Then ∇θ
xy = 0

for all x ∈ g′ and y ∈ u.

Proof. Since ∇θ : g → so(u) ⊕ R is a Lie algebra representation by Proposition 3.2 (3),
its image ∇θ(g) is a solvable Lie subalgebra of so(u) ⊕ R. As so(u) ⊕ R is of compact
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type, ∇θ(g) is of compact type as well and solvable, thus abelian. Consequently, 0 =
[∇θ

x,∇θ
y](u) = ∇θ

[x,y](u) for all x, y ∈ g, hence ∇θ
g′(u) = 0. □

Lemma 5.2. Every LCP structure (g, θ, u) on a unimodular solvable Lie algebra g of
dimension n ≥ 3 is adapted, i.e. θ|u = 0.

Proof. Let {ei}ni=1 be an orthonormal basis of g such that {ei}si=1 spans the derived algebra
g′. If s = 0 we have u = 0 by Corollary 3.4, so the statement is clear. Assume now s ≥ 1.
For every y ∈ u, we have

(5.1) 0 = Hg(y) = tr(ady) =
n∑

i=1

g(ady ei, ei) =
s∑

i=1

g(ady ei, ei).

On the other hand, taking x = z = ei and y ∈ u in (2.8), summing over i = 1, . . . , s,
and using (2.2) together with Lemma 5.1, we get

(5.2) 0 =
s∑

i=1

g([ei, y], ei) + sθ(y) ∀ y ∈ u.

Using (5.1), we conclude that θ vanishes on u. □

We will now obtain one of the main results of the paper, which shows in particular that
every LCP structure on an unimodular solvable Lie algebra is obtained by the construction
of Proposition 4.3.

Theorem 5.3. Let (g, θ, u) be an LCP structure on a unimodular solvable Lie algebra g.
Then the following holds:

(1) u is an abelian ideal of g contained in the centre z(g′) of g′;
(2) ∇θ

xy = adx y for every x ∈ g and y ∈ u.

Proof. If u = 0, the result is trivially satisfied, so we assume u ̸= 0.
Consider the unique orthogonal decomposition of g

(5.3) g = v0 ⊕ v1 ⊕ v2,

satisfying v2 = [g′, g′] ⊂ g′, g′ = v1 ⊕ v2 and v0 = (g′)⊥.
We claim that u⊥v2. Indeed, taking y ∈ u in (2.8) and using Lemma 5.2 yields

(5.4) g(∇θ
xy, z) =

1

2
(g([x, y], z)− g([x, z], y)− g([y, z], x))

+ θ(x)g(y, z)− θ(z)g(x, y) ∀ x, z ∈ g, ∀ y ∈ u.

Then, taking x, z ∈ g′ in (5.4), and using Lemma 5.1 together with (2.2) we obtain

(5.5) g([x, y], z)− g([x, z], y) + g([z, y], x) = 0 ∀ x, z ∈ g′, ∀ y ∈ u.

Interchanging x, z and subtracting the two equations, we obtain

g([x, z], y) = 0 ∀ x, z ∈ g′, ∀ y ∈ u.

This is equivalent to v2 = [g′, g′]⊥u, and thus u ⊂ v0 ⊕ v1.
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We shall show that actually u is contained in v1. To do this, we evaluate (5.4) on
x, z ∈ v0 = (g′)⊥, y ∈ u, which gives

(5.6) g(∇θ
xy, z) = −1

2
g([x, z], y) + θ(x)g(y, z)− θ(z)g(x, y) ∀ x, z ∈ v0, ∀ y ∈ u.

In particular, taking z = θ♯ in the equation above and using that θ|u = 0 (by Lemma 5.2),
we get

(5.7) 0 = −1

2
g([x, θ♯], y)− |θ|2g(x, y) ∀ x ∈ v0, ∀ y ∈ u.

Let us decompose some arbitrary vector x ∈ v0 as x = x0+x1, where x0 ∈ u and x1 ∈ u⊥.
Equation (5.7) applied to y = x0 gives

(5.8) 2|x0|2|θ|2 = −g([x, θ♯], x0).

However, by Proposition 3.2 we have

g([x, θ♯], x0) = g([x0, θ
♯], x0) + g([x1, θ

♯], x0) = −|x0|2|θ|2.

since [x1, θ
♯] ∈ u⊥. This shows that x0 = 0 and thus x ∈ u⊥. Therefore v0 ⊂ u⊥ which

together with u⊥v2 implies u ⊂ v1. We shall denote by m := v1 ∩ u⊥ so that v1 = u⊕m
as an orthogonal direct sum. The above decomposition refines to

(5.9) g = v0 ⊕ u⊕m⊕ v2,

Using the fact that ∇θ preserves u together with u ⊥ v0 in (5.6) yields [v0, v0]⊥u, so

(5.10) [v0, v0] ⊆ m⊕ v2.

Consider now x ∈ v1 ⊂ g′ and z ∈ g′ in (5.5). The obvious inclusions [v1, g
′] ⊂ [g′, g′]⊥u

and [g′, v1] ⊂ v2⊥v1 show that the last two terms on the left hand side vanish. We are
left with:

g([x, y], z) = 0 ∀ x ∈ v1, ∀ y ∈ u, ∀ z ∈ g′.

Since [x, y] ∈ g′, we conclude that

(5.11) [v1, u] = 0.

Notice that, since g is solvable, g′ = v1 ⊕ v2 is a nilpotent Lie algebra with derived
subalgebra (g′)′ = v2, and u ⊂ g′. Let k denote the Lie subalgebra of g′ generated by
v1. It is clear that [u, k] = 0 by (5.11) and the Jacobi identity. Moreover, since k is a
subalgebra of g′ and clearly satisfies k + [g′, g′] = g′ we obtain g′ = k by [3, Lemma 4.3].
Therefore,

(5.12) [u, g′] = 0.

Actually, u is an ideal of g; to show this, it is sufficient by (5.12) to show that [v0, u] ⊂ u.
We evaluate (5.4) on x ∈ v0 and z ∈ g′, and use (2.2) together with (5.12), to get
(5.13)

g(∇θ
xy, z) =

1

2
(g([x, y], z)− g([x, z], y)) + θ(x)g(y, z) ∀ x ∈ v0, ∀ y ∈ u, ∀ z ∈ g′.
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Next, we evaluate (5.4) on x ∈ g′ and z ∈ v0. Using (5.12) and Lemma 5.1, we obtain

(5.14) 0 =
1

2
(−g([x, z], y) + g([z, y], x))− θ(z)g(x, y) ∀ x ∈ g′, ∀ y ∈ u, ∀ z ∈ v0.

Interchanging x with z in this last equation and adding the result to (5.13) yields

(5.15) g(∇θ
xy, z) = g([x, y], z) ∀ x ∈ v0, ∀ y ∈ u, ∀ z ∈ g′.

If z ∈ v0, both terms of (5.15) vanish, so this equation actually holds for every z ∈ g. We
thus obtain for all x ∈ v0 and y ∈ u:

(5.16) [x, y] = ∇θ
xy ∈ u.

Note that this equation actually holds for every x ∈ g, since both terms vanish for x ∈ g′

by (5.12) and Lemma 5.1. This proves (2). Moreover, u is an ideal of g, contained in the
centre of g′ by (5.12), thus proving (1). □

We now derive some consequences of Theorem 5.3. We start by showing that there are
no interesting LCP structures on nilpotent Lie algebras.

Corollary 5.4. Every LCP structure on a nilpotent Lie algebra is degenerate.

Proof. Assume that (g, g, θ, u) is a nilpotent LCP Lie algebra, and let q denote the di-
mension of u. Then, g is unimodular and u⊥ is nilpotent, being a Lie subalgebra of a
nilpotent Lie algebra, hence it is unimodular. By the second part of Equation (3.3) in
Corollary 3.3 we get qθ|u⊥ = 0. However, θ|u⊥ ̸= 0 since θ ̸= 0 and θ|u = 0 by Lemma 5.2,
so finally q = 0, i.e. the LCP structure is degenerate. □

Theorem 5.3 shows in particular that any unimodular solvable LCP Lie algebra (g, g, θ, u)
is a semidirect product of the non-unimodular Lie algebra h := u⊥, acting on the abelian
Lie algebra u via the Lie algebra representation ∇θ|h : h → gl(u), as in Proposition 4.3.
As a consequence of these two results, we have the following:

Corollary 5.5. There is a one-to-one correspondence between non-degenerate unimodular
solvable LCP Lie algebras (g, g, θ, u) and triples (h, h, β), where (h, h) is a metric solvable
non-unimodular Lie algebra, and β : h → so(q) is a Lie algebra representation, for some
q ∈ N∗, which vanishes on h′.

In particular, Corollary 5.5 shows that every modification of the metric on the orthog-
onal h = u⊥ of the flat space of an LCP structure on a solvable unimodular Lie algebra
does not alter the LCP character:

Corollary 5.6. If g is solvable and unimodular, and (g, g, θ, u) is an LCP Lie algebra,
then (g, g̃, θ, u) is also an LCP Lie algebra for any other scalar product g̃ with the property
that u ⊂ ker(g̃ − g).

Consequently, in the solvable unimodular case, there are more general modifications of
the metric than the one in Corollary 3.5 that preserve the LCP condition.

As another application of Theorem 5.3 we obtain the description of LCP structures on
unimodular almost abelian Lie algebras.
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Corollary 5.7. Let g be an unimodular almost abelian Lie algebra. If g admits an LCP
structure (g, θ, u), then g can be written as a semidirect sum g = Rb ⋉ (Rp ⊕ Rq), where
the three factors are orthogonal with respect to g, g(b, b) = 1, and u = Rq. Moreover, Rp

and Rq are invariant by adb, which has the form

(5.17) adb |Rp⊕Rq =

[
A

B − 1
q
tr(A) IdRq

]
,

for some A ∈ gl(p) such that tr(A) ̸= 0, B ∈ so(q), and θ = −1
q
tr(A)g(b, ·). In particular,

the LCP Lie algebra is isomorphic to L(A,B) constructed in Example 4.6.

Proof. Every almost abelian metric Lie algebra (g, g) can be written as a semidirect prod-
uct g := Rb ⋉C Rk, where Rk is a codimension 1 abelian ideal, b is a unit length vector
orthogonal to Rk, and C := adb ∈ gl(k). The unimodularity condition is equivalent to
tr(C) = 0.

If (g, θ, u) is an LCP structure on g, then by Theorem 5.3, u ⊂ g′ ⊂ Rk, so identifying
u with Rq and its orthogonal in Rk with Rp, we have u⊥ = Rb ⊕ Rp. Note that since u
is an ideal of g and u⊥ is a subalgebra, C preserves Rp and Rq, so with respect to the
orthogonal direct sum decomposition Rk = Rp⊕Rq, C can be written in a block-diagonal
form as

C =

[
A

D

]
,

with A ∈ gl(p) and D ∈ gl(q). The trace form of the Lie algebra u⊥ = Rb ⋉B Rp is

Hu⊥ = tr(A)g(b, ·). By Lemma 5.1 and Corollary 3.3 we have θ = θ|u⊥ = −1
q
Hu⊥ =

−1
q
tr(A)g(b, ·) and adb |u − θ(b) IdRq ∈ so(q). Thus D = adb |u can be written as B −

1
q
tr(A) IdRq for some B ∈ so(q), showing that (g, g, θ, u) is isomorphic to the LCP Lie

algebra L(A,B) constructed in Example 4.6. □

We finish this section by studying the amalgamated product of two unimodular almost
abelian LCP Lie algebras.

Example 5.8. Let (gi, gi, θi, ui), for i = 1, 2, denote a unimodular almost abelian LCP
Lie algebra. Then we may write gi = Rbi ⋉Ci

Rni , where bi ⊥ Rni , |bi| = 1, and Ci =

adbi |Rni ∈ gl(ni). It follows from Corollary 5.7 that θ♯i is a multiple of bi; moreover,
replacing bi by −bi if necessary, we may assume that θi = |θi|gi(bi, ·) for i = 1, 2. Since
any LCP structure on a unimodular solvable Lie algebra is adapted (Lemma 5.2), we can
define the amalgamated product of (g1, g1, θ1, u1) and (g2, g2, θ2, u2), with underlying Lie
algebra denoted by g. Recall that g = ker(θ1 − θ2) ⊂ g1 ⊕ g2, where θ1 and θ2 denote
the obvious extensions to g1 ⊕ g2 of θ1 ∈ g∗1 and θ2 ∈ g∗2. Note that |θ2|b1 + |θ1|b2 ∈ g,
Rn1 ⊕ Rn2 ⊂ g and, moreover, |θ2|b1 + |θ1|b2 ⊥ Rn1 ⊕ Rn2 with respect to g = (g1 + g2)|g.
Furthermore, if we denote by b the unit vector in the same direction as |θ2|b1+ |θ1|b2, i.e.,

(5.18) b :=
1

(|θ1|2 + |θ2|2)
1
2

(|θ2|b1 + |θ1|b2),
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we have that g is a unimodular almost abelian Lie algebra itself, since we may write

g = Rb⋉C (Rn1 ⊕ Rn2),

where C is the following matrix:

(5.19) C =
1

(|θ1|2 + |θ2|2)
1
2

[
|θ2|C1

|θ1|C2

]
.

Clearly, tr(C) = 0.
The closed 1-form θ that defines the LCP structure is a multiple of g(b, ·). More

explicitly, it follows from Corollary 5.7 that u⊥i = Rbi ⊕ Rpi (orthogonal sum) and |θi| =
− 1

qi
tr(Ai) where qi = dim ui and Ai = adbi |Rpi : Rpi → Rpi . Note that tr(Ai) < 0. Since

u, the flat subspace of the LCP structure on g, is given by u = u1 ⊕ u2, we have that
θ = |θ|g(b, ·), with

|θ| = − 1

q1 + q2
(tr(A1) + tr(A2)).

6. LCP structures with flat subspace of small codimension

We start this section by showing that the flat subspace of a non-degenerate LCP struc-
ture on a unimodular solvable Lie algebra has codimension at least two.

Proposition 6.1. Any non-degenerate LCP Lie algebra (g, g, θ, u) on a unimodular solv-
able Lie algebra g of dimension n verifies dim u ≤ n− 2.

Proof. Let (g, g, θ, u) be a unimodular solvable LCP Lie algebra. By Lemma 5.2, the
(non-zero) 1-form θ vanishes on u, so dim u ≤ n − 1. Moreover, by Theorem 5.3 (2),
together with (2.7), one can write:

(adθ♯)|u = |θ|2 Idu +β(θ♯),

with β(θ♯) ∈ so(u). If dim u = n − 1, then g = Rθ ⊕ u, so as adθ♯(θ
♯) = 0, the previous

equation yields

0 = tr adθ♯ = (n− 1)|θ|2,
contradicting the fact that θ ̸= 0. Thus dim u ≤ n− 2. □

We will now show that every unimodular solvable Lie algebra g carrying an LCP struc-
ture (g, θ, u) such that the codimension of the flat subspace is 2, is almost abelian.

Proposition 6.2. Any solvable unimodular Lie algebra g of dimension n ≥ 3 admitting
an LCP structure (g, θ, u) with dim u = n− 2 is almost abelian.

Proof. Since g is solvable and unimodular, Theorem 5.3 shows that g has a semidirect
product decomposition as g = u⊥ ⋉ u such that u ⊂ g′ and [u, g′] = 0. In addition, by
(2.7) we have

(6.1) adz |u − θ(z) Idu = ∇θ
z|u − θ(z) Idu ∈ so(u) ∀ z ∈ u⊥.
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Let {b, x} be an orthonormal basis of u⊥ such that θ(b) =: µ > 0, θ(x) = 0. Since u⊥ is
a subalgebra, [b, x] is a linear combination of b and x. However, using that [u, g′] = 0 we
get

ad[b,x] |u = 0,

so, in particular, the symmetric part of ad[b,x] |u (which is θ([b, x]) by (6.1) and the choice
of b), vanishes. Hence, [b, x] = λx for some λ ∈ R. In fact, since g is unimodular and
tr adb |u = (n− 2)µ (see (6.1)), we have [b, x] = −(n− 2)µx, which is non-zero.

In particular, the above shows that x ∈ g′ and thus x commutes with u. Therefore,
k := Rx⊕ u is an abelian ideal of g, so that g is an almost abelian Lie algebra. □

The next result treats the case where the flat space u has codimension 3.

Proposition 6.3. Let g be a unimodular solvable Lie algebra of dimension n admitting a
non-degenerate LCP structure (g, θ, u) with dim u = n−3. Then either g is almost abelian,
or else n ≥ 5 and there is an orthonormal basis {b, x, y} of u⊥ such that θ(b) = µ > 0,
θ(x) = θ(y) = 0 and the matrices of the adjoint maps in the basis {b, x, y} verify

adb =


0 0 0
0 (3− n)µ r
0 0 0

µ Idu +B1

 , ady =


0 0 0
−r 0 0
0 0 0

B2

 ,

where r ∈ R, B1, B2 ∈ so(u), B2 ̸= 0 and [B1, B2] = 0. In addition, the LCP Lie algebra
is isomorphic to CA,B1,B2,v in Example 4.7, where A := (n− 3)µ ∈ R = gl(1) and v := rx.

Proof. We proceed as in the previous proposition. By Theorem 5.3, g = u⊥ ⋉ u, where
u is an abelian ideal and u⊥ is a non-unimodular solvable Lie subalgebra of dimension 3
such that θ|u = 0 (see Lemma 5.2).
Define W := ker θ ∩ u⊥, and notice that 0 ̸= [u⊥, u⊥] ⊂ W , since θ is closed. Let b be a

unit element in W⊥ such that θ(b) =: µ > 0. Since [u⊥, u⊥] ⊂ W , adb preserves W and

(6.2) adb = (adb)|W + µ Idu +β(b),

where β : g → so(u) is a Lie algebra representation. Unimodularity implies

(6.3) − tr(adb)|W = tr(adb)|u = µ(n− 3).

Fix an orthonormal basis {x, y} of W such that x ∈ [u⊥, u⊥]. We claim that W is an
abelian subalgebra.

If W = [u⊥, u⊥], it is straightforward that it is abelian. Indeed, the commutator of a
solvable Lie algebra u⊥ is nilpotent, but being of dimension ≤ 2, it must be abelian.
If W ̸= [u⊥, u⊥], then [b, y] = rx and [y, x] = sx for some r, s ∈ R so that tr(ady)|u⊥ = s.

However, since θ(y) = 0, we have

(6.4) (ady)|u = β(y) ∈ so(u),

and thus 0 = tr(ady)|u = − tr(ady)|u⊥ = s. Therefore, x and y commute and W is abelian
in this case as well, proving our claim.
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Recall that [g′, u] = 0. Therefore, if either W = [u⊥, u⊥], or W ̸= [u⊥, u⊥] and β(y) = 0
in (6.4), then k := W ⊕u is an abelian ideal of g. Hence g is almost abelian in these cases.

Assume now that W ̸= [u⊥, u⊥] and β(y) ̸= 0 in (6.4); notice that the latter implies
dim u ≥ 2 and thus n ≥ 5. Since the commutator of u⊥ is 1-dimensional, we get from
(6.3):

adb = −(n− 3)µx⊗ x+ ry ⊗ x+ µ Idu +β(b).

It is possible to check that this LCP structure arises from Example 4.7 by taking q = n−3,
p = 1 and Rp = Rx, A = (n− 3)µ, v = rx, B1 = β(b) and B2 = β(y). □

7. Low dimensional LCP Lie algebras

In this section we study low dimensional solvmanifolds equipped with LCP structures.
We begin by classifying the unimodular solvable Lie algebras of dimension at most 5
that admit LCP structures. In the second part of the section we deal with the existence
of lattices in the associated Lie groups. Since the existence of lattices does not depend
on the left invariant Riemannian metric on the group, we will be interested only in the
isomorphism classes of LCP Lie algebras, rather than isometry classes.

The summary of the classification will be given in Tables 1-3 in the Appendix, where
the name of each Lie algebra and the (non-)existence of lattices in the associated simply
connected Lie group is provided.

Proposition 7.1. Let g be a 3-dimensional unimodular solvable Lie algebra. Then g
admits a non-degenerate LCP structure if and only if it is isomorphic to the Lie algebra
e(1, 1) in Table 1.

Proof. Every non-degenerate LCP Lie algebra (g, g, θ, u) with dim g = 3, verifies dim u⊥ =
2 and dim u = 1 due to Proposition 6.1.
From Corollary 5.7 it follows that g is almost abelian and by Proposition 6.2, it can

be written as an orthogonal semidirect product Rb⋉ (Rx⊕Ru), where b, x, u are of unit
length and

adb = λx⊗ x− λu⊗ u, [x, u] = 0,

for some λ ̸= 0. Taking e1 =
1
λ
b, e2 = x and e3 = u, we see that g is isomorphic to e(1, 1).

Conversely, e(1, 1) is isomorphic to the Lie algebra of L(λ IdR,0) in Example 4.6, so it
admits an LCP structure. □

The LCP structure obtained on e(1, 1) coincides with the one constructed by Matveev
and Nikolayevsky in [15].

We consider now the 4-dimensional case. In the next result we will use the notation of
Bock in [6] which, in turn, is borrowed from [18].

Proposition 7.2. Let g be a 4-dimensional unimodular solvable Lie algebra. Then g
admits a non-degenerate LCP structure if and only if g is isomorphic to one of the Lie
algebras in Table 2.



LOCALLY CONFORMALLY PRODUCT STRUCTURES ON SOLVMANIFOLDS 22

Proof. If g is of dimension 4 and admits an LCP structure (g, θ, u), then dim u is either 1
or 2, in view of Proposition 6.1. In addition, by Propositions 6.2 and 6.3, we have that g is
almost abelian. Therefore, by Corollary 5.7, g can be written as an orthogonal semidirect
sum g = Rb⋉ (Rp ⊕ Rq), where p+ q = 3 and

(7.1) adb |Rp⊕Rq =

[
A

B − 1
q
tr(A) IdRq

]
,

for some A ∈ gl(p) with tr(A) ̸= 0 and B ∈ so(q).
Assume first that p = 1, q = 2 and consider an orthonormal basis {b, x, u, v} of g such

that Rp = Rx, Rq = span{u, v} = u, and the action of b on Rp ⊕ Rq is given by

(7.2) adb |Rp⊕Rq =

 λ

−λ
2

−a
a −λ

2

 ,

for some λ, a ∈ R, λ ̸= 0.

If a = 0, taking e1 =
1
λ
b, e2 = x, e3 = u and e4 = v we obtain the Lie algebra g

− 1
2
,− 1

2
4.5 .

When a ̸= 0, taking e1 = − 1
a
b, e2 = x, e3 = u and e4 = v we obtain the Lie algebra g−2p,p

4.6

from Table 2 for p = λ
2a

̸= 0.
Suppose now that p = 2, q = 1 and let {b, x, y, u} be an orthonormal basis such that

Rp = span{x, y} and Rq = Ru,

adb |Rp⊕Rq =

[
A

− tr(A)

]
,

for some A ∈ gl(2) such that tr(A) ̸= 0.
We consider now the possible Jordan forms of the matrix A to identify the structure of

the Lie algebra g.
Assume first that A has real eigenvalues and it is diagonalizable, so that in a certain

basis it has the form

A =

[
α 0
0 β

]
for some α, β ∈ R such that α + β ̸= 0. If α = 0, so that β ̸= 0, replacing b with b

β
we

obtain the Lie algebra e(1, 1) ⊕ R. The same happens if β = 0 and α ̸= 0. However, if
α ̸= 0 and β ̸= 0, with α + β ̸= 0, setting e1 = − 1

α+β
b, e2 = u, e3 = x and e4 = y, we

obtain that g is isomorphic to gp,−p−1
4.5 in Table 2 for p = − α

α+β
.

When A has real eigenvalues but it is not diagonalizable then we may assume

A =

[
α 1
0 α

]
for some 0 ̸= α ∈ R. Setting e1 =

b
α
, e2 =

x
α
, e3 = y and e4 = u we obtain the Lie algebra

g−2
4.2 in Table 2.
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Finally, if A has non-real eigenvalues then we may assume

A =

[
α β
−β α

]
for some α, β ∈ R with α ̸= 0 and β ̸= 0. Setting e1 = b

β
, e2 = u, e3 = x and e4 = y we

obtain the Lie algebra g−2p,p
4.6 in Table 2 for p = α

β
̸= 0.

Conversely, an explicit LCP structure on e(1, 1)⊕R can be given by extending the LCP
structure on e(1, 1) using Proposition 4.1. The remaining Lie algebras listed above are
isomorphic to L(A,B) in Example 4.6, for certain A ∈ gl(p) with tr(A) ̸= 0 and B ∈ so(q);
each one of them admits non-degenerate LCP structures. □

The summary of the 4-dimensional case is given in Table 2 in the Appendix.

Notice that the Lie algebras g
− 1

2
,− 1

2
4.5 and g−2p,p

4.6 admit LCP structures with dimension
of the flat factor either 1 or 2, whilst all the other Lie algebras in the table admit only
one possibility for the dimension of u.

We consider next the 5-dimensional case. We will divide it in 3 different cases, depend-
ing on the dimension of the flat subspace u, which according to Proposition 6.1 can be
equal to 1, 2 or 3.

Proposition 7.3. Let g be a 5-dimensional unimodular solvable Lie algebra. Then g
admits a non-degenerate LCP structure with 3-dimensional flat subspace if and only if it

is isomorphic to either g
− 1

3
,− 1

3
,r

5.13 or g
1
3
, 1
3
, 1
3

5.7 in Table 3.

Proof. According to Proposition 6.2, g is almost abelian and thus, by Corollary 5.7 iso-
morphic to the underlying Lie algebra of L(A,B).

Since dim g = 5 and dim u = 3, this implies that the Lie algebra can be written as
g = Rb ⋉ (Rx ⊕ R3) with u = R3, such that Rx ⊕ R3 is an abelian ideal. Moreover, the
action of b on this ideal is given by

adb |Rx⊕R3 =

[
−3µ

µ Idu +B

]
,

for some 0 ̸= µ ∈ R and B ∈ so(3). Setting b′ := 1
µ
b and using the normal form of any

matrix in so(3), we may change the basis of u so that

adb′ |k =


−3

1 0 0
0 1 −p
0 p 1

 ,

for some p ∈ R.
It is straightforward to check that g is isomorphic to g

− 1
3
,− 1

3
,r

5.13 for r = −p
3
̸= 0, and

isomorphic to g
1
3
, 1
3
, 1
3

5.7 otherwise (see Table 3 in the Appendix).
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For the converse, it is enough to notice that, by construction, the Lie algebras g
− 1

3
,− 1

3
,r

5.13

and g
1
3
, 1
3
, 1
3

5.7 are of the type L(A,B) for certain 0 ̸= A ∈ R = gl(1) and B ∈ so(3). Hence
they admit an LCP structure with 3-dimensional flat space as in Example 4.6. □

We consider now the case of a 2-dimensional flat subspace.

Proposition 7.4. Let g be a 5-dimensional unimodular solvable Lie algebra. Then g
admits a non-degenerate LCP structure with 2-dimensional flat subspace if and only if g

is isomorphic to one of the following Lie algebras in Table 3: g
− 1

2
,− 1

2
4.5 ⊕ R, g−2p,p

4.6 ⊕ R,
g1−2q,q,q
5.7 , gq,q,1−2q

5.7 , g−1,−1
5.9 , g−1−2q,q,r

5.13 , g−1,q
5.16 , g

p,−p,r
5.17 or g−2,0

5.35 .

Proof. According to Proposition 6.3 for n = 5, there are two possibilities for the structure
of g:

Case 1. g is almost abelian, and thus by Corollary 5.7, it has an orthonormal basis
{b, x, y, u, v} where the last elements span an abelian ideal k of dimension 4, and the
action of b on k is given by

adb |k =

 A

µ −a
a µ

 ,

for some A ∈ gl(2) with tr(A) ̸= 0 and some µ, a ∈ R, µ ̸= 0. Replacing b by − b
µ
we may

assume µ = −1, and exchanging u and v we may assume a ≥ 0. Since g is unimodular
we have that tr(A) = 2.

We shall determine the structure of g depending on the Jordan form of the matrix A.
Assume first that A has real eigenvalues and it is diagonalizable. With respect to a

basis of eigenvectors, we can write

A =

[
α 0
0 β

]
,

with α ≤ β ∈ R and α + β = 2 (thus α ≤ 1). Suppose that a ̸= 0. If α = 0, then setting
e1 = − 1

a
b, e2 = y, e3 = u, e4 = v and e5 = x we get that g is isomorphic to g−2p,p

4.6 ⊕R for

p = 1
a
. To the contrary, if α ̸= 0 then β ≥ 1, thus setting e1 = y, e2 = v, e3 = u, e4 = x

and e5 =
1
β
b, we get the Lie algebra g−1−2q,q,r

5.13 for q = − 1
β
∈ [−1, 0] and r = a

β
> 0.

Suppose now a = 0. If α = 0, then setting e1 =
1
2
b, e2 = y, e3 = u, e4 = v and e5 = x

we get that g is isomorphic to g
− 1

2
,− 1

2
4.5 ⊕ R (see Table 2). Finally, if α ̸= 0, set e5 = − 1

α
b

e1 = y, e2 = u, e3 = v, e4 = x, q = 1
α
and p = 1 − 2q. We obtain an isomorphism with

gp,q,q5.7 when α > 0, and with gq,q,p5.7 for α < 0.
Next, if A has real eigenvalues but is not diagonalizable over R, we may assume that

A =

[
1 1
0 1

]
.

It is clear that g is isomorphic to g−1,−1
5.9 when a = 0 and to g−1,q

5.16 for q = a, when a ̸= 0.
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Finally, if A has non-real eigenvalues we may assume

A =

[
1 −β
β 1

]
for some β > 0. If a = 0 then setting e5 = −b, e1 = u, e2 = x, e3 = y and e4 = v,
we obtain that g is isomorphic to g1,−1,r

5.13 for r = β. Finally, if a ̸= 0 let us set e5 = 1
β
b,

e1 = x, e2 = y, e3 = u and e4 = v, so that we get an isomorphism with the Lie algebra
gp,−p,r
5.17 for p = 1

β
> 0 and r = a

β
.

Case 2. there is an orthonormal basis {b, x, y, u, v} of g such that k = span{x, y, u, v}
is a non-abelian ideal and the Lie bracket of g is encoded in the adjoint action of b and y:

adb =


0

−2µ r
0 0

µ −a
a µ

 , ady =


0 0 0
−r 0 0
0 0 0

0 −c
c 0

 ,

in the ordered basis {b, x, y, u, v}, for some µ, r, a, c ∈ R with µ ̸= 0, c ̸= 0.
We note first that replacing b by b− a

c
y we may assume a = 0. The other parameters

in the Lie brackets remain unchanged. Setting now b′ = b
µ
and y′ = y

c
we obtain:

[b′, x] = −2x, [b′, y′] =
r

µc
x, [b′, u] = u, [b′, v] = v, [y′, u] = v, [y′, v] = −u.

Therefore, if we denote e1 = r
2µc

x + y′, e2 = u, e3 = v, e4 = x, e5 = b′ we obtain the Lie

algebra g−2,0
5.35 .

To finish the proof it remains to notice that the Lie algebras g1−2q,q,q
5.7 , gq,q,1−2q

5.7 , g−1,−1
5.9 ,

g−1−2q,q,r
5.13 , g−1,q

5.16 , gp,−p,r
5.17 or g−2,0

5.35 in Table 3, are either isomorphic to the Lie algebras
underlying L(A,B) (in Case 1) or C(A,B1,B2,v) (in Case 2) described in Examples 4.6 and 4.7,
and thus they admit LCP structures. In addition, since any LCP structure on a solvable
unimodular 4-dimensional Lie algebra g̃ is adapted, g = g̃ ⊕ R carries an LCP structure
by Proposition 4.1. □

Proposition 7.5. Let g be a 5-dimensional unimodular solvable Lie algebra. Then g
admits a non-degenerate LCP structure with 1-dimensional flat subspace u if and only if
it is isomorphic to one of the following Lie algebras in Table 3: e(1, 1) ⊕ R2, g−2

4.2 ⊕ R,
gp,−p−1
4.5 ⊕R, g−2p,p

4.6 ⊕R, gp,q,r5.7 , g−1
5.8, g

p,−2−p
5.9 , g−3

5.11, g
−1−2q,q,r
5.13 , gp,−2p−2

5.19 , g−4
5.23, g

p,4p
5.25, g

−1,−1
5.33 or

g−2,0
5.35 .

Proof. Assume that (g, θ, u) is an LCP structure on a 5-dimensional solvable unimodular
Lie algebra g with 1-dimensional flat subspace spanned by u ∈ g. According to Theorem
5.3 and Proposition 3.2, g is has a semidirect product structure

g = h⋉Ru,
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where u ∈ z(g′) and h is a non-unimodular solvable Lie subalgebra of g. Moreover, by
(3.3), the trace form of h is given by Hh = −θ|h and, since dim u = 1, by Theorem 5.3(2)
we have for any x ∈ h

(7.3) [x, u] = −Hh(x)u.

Conversely, any Lie algebra obtained as such a semidirect product admit an LCP struc-
ture 1-dimensional flat subspace, as shown in Proposition 4.3.

Therefore, we need to determine all isomorphism classes of semidirect products of non-
unimodular 4-dimensional Lie algebras h with R, where the action on R is given by the
opposite of the trace form of h as in (7.3).

To that purpose, we make use of the list of non-unimodular 4-dimensional Lie algebras
h given in [1, Theorem 1.5]. In each case, we give the non-zero Lie bracket relations of
h on a basis {xi}4i=1 and we compute Hh in terms of its dual basis {xi}4i=1. Then we
consider the semidirect product g = h ⋉ Ru where the representation is given by −Hh,
and give explicitly the new non-zero Lie brackets of the form [xi, u], which together with
the brackets in h, determine the Lie algebra structure of g. This allows us to give the
explicit isomorphism with the Lie algebras in the statement.

• h = rr3 : [x1, x2] = x2, [x1, x3] = x2 + x3. One readily computes Hh(x) = 2x1.
Hence, the new non-zero Lie bracket in g is [x1, u] = −2u. An isomorphism
between g and g−2

4.2 ⊕ Rx4 is obtained by taking e1 = x1, e2 = x2, e3 = x3, e4 = u.
• h = rr3,λ, λ ∈ (−1, 1]: [x1, x2] = x2, [x1, x3] = λx3. Then Hh(x) = (1 + λ)x1, thus
we need to add the Lie bracket [x1, u] = −(1 + λ)u.

If λ = 0, then g is isomorphic to e(1, 1) ⊕ Rx3 ⊕ Rx4, and if λ ̸= 0 then g is
isomorphic to gp,−p−1

4.5 ⊕ Rx4. Indeed, this is clear when −1
2
≤ λ < 0, by taking

ei = xi, for i = 1, 2, 3, e4 = u and p = λ. For λ ∈ (−1,−1
2
), one can take

p = −(1 + λ) and set e1 = x1, e2 = x2, x3 = u and e4 = x3. Similarly, for
λ ∈ (0, 1

2
) we set p = −λ whilst for λ ∈ [1

2
, 1] we take p = λ− 1.

• h = rr′3,γ, γ > 0: [x1, x2] = γx2 − x3, [x1, x3] = x2 + γx3. We have Hh = 2γx1

and thus the new non-zero Lie bracket in g is [x1, u] = −2γu. Taking e1 = x1,
e2 = u, e3 = x2, e4 = x3 and p = λ shows that this Lie algebra is isomorphic to
g−2p,p
4.6 ⊕ Rx4.

• h = r2r2: [x1, x2] = x2, [x3, x4] = x4. This time Hh = x1+x3 and thus in the given
basis of g we have two new non-zero Lie brackets: [x1, u] = −u = [x3, u]. Taking
e1 = xi, i = 1, 2, 4, e3 = u and e5 = −x3 shows that this Lie algebra is isomorphic
to g−1,−1

5.33 .
• h = r′2: [x1, x3] = x3, [x1, x4] = x4, [x2, x3] = x4, [x2, x4] = −x3. The trace form
is Hh = 2x1 and thus the non-zero Lie bracket to be added to g is [x1, u] = −2u.
Taking e1 = x2, e2 = x3, e3 = x4, e4 = u and e5 = x1 shows that this Lie algebra
is isomorphic to g−2,0

5.35 .
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• h = r4: [x4, x1] = x1, [x4, x2] = x1 + x2, [x4, x3] = x2 + x3. We have Hh = 3x4 and
so the only non-zero Lie bracket in g added to those in h is [x4, u] = −3u. Taking
ei = xi for i ≤ 3, e4 = u and e5 = x4 gives an isomorphism between g and g−3

5.11.
• h = r4,µ, µ ̸= −1

2
: [x4, x1] = x1, [x4, x2] = µx2, [x4, x3] = x2 + µx3. We have

Hh = (1 + 2µ)x4 and so the new non-zero Lie bracket is [x4, u] = −(1 + 2µ)u.
If µ = 0, then g is isomorphic to g−1

5.8. Otherwise, g is isomorphic to gp,−2−p
5.9 for

some p. Indeed, when µ ∈ (−∞,−1] ∪ (0,+∞), the isomorphism is clear by
taking p = 1

µ
, e1 = x1, e2 = 1

µ
x2, e3 = x3, e4 = u, and e5 = 1

µ
x4. Moreover, for

µ ∈ (−1, 0), p = −2− 1
µ
≥ −1 and the isomorphism is given by choosing e1 = u,

e2 =
1
µ
x2, e3 = x3, e4 = x1, and e5 =

1
µ
x4.

• h = r4,α,β, α + β ̸= −1; with either −1 < α ≤ β ≤ 1, αβ ̸= 0, or α = −1 ≤ β < 0:
[x4, x1] = x1, [x4, x2] = αx2, [x4, x3] = βx3. Then Hh = (1 + α + β)x4, so we add
the bracket [x4, u] = −(1 + α+ β)u. In this case g is isomorphic to gp,q,r5.7 . Indeed,
when β ≤ −(1 + α + β) this is clear by setting e5 = −x4, e1 = −x2, e2 = −x3,
e3 = −u, e4 = x1, p = α, q = β, r = −(1 + α + β). If this is not the case,
permuting the elements x2, x3, u in the basis of g, gives the required isomorphism.

• h = r′4,γ,δ, δ > 0, γ ̸= −1
2
: [x4, x1] = x1, [x4, x2] = γx2 − δx3, [x4, x3] = δx2 + γx3.

The trace form is Hh = (1 + 2γ)x4 and thus the added Lie bracket is [x4, u] =
−(1 + 2γ)u. It is straightforward that g is isomorphic to g−1−2q,q,r

5.13 . Indeed, for
γ ∈ [−1, 0] the isomorphism is obvious for q = γ, r = δ; otherwise one should
choose q = γ

−1−2γ
, r = δ.

• h = d4,λ, λ ≥ 1
2
: [x1, x2] = x3, [x4, x3] = x3, [x4, x1] = λx1, [x4, x2] = (1−λ)x2. We

have Hh = 2x4 and only non-zero Lie bracket in g to be added is [x4, u] = −2u.
It follows that g is isomorphic to gp,−2p−2

5.19 by taking e5 =
1
λ
x4, e1 = xi, i = 1, 2, 3,

e4 = u, and p = 1−λ
λ
.

• h = d′4,δ, δ > 0: [x1, x2] = x3, [x4, x1] =
δ
2
x1−x2, [x4, x3] = δx3, [x4, x2] = x1+

δ
2
x2.

The trace form is Hh = 2δx4 and [x4, u] = −2δu is the non-zero Lie bracket to be
added to g. It follows that g is isomorphic to gp,4p5.25 by taking p = δ/2, e5 = x4,
e1 = x1, e2 = −x2, e3 = x3, and e4 = u.

• h = h4: [x1, x2] = x3, [x4, x3] = x3, [x4, x1] = 1
2
x1, [x4, x2] = x1 +

1
2
x2. We

have Hh = 2x4 and the only non-zero Lie bracket in g added to those in h is
[x4, u] = −2u. It follows that g is isomorphic to g−4

5.23 by taking e5 = 2x4, ei = 2xi,
i = 1, 3, e2 = x2, and e4 = u.

□

The summary of the 5-dimensional case is given in Table 3 in the Appendix.

Remark 7.6. The restrictions r > 0 for g−1−2q,q,r
5.13 , q > 0 for g−1,q

5.16 , p ≥ 0, r > 0 for gp,−p,r
5.17 ,

and p > 0 for gp,4p5.25 that appear in Table 3 are not included in [6, Appendix A]. However, it
is easy to check that, in all cases, the Lie algebra with a negative parameter is isomorphic
to the one with opposite (positive) parameter just by switching two elements of the basis.
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8. Lattices

In this section we study the existence of lattices on the simply connected solvable
unimodular Lie groups corresponding to the LCP Lie algebras appearing in the previous
section. The final objective is to study the associated LCP solvmanifolds.

8.1. Lattices on almost abelian Lie groups. We start this section by recalling the
following result by Bock:

Theorem 8.1. [6] A unimodular almost abelian Lie group G = R⋉ρRn−1 with Lie algebra
g = Rb ⋉ k admits a lattice if and only if there is a basis B of k = Rn−1 and t0 ̸= 0 such
that the matrix of ρ(t0) = et0 adb ∈ Aut(k) in that basis is in SL(n− 1,Z).

In this case a lattice can be given by Γ = t0Z ⋉ρ Γ0, where Γ0 ≃ Zn−1 is the lattice of
Rn−1 spanned by B.

Recall from Example 5.8 that the amalgamated product of two almost abelian Lie
algebras is again almost abelian. The next example studies the existence of lattices on
such products.

Example 8.2. Let g be the amalgamated product of (g1, g1, θ1, u1) and (g2, g2, θ2, u2),
where both g1 and g2 are unimodular almost abelian Lie algebras, with gi = Rbi ⋉Ci

Rni

for i = 1, 2. We know that g is again a unimodular almost abelian Lie algebra, as it can
be written as g = Rb⋉C (Rn1 ⊕ Rn2), with b and C as in (5.18) and (5.19), respectively.
Let us assume now that G1 and G2, the simply connected Lie groups associated to g1
and g2 respectively, have lattices. According to Theorem 8.1, there exist t1, t2 ∈ R such
that et1C1 ∈ SL(n1,Z) and et2C2 ∈ SL(n2,Z), for certain bases B1 and B2 of Rn1 and Rn2 ,
respectively. We may assume that t1, t2 > 0. We will give some conditions to ensure that
G, the simply connected Lie group with Lie algebra g, admits lattices.

Let us assume that the quotient t2|θ2|
t1|θ1| is a rational number. Then there exists t > 0

such that

(8.1) t
|θ2|

(|θ1|2 + |θ2|2)
1
2

= k1t1, t
|θ1|

(|θ1|2 + |θ2|2)
1
2

= k2t2, for some k1, k2 ∈ N.

By (5.19), the matrix of etC , expressed in the basis B1 ∪ B2 of Rn1 ⊕ Rn2 , is given by

etC =

[
ek1t1C1

ek2t2C2

]
=

[
(et1C1)k1

(et2C2)k2

]
∈ SL(n1 + n2,Z).

Therefore, G admits lattices, due to Theorem 8.1.
In particular, if the simply connected Lie group corresponding to a unimodular almost

abelian LCP Lie algebra admits lattices, then the simply connected Lie group whose
Lie algebra is the amalgamated product of this LCP Lie algebra with itself, also admits
lattices. In this way, one obtains (compact) LCP solvmanifolds with arbitrarily large flat
space.
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From Proposition 6.1, we know that on any n-dimensional unimodular solvable LCP
Lie algebra, the flat factor has dimension ≤ n− 2, and by Proposition 6.2, if the equality
holds, the algebra is almost abelian. This allows us to use Theorem 8.1 in order to study
LCP solvmanifolds with flat factor of codimension 2.

Proposition 8.3. Let g be a unimodular solvable Lie algebra of dimension n, with cor-
responding simply connected Lie group G. Assume that G admits a lattice Γ and there is
a non-degenerate LCP structure (g, θ, u) on g satisfying dim u = n− 2, so that Γ\G is a
compact LCP solvmanifold. Then either dim g = 3 or dim g = 4.

Proof. Assume that (g, g, θ, u) is a non-degenerate LCP Lie algebra satisfying dim u =
n−2. By Propositions 6.1 and 6.2, we know that u⊥ has an orthonormal basis {b, x} such
that θ = µg(b, ·) for some µ > 0, k := ker θ = Rx⊕ u is an abelian ideal and

adb = −(n− 2)µx⊗ x+ µ Idu+B,

where B is a fixed skew-symmetric endomorphism of u.
In particular, g = Rb ⊕ k is an orthogonal direct sum and g is almost abelian. Thus

G ≃ R⋉ρ Rn−1 where, if we write Rn−1 = Rx⊕ u, we have

(8.2) ρ(t) = et adb =


e−tµ(n−2) 0

etµ · etB

 , t ∈ R.

Assume that G admits a lattice. By Theorem 8.1, there is some t0 ̸= 0 such that ρ(t0)
is conjugated to an element in SL(n − 1,Z), that is, Qρ(t0)Q

−1 =: Z ∈ SL(n − 1,Z) for
some Q ∈ GL(n− 1,R).

It is clear from (8.2) that Rx and u are preserved by ρ(t0). Hence, RQx and Qu are
invariant under Z, and Z|Qu is orthogonal with respect to the (restriction of the) inner
product e−2tµg(Q−1·, Q−1·). Then, by [13, Proposition 3], either n = 3 or n = 4. □

An immediate consequence of this result is the following:

Corollary 8.4. Let G be a simply connected solvable Lie group of dimension n ≥ 5 with
Lie algebra g. If g admits an LCP structure (g, θ, u) with dim u = n − 2, then G has no
lattices.

8.2. Low-dimensional case. In this section we will determine which of the simply con-
nected solvable Lie groups corresponding to the low-dimensional LCP Lie algebras that
appeared in §7 have lattices. In order to do so, we will use mainly results in [6], but in
some cases we will prove the (non-)existence directly. For this we will use the following
result about polynomials with integer coefficients.

Lemma 8.5. Let P ∈ Z[X] be a polynomial with integer coefficients.

(1) If P is irreducible, then all its roots in C are simple.
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(2) If |P (0)| = 1, P is monic and has a double root different from ±1, then it has at
least two double roots.

Proof. (1) It is well known that a polynomial irreducible in Z[X] is also irreducible in
Q[X]. Assume that P has a double root a and let µa be the minimal polynomial of a in
Q[X]. Since P ′(a) = 0, deg(µa) ≤ deg(P )− 1. As Q[X] is principal, P is a non-constant
multiple of µa, so it is reducible, contradicting the hypothesis.
(2) Let a be a double root of P . From the above, P is divisible by µ2

a, so it is enough
to show that deg(µa) ≥ 2. Indeed, if deg(µa) = 1, a would be rational, thus integer as P
is monic, and finally a = ±1 because a divides |P (0)|. □

Corollary 8.6. Let A ∈ sl(q) be a trace-free matrix and let G be the simply connected
Lie group with algebra g = Rb ⋉A Rq, where the action is defined by adb |Rq = A. If all
eigenvalues of A are real and the characteristic polynomial of A has exactly one multiple
root λ ̸= 0, then G has no lattices.

Proof. If G has a lattice, Theorem 8.1 shows that there exists a non-zero real number t0
such that et0A is conjugate to a matrix in SL(q,Z). Then the characteristic polynomial,
P , of et0A is monic, has integer coefficients, satisfies P (0) = det(et0A) = et0 tr(A) = 1 and
has a double root et0λ different from ±1. The hypothesis on the characteristic polynomial
of A implies that all other roots of P are simple, which contradicts Lemma 8.5(2). Thus
G has no lattices. □

We will now analyse the existence of lattices in all simply connected Lie groups whose
corresponding LCP Lie algebras were classified in Section 7. The analysis will be made
according to the dimension of the Lie algebra. The information obtained is included in
the last column of the tables in the Appendix.

Case 1. dim g = 3. By Proposition 7.1, the only unimodular solvable LCP Lie
algebra in dimension 3 is e(1, 1). Let us denote by E(1, 1) the simply connected Lie
group associated to e(1, 1). The fact that E(1, 1) admits lattices is well-known. For the
sake of completeness we exhibit lattices in E(1, 1), using Theorem 8.1.
The Lie algebra e(1, 1) can be written as e(1, 1) = R⋉R2, where the action of R on R2

is given by the matrix

A :=

[
1 0
0 −1

]
.

For m ∈ N, m ≥ 3, set tm := ln
(

m+
√
m2−4
2

)
. Then, since etm + e−tm = m, it is easy to

check that exp(tmA) is conjugate to

Em :=

[
0 −1
1 m

]
∈ SL(2,Z),

so there exists Q ∈ GL(2,R) with Em = Q exp(tmA)Q
−1. Then Γm := tmZ ⋉Q−1Z2 is a

lattice in E(1, 1).
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The lattices Γm above are pairwise non-isomorphic, since it is readily verified that

Γm/[Γm,Γm] ∼= Z⊕ Zm−2.

Thus, the solvmanifolds Γm\E(1, 1) are pairwise non-homeomorphic, since π1(Γm\E(1, 1))
is isomorphic to Γm.

Case 2. dim g = 4. By Proposition 7.2 we have the following 4 possibilities:

• e(1, 1)⊕ R: clearly E(1, 1)× R admits lattices, since E(1, 1) does.
• g−2

4.2: the corresponding simply connected Lie group G−2
4.2 does not admit lattices,

due to [6, Theorem 7.1.1]. Notice that the Lie algebra g−2
4.2 is sometimes referred

to as g4.2 in [6].

• gp,−p−1
4.5 : the corresponding simply connected Lie groups Gp,−p−1

4.5 admit lattices for
some values of the parameter p ∈ [−1

2
, 0), according to [6, Theorem 6.2 and Table

A.1]. However, we can rule out the value p = −1
2
. Indeed, for this value the

eigenvalues of adb |k are 1, −1
2
and −1

2
, so by Corollary 8.6, the simply connected

Lie group G
− 1

2
,− 1

2
4.5 has no lattices.

• g−2p,p
4.6 : it follows from [2, §3.2.2] that for some values of p the corresponding simply

connected Lie group G−2p,p
4.6 has lattices.

Case 3. dim g = 5. We start by studying the decomposable Lie algebras appearing in
Propositions 7.3, 7.4 and 7.5:

• e(1, 1)⊕ R2: clearly E(1, 1)× R2 admits lattices, since E(1, 1) does.
• g−2

4.2 ⊕R: the corresponding simply connected Lie group admits no lattices due to
[6, Theorem 7.1.1].

• gp,−p−1
4.5 ⊕ R: Gp,−p−1

4.5 × R admit lattices for some values p, because Gp,−p−1
4.5 do, as

explained above. Note however that for p = −1
2
, the eigenvalues of adb |k are 0, 1,

−1
2
and −1

2
, so by Corollary 8.6, the simply connected Lie group G

− 1
2
,− 1

2
4.5 ×R has

no lattices.
• g−2p,p

4.6 ⊕R: G−2p,p
4.6 ×R admit lattices for some values of p, since G−2p,p

4.6 have lattices
[2, §3.2.2].

Finally, we treat the indecomposable Lie algebras listed in Table 3:

• gp,q,r5.7 : The corresponding simply connected Lie groups Gp,q,r
5.7 admit lattices for

some values of the parameters (see [6, Theorem 7.2.1]). However, we can be more
precise for some particular values of the parameters.

In fact, these Lie algebras are almost abelian, and the action on the abelian
ideal is given by a diagonal matrix A with eigenvalues p, q, r,−1, where pqr ̸= 0,
p+ q+ r = 1 and −1 ≤ p ≤ q ≤ r ≤ 1. Hence if p = q or q = r < 1, then all roots
of the characteristic polynomial of A are real, and only one of them is multiple.
Therefore, in these cases, the corresponding simply connected Lie groups Gp,q,r

5.7

have no lattices due to Corollary 8.6. Notice that for r = q = 1 we have p = −1
and G−1,1,1

5.7 has lattices by [6, Theorem 7.2.1 (iii)].
• g−1

5.8: the Lie group G−1
5.8 admits lattices, due to [6, Theorem 7.2.2].
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• gp,−2−p
5.9 : the Lie groups Gp,−2−p

5.9 do not admit lattices (see [6, Theorem 7.2.3]).
• g−3

5.11: the Lie group G−3
5.11 does not admit lattices (see [6, Theorem 7.2.4]).

• g−1−2q,q,r
5.13 : for any r > 0, Proposition 7.3 shows that the Lie groups G

− 1
3
,− 1

3
,r

5.13 admit
LCP structures with flat factor of dimension 3, so by Corollary 8.4, they have no
lattices. However, for q ̸= −1

3
, there are some values of the parameters q, r for

which G−1−2q,q,r
5.13 admit lattices by [6, Proposition 7.2.5].

• g−1,q
5.16 : the Lie groups G−1,q

5.16 do not admit lattices (see [6, Theorem 7.2.10]).
• gp,−p,r

5.17 : Gp,−p,r
5.17 admit lattices for some values of p ̸= 0, as shown in [6, Theorem

7.2.12].
• gp,−2p−2

5.19 , g−4
5.23 and gp,4p5.25: the associated Lie groups Gp,−2p−2

5.19 , G−4
5.23 and Gp,4p

5.25 do not
have lattices, according to [6, Theorem 7.2.16].

• g−1,−1
5.33 and g−2,0

5.35 : it follows from [6, Propositions 7.2.20-21] that the associated
simply connected Lie groups G−1,−1

5.33 and G−2,0
5.35 admit lattices.

Appendix A. Tables of low-dimensional LCP Lie algebras

This appendix contains the structure constants of the unimodular solvable LCP Lie
algebras up to dimension 5. In each table, the 3rd column gives the possible dimensions
of the flat factor of an LCP structure, as determined in Section 7. The 4th column
says whether the corresponding simply connected Lie group has lattices or not. Notice
that when the Lie algebra belongs to a family, it is in general not possible to determine
explicitly the set of parameters for which the corresponding simply connected Lie groups
admit lattices (except when one can show that none of them does).

Lie algebra Brackets dim u Lattices

e(1, 1) [e1, e2] = e2, [e1, e3] = −e3 1 yes

Table 1. 3-dimensional LCP Lie algebra

Lie algebra Brackets dim u Lattices

e(1, 1)⊕ R [e1, e2] = e2, [e1, e3] = −e3 1 yes

g−2
4.2 [e1, e2] = e2, [e1, e3] = e2 + e3, 1 no

[e1, e4] = −2e4
gp,−p−1
4.5 [e1, e2] = e2, [e1, e3] = pe3, 1 or for some p ̸= −1

2

[e1, e4] = −(p+ 1)e4, −1
2
≤ p < 0 2 for p = −1

2

g−2p,p
4.6 [e1, e2] = −2pe2, [e1, e3] = pe3 − e4, 1 or 2 for some p

[e1, e4] = e3 + pe4, p > 0

Table 2. 4-dimensional LCP Lie algebras
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Lie Brackets dim u Lattices
algebra

e(1, 1)⊕ R2 [e1, e2] = e2, [e1, e3] = −e3 1 yes

g−2
4.2 ⊕ R [e1, e2] = e2, [e1, e3] = e2 + e3, 1 no

[e1, e4] = −2e4
gp,−p−1
4.5 ⊕ R [e1, e2] = e2, [e1, e3] = pe3, 1 or for some

[e1, e4] = −(p+ 1)e4, −1
2
≤ p < 0 2 for p = −1

2
p ̸= −1

2

g−2p,p
4.6 ⊕ R [e1, e2] = −2pe2, [e1, e3] = pe3 − e4, 1 or 2 for some p

[e1, e4] = e3 + pe4, p > 0

gp,q,r5.7 [e5, e1] = pe1, [e5, e2] = qe2, [e5, e3] = re3, 1 or for some
[e5, e4] = −e4 2 if p ̸= r and p ̸= q ̸= r

pqr ̸= 0, p+ q + r = 1 q ∈ {p, r} or or
−1 ≤ p ≤ q ≤ r ≤ 1 3 if p = q = r q = r = 1

g−1
5.8 [e5, e1] = e1, [e5, e3] = e2, [e5, e4] = −e4 1 yes

gp,−2−p
5.9 [e5, e1] = pe1, [e5, e2] = e2, [e5, e3] = e2 + e3, 1 or no

[e5, e4] = (−2− p)e4, p ≥ −1 2 if p = −1

g−3
5.11 [e5, e1] = e1, [e5, e2] = e1 + e2, , 1 no

[e5, e3] = e2 + e3, [e5, e4] = −3e4
g−1−2q,q,r
5.13 [e5, e1] = e1, [e5, e2] = qe2 − re3, 1 or for some

[e5, e3] = re2 + qe3, [e5, e4] = (−1− 2q)e4 2 or q ̸= −1
3
, r

r > 0, q ∈ [−1, 0], q ̸= −1
2

3 if q = −1
3

g−1,q
5.16 [e5, e1] = e1, [e5, e2] = e1 + e2, 2 no

[e5, e3] = −e3 − qe4, [e5, e4] = qe3 − e4, q > 0

gp,−p,r
5.17 [e5, e1] = pe1 − e2, [e5, e2] = e1 + pe2, 2 if p ̸= 0 for some

[e5, e3] = −pe3 − re4, [e5, e4] = re3 − pe4 p, r
p ≥ 0, r > 0

gp,−2p−2
5.19 [e1, e2] = e3, [e5, e1] = e1, [e5, e2] = pe2, 1 no

[e5, e3] = (p+ 1)e3, [e5, e4] = −2(p+ 1)e4,
p ̸= −1

g−4
5.23 [e1, e2] = e3, [e5, e1] = e1, [e5, e2] = e1 + e2, 1 no

[e5, e3] = 2e3, [e5, e4] = −4e4
gp,4p5.25 [e1, e2] = e3, [e5, e1] = pe1 + e2, 1 no

[e5, e2] = −e1 + pe2, [e5, e3] = 2pe3,
[e5, e4] = −4pe4, p > 0

g−1,−1
5.33 [e1, e2] = e2, [e1, e3] = −e3, 1 yes

[e5, e3] = e3, [e5, e4] = −e4
g−2,0
5.35 [e1, e2] = e3, [e1, e3] = −e2, [e5, e2] = e2, 1 or 2 yes

[e5, e3] = e3, [e5, e4] = −2e4

Table 3. 5-dimensional LCP Lie algebras
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91405, Orsay, France, and Institute of Mathematics “Simion Stoilow” of the Romanian

Academy, 21 Calea Grivitei, 010702 Bucharest, Romania

Email address: andrei.moroianu@math.cnrs.fr


