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Abstract. A conformal Lie group is a conformal manifold (M, c) such that M has a Lie
group structure and c is the conformal structure defined by a left-invariant metric g on M .
We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact
quotients. In the compact case, we show that every conformal solvmanifold carrying a Weyl-
Einstein structure is Einstein. We also show that there are no left-invariant Weyl-Einstein
structures on non-abelian nilpotent conformal Lie groups, and classify them on conformal
solvable Lie groups in the almost abelian case. Furthermore, we determine the precise list
(up to automorphisms) of left-invariant metrics on simply connected solvable Lie groups of
dimension 3 carrying left-invariant Weyl-Einstein structures.

1. Introduction

In 1964, Wolf [15] showed that there are no left-invariant Einstein metrics on non-abelian
nilpotent Lie groups (see also [10]). Our aim is to study a similar question in the conformal
setting.

It was Hermann Weyl [14, 13] who first introduced a generalization of Einstein metrics in
conformal geometry. A Weyl-Einstein structure on a conformal manifold (M, c) is a torsion-
free linear connexion preserving the conformal structure, whose symmetric trace-free compo-
nent of the Ricci tensor vanishes. Unlike the Riemannian case, it is still unknown whether
there exists a non-abelian conformal nilpotent Lie group (M, c), where c contains a left-
invariant metric, carrying a Weyl-Einstein structure.

The notion of nilmanifolds as manifolds endowed with a transitive action of a nilpotent Lie
group was introduced by Mal’cev [9] in 1949. Mal’cev has proved subsequently that every
compact nilmanifold M can be obtained by taking the quotient of a nilpotent Lie group G by
some discrete subgroup Γ ⊂ G, that is, M = Γ\G. Every left-invariant Riemannian metric g
on G defines a unique Riemannian metric ḡ on M such that the projection G→M is a local
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isometry. A compact nilmanifold M endowed with a conformal structure c that contains such
a metric ḡ is called a compact conformal nilmanifold.

More generally, if a compact manifold M is the quotient of a simply connected solvable Lie
group G by a discrete co-compact subgroup Γ ⊂ G, and c is the conformal structure defined
by the projection to M of a left-invariant Riemannian metric on G, we say that (M, c) is a
compact conformal solvmanifold.

Our first result (Theorem 4.1 and Corollary 4.2) is that a compact conformal solvmanifold
(M, c) does not admit any Weyl-Einstein structure, unless its universal cover endowed with
the corresponding left-invariant metric g is flat. The detailed proof can be found in Section 4,
which is preceded by the preliminary Section 2 listing some general results in conformal
geometry and by Section 3 where we give a quick introduction to conformal geometry on
Riemannian Lie groups, with special emphasis on the notion of Weyl–Einstein structures.

In the remaining part of the article, we drop the compactness assumption, but impose
the left-invariance of the Weyl structure instead. More precisely, we study Weyl-Einstein
structures on Riemannian Lie groups (G, g) whose Lee form with respect to g is left-invariant.
This problem can be stated in purely algebraic terms on the Lie algebra of G, but is intractable
in full generality. When G is nilpotent, we show that no such structure exists, unless G is
abelian (Proposition 5.1). The situation is more complicated in the solvable case, where even
left-invariant Einstein metrics do actually exist.

In Section 6 we obtain the classification of left-invariant Weyl-Einstein structures on almost
abelian conformal Lie groups (Theorem 6.2) and in Section 7 we study the 3-dimensional
solvable case (Theorem 7.2).

2. Preliminaries on Riemannian and conformal geometry

This preliminary section aims to set notations and provide the basic facts that will be of
use for our main results. We include a brief introduction to conformal geometry and classical
formulas in Riemannian and conformal geometry. For further information on these topics,
we refer the reader to Besse [2], Bourguignon et al. [3], Gauduchon [7] and Moroianu [11].

Let (M, g) be a Riemannian manifold of dimension n. We assume throughout the paper
that n ≥ 3. Let ∇g denote the Levi-Civita connection of g, whose curvature tensor Rg is
defined by

(1) Rg(X, Y )Z := ∇g
[X,Y ]Z − [∇g

X ,∇
g
Y ]Z, for any X, Y, Z ∈ X(M).

The Riemannian Ricci tensor Ric∇
g

is the symmetric tensor given by

(2) Ric∇
g

(X, Y ) = Tr(Z 7→ Rg(X,Z)Y ), for any X, Y ∈ X(M).

The scalar curvature of (M, g) is the trace of the Ricci tensor, that is, Scalg = Tr(Ric∇
g

).
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Definition 2.1. The Riemannian manifold (M, g) is called Einstein if Ric∇
g

= 1
n

Scalg g.

Equivalently, (M, g) is Einstein if the trace-free part of Ric∇
g

vanishes.

It is well known that any Einstein manifold (M, g) of dimension n ≥ 3 has constant scalar
curvature [2].

Given a local g-orthonormal frame {ei}ni=1 of M , the co-differential of a symmetric k-tensor
field α on M is the symmetric (k − 1)-tensor defined as

(3) δgα = −
n∑
i=1

eiy∇g
ei
α.

The well known contracted Bianchi identity [2, §1.95] reads:

(4) d Scalg = −2δg Ric∇
g

.

Let ∆g denote the Hodge–Laplace operator. On 1-forms, the Laplacian ∆g is related to
the Ricci tensor Ric∇

g

via the Bochner–Weitzenböck formula [12, §3, Ch. 7]:

(5) ∆gθ = (∇g)∗∇gθ + Ric∇
g

(θ), for any θ ∈ Ω1(M),

where, in a local g-orthonormal frame {ei}ni=1 of M ,

(∇g)∗∇gθ := −
n∑
i=1

∇g
ei
∇g
ei
θ.

For any k ∈ R, we denote Lk the weight bundle of weight k over M . Recall that Lk :=
GL(M)×

| det |
k
n
R is an oriented (thus trivializable) real line bundle and that for all k, l ∈ R,

Lk ⊗ Ll ' Lk+l. Denote the bundle of all symmetric 2-tensors over M by Sym2(T ∗M) and
for all k ∈ R, the set of all positive elements of Lk by Lk+.

Definition 2.2. A conformal class on M is a section c of the bundle Sym2(T ∗M)⊗ L2 over
M , which satisfies c(X,X) ∈ L2

+ for every non-vanishing vector X ∈ TM . The pair (M, c) is
called a conformal manifold.

Given a conformal class c, for every section l ∈ Γ(L+) there exists a unique Riemannian
metric g on M such that c = g ⊗ l2; all such metrics g are said to belong to the conformal
class c. On a conformal manifold (M, c), the analogous of the Levi-Civita connection is the
class of so-called Weyl-structures, which we shall introduce next.

Definition 2.3. A Weyl structure on a conformal manifold (M, c) is a torsion-free linear
connection ∇ on M satisfying ∇c = 0.
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The fundamental theorem of conformal geometry [14] states that on any conformal manifold
(M, c) there is a one-to-one correspondence between Weyl structures ∇ and connections ∇L
on L. This correspondence is implicitly given by the conformal analogue of the Koszul formula

(6)
c(∇XY, Z) =

1

2
(∇LX(c(Y, Z)) +∇LY (c(X,Z))−∇LZ(c(X, Y ))

+ c(Z, [X, Y ])− c(Y, [X,Z])− c(X, [Y, Z])),

for all X, Y, Z ∈ X(M).

Let ∇L be a connection on L and g a metric in c. Then there exists a unique section
lg ∈ Γ(L+) such that c = g ⊗ l2g and a 1-form θg ∈ Γ(T ∗M), called the Lee form of ∇ with
respect to g, satisfying

(7) ∇LX lg = θg(X)lg, for any X ∈ X(M).

Notice that θg depends on the choice of g ∈ c. However, any two Lee forms of a Weyl
connection (that is, corresponding to two Riemannian metrics in c) are cohomologous. Indeed,
if g̃ is another Riemannian metric in the class c, then g = e−2f g̃ for some f ∈ C∞(M). We
can thus write c = g ⊗ l2g = g̃ ⊗ l2g̃, so lg = ef lg̃ and thus (7) implies

(8) θg = θg̃ + df.

In particular, the 2-form F := dθg = dθg̃ is independent of the choice of g ∈ c, and is called
the Faraday form of ∇. The Weyl structure ∇ is called closed when F = 0 and exact if θg is
exact for some (and thus all) g ∈ c. When it is understood from the context, and in order to
avoid heavy notation, we will denote simply by θ the Lee form θg of a metric g ∈ c.

Given a Weyl structure ∇ on (M, c) and a Riemannian metric g ∈ c with Lee form θ, it
follows directly from (7) that

(9) ∇g = −2θ ⊗ g.

Notice that if ∇ is exact, then there exists a Riemannian metric g in c whose Lee form
vanishes, and thus ∇ = ∇g.

Fixing a Riemannian metric g in the conformal class c, the Weyl connection is completely
determined by the Levi-Civita connection ∇g and the Lee form θ associated to (∇, g) through
the formula

(10) ∇XY = ∇g
XY + θ(X)Y + θ(Y )X − g(X, Y )T,

for all X, Y ∈ X(M), where T ∈ X(M) is the vector field dual to θ with respect to g.

Conversely, any differential 1-form θ on M together with a Riemannian metric g ∈ c defines
a Weyl structure on (M, c) via (10).

The curvature tensor R∇ of ∇ is defined by

(11) R∇(X, Y )Z := ∇[X,Y ]Z −∇X∇YZ +∇Y∇XZ, for any X, Y, Z ∈ X(M).
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The Ricci tensor Ric∇ of ∇ is the bilinear form on TM defined by

(12) Ric∇(X, Y ) := Tr(Z 7→ R∇(X,Z)Y ), for any X, Y ∈ X(M).

Notice that, unlike the Riemannian Ricci tensor, Ric∇ is not symmetric in general.

For every metric g in c, the scalar curvature of ∇ is the function Scal∇g defined as the

g-trace of Ric∇.

Equation (10) yields after some straightforward computations that the following relations
link the Ricci and scalar curvatures of ∇ with those of ∇g:

(13) Ric∇ = Ric∇
g −(n− 2)

(
∇gθ − θ ⊗ θ

)
+
(
δgθ − (n− 2)‖θ‖2

g

)
g,

and

(14) Scal∇g = Scalg +2(n− 1)δgθ − (n− 1)(n− 2)‖θ‖2
g.

It is clear from (13) that Ric∇ is, in general, not a symmetric tensor. Instead, its skew-
symmetric part is given by the skew-symmetric part of −(n−2)∇gθ, namely −n−2

2
dθ. There-

fore, Ric∇ is symmetric if and only if θ is closed, i.e. F = 0.

This suggests that in order to generalize the Einstein condition from Riemannian connec-
tions (see Definition 2.1) to Weyl connections, one should require the trace-free symmetric
part of Ric∇ to vanish. Equivalently, by (13) and (14), one has:

Definition 2.4. A Weyl-structure ∇ on a conformal manifold (M, c) is said to satisfy the
Weyl-Einstein condition if the following equation holds

(15) Ric∇ =
1

n
Scal∇g g −

(n− 2)

2
F,

for some (and thus every) g ∈ c.

Using (13) and (14), we can interpret the Weyl-Einstein condition in terms of any metric
g in the conformal class as follows. If θ is the Lee form of ∇ with respect to g, then ∇ is
Weyl-Einstein if and only if

(16) Ric∇
g

= (n− 2)
(
(∇gθ)sym − θ ⊗ θ

)
+

1

n
(Scalg +(n− 2)δgθ + (n− 2)‖θ‖2

g)g,

where (∇gθ)sym denotes the symmetric part of ∇gθ.

Remark 2.5. (1) Suppose that (M, g) is an Einstein manifold and let c be the conformal
class of g. Then the Weyl structure on (M, c) defined by g and θ = 0 in (10) is
Weyl-Einstein.

(2) Let ∇ be an exact Weyl structure on a conformal manifold (M, c). Condition (15) is
equivalent to requiring that the metric g ∈ c whose Lee form vanishes is Einstein, and
thus any metric in c is conformally Einstein.
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Recall that on compact conformal manifolds, the existence of a metric g ∈ c whose Lee
form is co-closed is guaranteed whenever the dimension is > 2:

Theorem 2.6. [6, §I.20] Let (M, c) be a compact conformal manifold of dimension n > 2
and let ∇ be a Weyl structure on (M, c). Then there exists a metric g0 in c, unique up to
multiplication by a real number, such that the Lee-form θ0 of ∇ associated to g0 satisfies
δg0θ0 = 0.

The metric g0 in the above theorem is usually called the Gauduchon metric of ∇.

We finish the section by proving three technical lemmas that will be used in the sequel.
These results appeared in the work of Gauduchon [7], with misprints on some coefficients.
For the sake of completeness of our work, we include here the statements with the proper
coefficients and their full proofs.

Lemma 2.7. [7, Lemme 3] Let ∇ be a Weyl-Einstein structure on a conformal manifold
(M, c) of dimension n > 2, and let g be a metric in c. Then the following relation holds:

(17)
1

n
d Scal∇g −2dδgθ − 2(δgθ)θ + 2δg(∇gθ)− δgdθ + 2∇g

T θ + (n− 3)d(‖θ‖2
g) = 0,

where T is the g-dual of θ.

Proof. Let {ei}ni=1 be a g-orthonormal local frame of TM and {ei}ni=1 its dual basis of T ∗M .
For any f ∈ C∞(M), (3) gives

(18)

δg(fg) = −
n∑
i=1

eiy∇g
ei

(fg) = −
n∑
i=1

ei(f)(eiyg)−
n∑
i=1

f(eiy∇g
ei
g)

= −
n∑
i=1

ei(f)(eiyg) = −
n∑
i=1

df(ei)e
∗
i = −df,

where we used that ∇g is the Levi-Civita connection of g. Furthermore,

(19)

δg(θ ⊗ θ) = −
n∑
i=1

eiy∇g
ei

(θ ⊗ θ)

= −
n∑
i=1

∇g
ei
θ(ei)θ −

n∑
i=1

θ(ei)∇g
ei
θ

= (δgθ)θ −∇g
T θ.

On the one hand, by (18) and (19), the co-differential δg applied to (13) yields

(20) δg Ric∇ = δg Ric∇
g −(n− 2)

(
δg(∇gθ)− (δgθ)θ +∇g

T θ)− dδgθ + (n− 2)d(‖θ‖2
g).
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On the other hand, (15) and (18) imply

(21) δg Ric∇ = − 1

n
d Scal∇g −

(n− 2)

2
δgdθ.

Therefore,

(22) δg Ric∇
g

= (n− 2)
(
δg(∇gθ)− (δgθ)θ +∇g

T θ) + dδgθ

− (n− 2)d(‖θ‖2
g)−

1

n
d Scal∇g −

(n− 2)

2
δgdθ.

Moreover, applying the exterior differential to (14) and using (4) yields

(23) d Scal∇g = −2δg Ric∇
g

+2(n− 1)dδgθ − (n− 1)(n− 2)d(‖θ‖2
g).

Isolating δg Ric∇
g

in (23) and using (22) we get

(24) − 1

2
d Scal∇g +(n− 1)dδgθ − (n− 1)(n− 2)

2
d(‖θ‖2

g)

= (n− 2)
(
δg(∇gθ)− (δgθ)θ +∇g

T θ) + dδgθ − (n− 2)d(‖θ‖2
g)

− 1

n
d Scal∇g −

(n− 2)

2
δgdθ.

Regrouping terms on the right hand side, we obtain

(25) 0 = (n− 2)
(
δg(∇gθ)− (δgθ)θ +∇g

T θ) + (2− n)dδgθ +
(n− 2)(n− 3)

2
d(‖θ‖2

g)

+
n− 2

2n
d Scal∇g −

(n− 2)

2
δgdθ.

Multiplying this equation by 2/(n− 2) yields (17). �

The next two results refer to the Gauduchon metric — see Theorem 2.6 — associated to
Weyl structures on compact manifolds.

Lemma 2.8. [7, Théorème 2(ii)] Let ∇ be a Weyl-Einstein structure on a connected com-
pact conformal manifold (M, c) which is oriented and of dimension n > 2, and let g be the
Gauduchon metric in c. There exists a constant K such that

(26) Scalg−(n+ 2)‖θ‖2
g = K

and

(27) Scal∇g +n(n− 4)‖θ‖2
g = K.

Furthermore,

(28) ∆gθ =
2

n
Scal∇g θ.
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Proof. Since the co-differential of the Lee form vanishes, (17) becomes

(29)
1

n
d Scal∇g +2δg(∇gθ)− δgdθ + 2∇g

T θ + (n− 3)d(‖θ‖2
g) = 0.

Let dv denote the natural volume form on (M, g). Since δg is the formal adjoint of d for the
global inner product induced by g on the bundle of differential forms and δgθ = 0, it follows

(30)

∫
M

〈d(‖θ‖2
g), θ〉dv =

∫
M

〈d Scal∇g , θ〉dv = 0.

Furthermore, the Koszul-formula yields

〈∇g
T θ, θ〉 = ∇g

T θ(T ) = T (g(T, T ))− g(T,∇g
TT ) =

1

2
d(‖θ‖2

g)(T )(31)

=
1

2
〈d(‖θ‖2

g), θ〉,(32)

thus,

(33)

∫
M

〈∇g
T θ, θ〉dv =

∫
M

〈d(‖θ‖2
g), θ〉dv = 0.

Therefore (29) yields

(34)

∫
M

〈δg∇gθ − 1

2
δgdθ, θ〉dv = 0.

Recall that the symmetric and skew-symmetric parts of ∇gθ are given, respectively, by the
Lie derivative of the metric with respect to T , and the exterior differential of θ; namely,

(35) ∇gθ =
1

2
LTg +

1

2
dθ.

By (3), if {ei}ni=1 denotes a local orthonormal frame, (34) becomes

(36)

0 =

∫
M

〈δg(∇gθ − 1

2
dθ), θ〉dv =

1

2

∫
M

〈δgLTg, θ〉 dv

= −1

2

n∑
i=1

∫
M

〈eiy(∇g
ei
LTg), θ〉 dv

= −1

2

n∑
i=1

∫
M

{
ei(〈eiy(LTg), θ〉)− 〈(∇g

ei
ei)y(LTg), θ〉

−〈eiy(LTg),∇g
ei
θ〉
}

dv.
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Now define the 1-form ψ by ψ(X) = 〈Xy(∇gLTg), θ〉 for all X ∈ X(M). Then, since M is
compact, the integral of δgψ on M vanishes. Explicitly, by (3),

(37) 0 =

∫
M

(δgψ)dv = −
∫
M

{
n∑
i=1

ei(〈eiy(LTg), θ〉)− 〈(∇g
ei
ei)y(LTg), θ〉

}
dv.

Moreover, from (35) we further get

(38)

∫
M

〈eiy(LTg),∇g
ei
θ〉 dv =

∫
M

{
‖eiy(LTg)‖2 +

1

2
〈eiy(LTg), eiydθ〉

}
dv

=

∫
M

‖eiy(LTg)‖2dv.

Therefore, (36), (37) and (38) yield
∑n

i=0

∫
M
‖eiy(LTg)‖2dv = 0. This implies ‖eiy(LTg)‖2 =

0 for all 1 ≤ i ≤ n. We thus conclude from (35)

(39) LTg = 0, ∇gθ =
1

2
dθ.

In particular T is a Killing vector field for g and

(40) ∇g
T θ = −1

2
d(‖θ‖2

g).

due to the Koszul formula and the definition of dθ.

Now, using (39) and δgθ = 0, (13) reads

(41) Ric∇ = Ric∇
g −(n− 2)

(1

2
dθ − θ ⊗ θ

)
− (n− 2)‖θ‖2

g g,

and (14) becomes

(42) Scal∇g = Scalg−(n− 1)(n− 2)‖θ‖2
g.

Since ∇ satisfies the Weyl-Einstein condition (15) we thus get

(43) Ric∇
g

=
1

n
Scalg g + (n− 2)

( 1

n
‖θ‖2

gg − θ ⊗ θ
)
.

Taking the co-differential in this equation and using (18), (19) and (40), we get

(44)

δg Ric∇
g

= − 1

n
d Scalg−(n− 2)

( 1

n
d(‖θ‖2

g) + (δgθ)θ −∇g
T θ)

= − 1

n
d Scalg−(n− 2)

( 1

n
d(‖θ‖2

g)−∇
g
T θ)

= − 1

n
d Scalg−(n− 2)(n+ 2)

2
d(‖θ‖2

g),

By (4), this equation equals −1
2
d Scalg so we finally obtain

(45) d Scalg−(n+ 2)d(‖θ‖2
g) = 0.
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Since M is connected, there exists a constant K such that

(46) Scalg−(n+ 2)‖θ‖2
g = K,

and by (42)

(47) Scal∇g +n(n− 4)‖θ‖2
g = K.

Now only (28) remains to be proven. Since δgθ = 0, we have

(48) ∆gθ = δgdθ.

On the one hand, (5), (43) and (42) imply

(49)

∆gθ = (∇g)∗∇gθ + Ric∇
g

(θ)

= (∇g)∗∇gθ +
1

n
Scalg θ + (n− 2)(

1

n
‖θ‖2

gθ − ‖θ‖2
gθ)

= (∇g)∗∇gθ +
1

n
(Scalg θ − (n− 2)(n− 1)‖θ‖2

gθ)

= (∇g)∗∇gθ +
1

n
Scal∇g θ.

On the other hand, (39) implies

(∇g)∗∇gθ = −
n∑
i=1

∇g
ei
∇g
ei
θ

= −1

2

n∑
i=1

∇g
ei

(eiydθ)

= −1

2
δgdθ = −1

2
∆gθ.

This equation together with (49) finally yields (28). �

The last point of Lemma 2.8 yields the following important result.

Lemma 2.9. [7, Théorème 2(iii)] Let ∇ be a Weyl-Einstein structure on a connected com-
pact conformal manifold (M, c) which is oriented and of dimension n > 2, and let g be the
Gauduchon metric in c. If Scal∇g < 0, then ∇ = ∇g and g is an Einstein metric.

Proof. Let dv denote the volume form associated to g. Since δgθ = 0, equation (28) becomes

(50) δgdθ =
2

n
Scal∇g θ.

Hence, taking the global inner product of this equation with θ yields

(51)
2

n

∫
M

Scal∇g ‖θ‖2
gdv =

∫
M

〈δgdθ, θ〉dv =

∫
M

‖dθ‖2
gdv ≥ 0
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since d is the formal adjoint of δg. This equation implies that if Scal∇g < 0, then ‖θ‖2
g = 0. It

follows that ∇ = ∇g and, by (15), that g is an Einstein metric. �

3. Left-invariant Weyl structures on conformal Lie groups

In this section we describe geometrical features of Riemannian Lie groups and we extend
them to left-invariant conformal and Weyl structures.

Let G be a connected Lie group of dimension n endowed with a left-invariant metric g and
let ∇g denote the Levi-Civita connection of (G, g); we call (G, g) a Riemannian Lie group.
Let g be the Lie algebra of G and consider the inner product induced by the left-invariant
metric g on g, which will be also denoted by g. By abuse of language, we may say that ∇g

is the Levi Civita connection of (g, g), and similarly for the curvature tensors.

The covariant derivative of a left-invariant vector field with respect to another left-invariant
vector field is again left-invariant. Identifying left-invariant vector fields X on G with their
values x at g, the Koszul’s formula reads

(52) ∇g
xy =

1

2

(
[x, y]− ad∗y x− ad∗x y

)
, for all x, y ∈ g,

where ad∗x denotes the g-adjoint operator of adx.

Any curvature tensor on G is constant when evaluated on left-invariant vector fields and
thus it is determined by its value on elements in g. Hence curvature tensors of (G, g) will
be treated as algebraic tensors on g. In particular, one has the following expression for the
Ricci-tensor [2, §7.38]

(53) Ric∇
g

= P − 1

2
B − 1

2
(adz + ad∗z),

where B denotes the Cartan-Killing form of g, z ∈ g is the unique element such that g(z, x) =
Tr adx for all x ∈ g, and P is defined by means of an orthonormal basis {ei}ni=1 of g as

(54) P (x, y) :=
∑
i,k

−1
2
g(ei, [x, ek])g(ei, [y, ek]) + 1

4
g(x, [ei, ek])g(y, [ei, ek]), for all x, y ∈ g.

We will be interested in conformal structures and Weyl structures on Lie groups that are
invariant under left-translations, in the following sense.

Definition 3.1. A conformal Lie group (G, c) is a Lie group G endowed with a conformal
class c for which there exists a left-invariant representative g ∈ c. In particular, (G, g) is a
Riemannian Lie group.

Notice that a left-invariant representative in a conformal class c is unique up to constant
rescaling.
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Definition 3.2. A Weyl structure on a conformal Lie group (G, c) is called left-invariant if
its Lee form with respect to any left-invariant metric g ∈ c is left-invariant.

It is clear from Section 2, that on a conformal manifold (M, c), exact Weyl structures on
(M, c) are the Levi-Civita connections of the Riemannian metrics in c. In the context of
conformal Lie groups (G, c), exact left-invariant Weyl structures correspond to Riemannian
metrics in c for which left-translations are homotheties.

Given a conformal Lie group (G, c) and fixing a left-invariant metric g ∈ c, left-invariant
Weyl structures on (G, c) are in one-to-one correspondence with left-invariant 1-forms on G,
i.e. elements in g∗, through formula (10). Notice that, having fixed the left-invariant metric
g ∈ c (unique up to constant rescaling), one can identify elements in g∗ with vectors in g via
g. This identification is used in the following lemma to write the Weyl-Einstein condition of
a left-invariant Weyl structure in terms of its Lee form θ and the Ricci tensor of g.

Lemma 3.3. Let (G, c) be a conformal Lie group and let g ∈ c be a left-invariant metric. The
Weyl structure ∇ induced by θ ∈ g∗ (identified with its metric dual θ ∈ g) is Weyl-Einstein
if and only if the following equation holds

(55) Ric∇
g

=
1

n

(
Scalg +(n− 2)(Tr adθ +‖θ‖2

g)
)
g − (n− 2) [adsym

θ +θ ⊗ θ] ,

where adsym
θ = (adθ + ad∗θ)/2 is the symmetric part of adθ.

Proof. Using (52) we get, for every x ∈ g,

(56) g(∇g
xθ, x) =

1

2
g
(
[x, θ]− ad∗θ x− ad∗x θ, x

)
= g([x, θ], x),

whence (∇gθ)sym = − adsym
θ and by taking the trace, δgθ = Tr adθ. The lemma thus follows

directly from (16). �

4. Weyl-Einstein structures on compact solvmanifolds

We are now ready to study the question of the existence of Weyl-Einstein structures on
compact conformal solvmanifolds.

Consider a solvable Lie group G, which admits a discrete subgroup Γ such that the quotient
manifold M := Γ\G is compact. In particular G is unimodular [10].

Any left-invariant metric g on G defines a Riemannian metric ḡ on the quotient manifold
M , in a way that the natural projection π : (G, g) → (M, ḡ) is a local isometry. We shall
denote by c̄ the conformal class of ḡ on M .

We say that (M, ḡ) is a Riemannian solvmanifold and that (M, c̄) is a conformal solvmani-
fold, both defined by (G, g). In the particular case where G is nilpotent, (M, ḡ) will be called
nilmanifold instead of solvmanifold.
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The goal of this section is to show that conformal solvmanifolds admitting Weyl-Einstein
structures arise only from unimodular solvable Lie groups admitting Einstein metrics.

Theorem 4.1. Let (M, c̄) be a conformal solvmanifold defined by (G, g). Then (M, c̄) admits
a Weyl-Einstein structure if and only if (G, g) is Einstein.

Proof. Suppose that (M, c̄) admits a Weyl-Einstein structure ∇. If (G, g) is flat, then it is in
particular Einstein so there is nothing to prove.

Assume that (G, g) is not flat. By [10, Theorem 3.1], (G, g) has (constant) strictly negative
scalar curvature:

(57) Scalg < 0.

Let ḡ ∈ c̄ denote the metric on M induced by g. We denote by g0 ∈ c̄ the Gauduchon
metric associated to ∇, according to Theorem 2.6. We shall first prove that g0 is actually an
Einstein metric.

Since ḡ, g0 ∈ c̄, there exists f ∈ C∞(M) such that ḡ = e2fg0. The scalar curvatures of ḡ
and g0 are linked by the formula (cf. [2, §1.159])

(58) Scalḡ = e−2f
(
Scalg0 +2(n− 1)∆g0f − (n− 1)(n− 2)‖df‖2

g0

)
.

Hence, if K denotes the constant in (26), we have

(59) Scalḡ = e−2f
(
K + (n+ 2)‖θ‖2

g0
+ 2(n− 1)∆g0f − (n− 1)(n− 2)‖df‖2

g0

)
.

Notice that Scalḡ is a negative constant because it is induced by g, which satisfies (57).

Since M is compact, f has a maximum at some point x0 ∈M , and of course ‖df‖2
g0

(x0) = 0.
Evaluating (59) at x0 yields

(60) K = e2f(x0) Scalḡ−(n+ 2)‖θ‖2
g0

(x0)− 2(n− 1)∆g0f(x0).

We know that Scalḡ < 0 and ∆g0f(x0) ≥ 0, since x0 is a maximum of f . Hence, K < 0 and
thus, by (27), we conclude

(61) Scal∇g0 < 0.

Therefore, Lemma 2.9 implies that the Weyl-Einstein structure ∇ is exact and g0 is an
Einstein metric with Levi-Civita connection ∇. Recall that any Einstein metric has constant
scalar curvature, so in particular Scalg0 is constant.

To finish the proof, we will show that ḡ must be Einstein as well.

Again, the compactness of M allows us to find x1 ∈M such that f has a minimum in x1.
If x0 is as above, we know that ‖df‖2

g0
(x0) = ‖df‖2

g0
(x1) = 0 and ∆g0f(x1) ≤ 0 ≤ ∆g0f(x0).

These facts together with (58) and Scalḡ < 0 imply

(62) Scalg0 +2(n− 1)∆g0f(x1) ≤ Scalg0 +2(n− 1)∆g0f(x0) < 0.
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In addition, e−2f(x0) ≤ e−2f(x1) so, being both terms in (62) negative, and using (58), we get

Scalḡ = e−2f(x1)
(
Scalg0 +2(n− 1)∆g0f(x1)

)
≤ e−2f(x0)

(
Scalg0 +2(n− 1)∆g0f(x1)

)
≤ e−2f(x0)

(
Scalg0 +2(n− 1)∆g0f(x0)

)
= Scalḡ .

This implies already f(x0) = f(x1) and thus f is constant. Hence ḡ, being a constant multiple
of g0, turns out to be an Einstein metric as well. Therefore, g = π∗ḡ is a left-invariant Einstein
metric since π is a local isometry.

The converse statement is trivial. �

Notice that a solvable unimodular Riemannian Lie group is Einstein if and only if it is flat.
Indeed, any solvable Riemannian Lie group has constant non-positive scalar curvature [10,
Theorem 3.1]. Thus, if it is Einstein, the Ricci tensor is a non-positive multiple of the identity.
However, by [4, Corollary 3.3] it cannot be a strictly negative multiple of the identity. Hence
the solvable Riemannian Lie group must be Ricci-flat and hence flat by [1].

Consequently, one can restate the previous result as follows:

Corollary 4.2. Let (M, c̄) be a conformal solvmanifold defined by (G, g). Then (M, c̄) admits
a Weyl-Einstein structure if and only if (G, g) is flat.

Recall that left-invariant metrics on non-abelian nilpotent Lie groups cannot be flat [10].
So we can state a second consequence of Theorem 4.1.

Corollary 4.3. A conformal nilmanifold admits Weyl-Einstein structures if and only if it is
a flat torus.

5. Weyl-Einstein structures on nilpotent Lie groups

In this section we drop the compactness assumption, and turn our attention to left-invariant
Weyl structures on nilpotent conformal Lie groups. We show that conformal nilpotent non-
abelian Lie groups do not admit left-invariant Weyl-Einstein structures.

Let G be a nilpotent non-abelian Lie group of dimension n ≥ 3 with Lie algebra g. Let g′

denote the commutator of g, namely g′ = [g, g], and set g′′ := [g, g′]. Since g is nilpotent and
non-abelian, one has 0 6= g′ ) g′′. In particular, this implies that dim(g′)⊥ = dim g−dim g′ ≥
2. Indeed, if one supposes that g = Rx⊕ g′ for some x ∈ g, then

g′ = [g, g] = [Rx⊕ g′,Rx⊕ g′] ⊂ g′′,

leading to a contradiction. Hence dim(g′)⊥ ≥ 2.

Notice that for any x ∈ g, adx is a nilpotent endomorphism because g is a nilpotent Lie
algebra. This implies that both the element z and the Killing form B of g appearing in (53)
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vanish. Therefore, Ric∇
g

= P , where P is given in (54), and one can easily show that g is
not Einstein, if it is not abelian.

In fact, since g is nilpotent, there exist nonzero elements x ∈ (g′)⊥, for which the second
term of Ric∇

g

(x, x) in (54) vanishes and thus Ric∇
g

(x, x) ≤ 0. If in addition g is not abelian,
the center z of g has non-trivial intersection with the commutator g′. Hence, for every
0 6= y ∈ z ∩ g′, the first term of Ric∇

g

(y, y) in (54) vanishes, yielding Ric∇
g

(y, y) > 0. So
Ric∇

g

cannot be a multiple of the metric and thus (G, g) is not Einstein.

Using similar arguments while working with the Weyl-Einstein condition as described in
Lemma 3.3, we get the following:

Proposition 5.1. Let G be a non-abelian nilpotent Lie group. For any left-invariant confor-
mal structure (G, c), and any left-invariant Weyl structure ∇ on it, ∇ is not Weyl-Einstein.

Proof. Assume for a contradiction that ∇ is a left-invariant Weyl-Einstein structure on the
conformal Lie group (G, c), and let θ denote the left-invariant Lee form of ∇ corresponding to
a left-invariant metric g ∈ c. Notice that Tr adθ = 0 because g is nilpotent (here we identify
θ ∈ g∗ with its metric dual θ ∈ g via g). Hence, by Lemma 3.3, for any x ∈ g we have

Ric∇
g

(x, x) =
1

n

(
Scalg +(n− 2)‖θ‖2

g

)
‖x‖2

g + (n− 2)
[
g([x, θ], x)− g(θ, x)2

]
.(63)

Since dim(g′)⊥ ≥ 2, there exists a unit vector x ∈ (g′ + Rθ)⊥, for which (63) becomes

Ric∇
g

(x, x) =
1

n

(
Scalg +(n− 2)‖θ‖2

g

)
.

Moreover, from (54) we can easily see that Ric∇
g

(x, x) = P (x, x) ≤ 0 because x⊥g′. There-
fore, we get

(64) Scalg +(n− 2)‖θ‖2
g ≤ 0.

In addition, for any unit vector y ∈ z ∩ g′, (63) gives

Ric∇
g

(y, y) + (n− 2)θ(y)2 =
1

n

(
Scalg +(n− 2)‖θ‖2

g

)
,

but (54) gives Ric∇
g

(y, y) = P (y, y) > 0. So we get Scalg +(n − 2)‖θ‖2
g > 0, contradicting

(64). �

6. Weyl-Einstein structures on almost abelian solvable Lie groups

In order to construct non-trivial examples of left-invariant Weyl-Einstein structures on
conformal Lie groups, we will now consider the more general setting of solvable Lie groups.
However, since in full generality the problem is too involved, we will restrict our attention to
the almost abelian case.
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Recall that a Lie algebra is called almost abelian if it has an abelian ideal of codimension
1 and, accordingly, any Lie group whose Lie algebra is almost abelian, is called an almost
abelian Lie group. Of course, almost abelian Lie algebras are 2-step solvable.

Let (G, c) be an almost abelian conformal Lie group of dimension n ≥ 3 and g ∈ c a left-
invariant metric. Let g denote the Lie algebra of G and let h be a codimension 1 abelian ideal
in g. Notice that h is unique, unless g is abelian or isomorphic to a direct sum of an abelian
Lie algebra and the Heisenberg Lie algebra of dimension 3 (cf. proof of [5, Proposition 1]).

Using the chosen metric g on g, consider a unit vector b ∈ h⊥, so that g decomposes as the
orthogonal direct sum g = Rb⊕ h. Since h is an abelian ideal, the Lie algebra structure of g
is determined by the adjoint map adb, which preserves h. In particular, g is nilpotent if and
only if adb is a nilpotent endomorphism of h.

Let A and S be the skew-symmetric and symmetric parts (with respect to g) of adb |h :
h → h, respectively. We will say that A and S are the endomorphisms associated to (g, g),
understanding that they are defined up to the choice of a unit vector b whose orthogonal is
the abelian ideal h.

The Levi Civita connection of (g, g) is given by (52) and verifies

(65) ∇g
bb = 0, ∇g

bu = Au, ∇g
ub = −Su, ∇g

uv = g(Su, v)b, ∀u, v ∈ h.

Using these formulas, it is straightforward that the curvature tensor (1) verifies, for u, v, w ∈ h,

Rg(u, v)w = g(Sv, w)Su− g(Su,w)Sv,(66)

Rg(u, v)b = 0,

Rg(b, v)w = g((S2 − [A, S])v, w)b,

Rg(b, v)b = [A, S]v − S2v.

Therefore, one can easily check that the Ricci tensor takes the form

(67) Ric∇
g

= −Tr(S2)b⊗ b+ [A, S]− TrS · S.
In particular Ric∇

g

preserves Rb and h, and the scalar curvature of (g, g) is

(68) Scalg = −Tr(S2)− (TrS)2.

Notice that when S = kIdh for some k ∈ R, then (67) implies that Ric∇
g

= −k2(n − 1)g,
and thus (G, g) is Einstein. In fact, the converse also holds:

Lemma 6.1. If (G, g) is Einstein, then S is a multiple of the identity.

Proof. Indeed, if Ric∇
g

= λg for some λ ∈ R, then contracting Equation (67) with b twice,
we get λ = −Tr(S2). Moreover, projecting Equation (67) onto h⊗ h and using the Einstein
condition together with λ = −Tr(S2), we further obtain

−Tr(S2) g|h = [A, S]− TrS · S.(69)
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Taking trace on both sides, this equation implies

(70) Tr(S2)(n− 1) = (TrS)2.

Furthermore, writing S = TrS
(n−1)

idh +S0, where S0 is trace-free, and using (70), (69) becomes

[A, S0] = TrS · S0.(71)

This implies that either TrS = 0 or S0 = 0. The latter clearly yields S = kIdh for some
k ∈ R. Since n > 2, the former case together with (70) imply Tr(S2) = 0 and therefore
S = 0. �

The next theorem generalizes Lemma 6.1 and gives necessary and sufficient conditions for
a conformal almost abelian Lie group (G, c) to admit a left-invariant Weyl-Einstein structure,
in terms of the endomorphisms A and S associated to (g, g).

Theorem 6.2. Let G be an almost abelian Lie group of dimension n ≥ 3 with Lie algebra
g = Rb ⊕ h. Let g be a metric on g with associated endomorphisms A, S and let c := [g] be
the conformal structure induced by g. Let ∇ be a left-invariant Weyl structure on (G, c) and
let θ ∈ g∗ be the (left-invariant) Lee form of ∇ with respect to g. Then ∇ is a Weyl-Einstein
structure if and only if one of the following exclusive conditions holds:

(1) S = kIdh for some k ∈ R, and θ = 0 or θ = kb, or

(2) S 6= 0, (TrS)2 = Tr(S2)(n− 2), [A, S] = 0 and θ = Tr(S)
(n−2)

b.

Proof. Assume that ∇ is Weyl-Einstein. Consider the orthogonal decomposition g = Rb⊕ h
and write accordingly θ = µb+ v, with v ∈ h and µ ∈ R. We readily compute

adθ = µS − b⊗ Sv, Tr adθ = µTrS.

Replacing these terms in (55), and using (67) and (68), we conclude that the following
equation holds

(72)

−Tr(S2)b⊗ b+ [A, S]−TrS ·S =
1

n

(
−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2 + ‖v‖2

g)
)

Id

− (n− 2)

[
µS − 1

2
(b⊗ Sv + Sv ⊗ b) + µ2b⊗ b+ µb⊗ v + µv ⊗ b+ v ⊗ v

]
.

We first show that (72) implies v = 0. In fact, contracting this equation with b yields

−Tr(S2)b =
1

n

(
−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2 + ‖v‖2

g)
)
b

−(n− 2)

[
−1

2
Sv + µ2b+ µv

]
.
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Since b is orthogonal to h and v, Sv ∈ h, this is equivalent to the system

(73) Sv = 2µv

(74) (n− 2)µ2 − Tr(S2) =
1

n

(
−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2 + ‖v‖2

g)
)
.

Note that this last equation simplifies to

(75) (n− 1) Tr(S2) = (n− 1)(n− 2)µ2 + (TrS)2 − (n− 2)(µTrS + ‖v‖2
g).

Reinjecting (74) in (72) and projecting onto h⊗ h yields

(76) [A, S]− TrS · S = ((n− 2)µ2 − Tr(S2))Idh − (n− 2)(µS + v ⊗ v).

Contracting this last equation with v and using (73) gives

(77) [A, S]v − 2µ(TrS)v = ((n− 2)µ2 − Tr(S2))v − (n− 2)(2µ2v + ‖v‖2v).

Assume now for a contradiction that v 6= 0. Clearly g([A, S]v, v) = 0, so (72) yields

(78) 2µ(TrS) = (n− 2)µ2 + Tr(S2) + (n− 2)‖v‖2.

Let us now write v = ‖v‖e for some unit vector in h. By (73), we can write S = 2µe⊗ e+ T ,
where T is a symmetric endomorphism of e⊥. Moreover, we can write T = T0 + TrT

n−2
ide⊥ with

T0 trace-free, and we have TrS = 2µ+ TrT and Tr(S2) = 4µ2 + TrT 2 = 4µ2 + TrT 2
0 + (TrT )2

n−2
.

Introducing in (78) we obtain

2µ(2µ+ TrT ) = (n− 2)µ2 + 4µ2 + TrT 2
0 +

(TrT )2

n− 2
+ (n− 2)‖v‖2,

which can be written as

(TrT + (n− 2)µ)2 + (n− 2) TrT 2
0 + (n− 2)2‖v‖2 = 0.

This is a contradiction, thus showing that v = 0.

Therefore, if ∇ is Weyl-Einstein, then θ = µb for some µ ∈ R. Using (55) we get like before
that ∇ is a Weyl-Einstein structure if and only if (72) holds with v = 0, that is,

(79) − Tr(S2)b⊗ b+ [A, S]− TrS · S =
1

n

(
−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2)

)
Id

− (n− 2)
[
µS + µ2b⊗ b

]
.

Projecting onto Rb⊗ Rb and h⊗ h, this equation is equivalent to the system

−Tr(S2) =
1

n

(
−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2)

)
− µ2(n− 2)(80)

[A, S] =
1

n
(−Tr(S2)− (TrS)2 + (n− 2)(µTrS + µ2))Idh + (TrS − (n− 2)µ)S.(81)
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Using (80) in (81) and rewriting (80), we get that ∇ is a Weyl-Einstein structure if and only
if the following system of equations holds

Tr(S2)− µ2(n− 2) = (TrS − (n− 2)µ) TrS/(n− 1)(82)

[A, S] = (−Tr(S2) + µ2(n− 2))Idh + (TrS − (n− 2)µ)S.(83)

Assume first that S = kIdh for some k ∈ R. In this case, (82) implies (83), and S satisfies
(82) if and only if µ = 0 or µ = k. This gives (1) in the statement.

Now suppose S is not a multiple of the identity and write S = TrS
n−1

Idh + S0, with S0 6= 0.
Using (82) in (83), one gets that (83) holds if and only if

[A, S0] = (TrS − (n− 2)µ)S0.(84)

Since S0 6= 0 and [A, S0] = [A, S], this is equivalent to [A, S] = 0 and TrS = (n − 2)µ.
Therefore, the system (82)–(83) becomes

TrS = µ(n− 2)

(TrS)2 = Tr(S2)(n− 2)

[A, S] = 0.

We thus get the case (2) of the statement.

Finally, notice that S = kIdh satisfies (n − 2) Tr(S2) = (TrS)2 if and only if k = 0; this
implies that the cases (1) and (2) are indeed exclusive. �

This theorem provides a construction method of almost abelian conformal Lie groups (G, c)
carrying left-invariant Weyl-Einstein structures, as we show next.

Let (h, g0) be an inner product vector space of dimension n − 1 and let A and S be,
respectively, a skew-symmetric and a symmetric endomorphism of (h, g0) satisfying one of
the two conditions in Theorem 6.2.

Consider the Lie algebra g which is the semidirect product of R and h by A + S; namely,
g = Rb n h where adb = A + S. Set g to be the inner product on g extending g0 on h and
satisfying g(b, h) = 0 and g(b, b) = 1.

If G is the simply connected Lie group corresponding to g and c is the conformal class
of the left-invariant metric g on G, then (G, c) admits a Weyl-Einstein structure. Indeed,
the Weyl structure ∇ defined by the left-invariant Lee form θ = µb, where µ is given in the
theorem depending on each case, corresponding to the metric g via (10) is Weyl-Einstein.

If S is chosen to be a multiple of the identity the Riemannian Lie group (G, g) is Einstein.
The next example shows how to construct non-Einstein examples.

Example 6.3. Consider an inner product vector space (h, g0) of dimension n− 1 and let S0

be a non-trivial trace free symmetric endomorphism. Let a 6= 0 be a real number such that
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0 < Tr(S2
0) = a2 and define S := a

√
n−2
n−1

Id + S0, which is also symmetric. One can easily

check that (n− 2) Tr(S2) = (TrS)2.

Let (g, g) be the metric Lie algebra built as a semidirect product of R and h by S as above.
By construction, (g, g) satisfies the second condition in Theorem 6.2, so the simply connected
Lie group G corresponding to g, together with the conformal class c := [g], admits a Weyl-

Einstein structure whose Lee form with respect to the metric g is θ = a
√

n−1
n−2

b. Remarkably,

(G, g) is not Einstein, due to Lemma 6.1.

Remark 6.4. One can easily check that if a nilpotent endomorphism adb = A + S satisfies
one of the two conditions in Theorem 6.2, then A = S = 0. Indeed, if A + S is nilpotent,
then 0 = Tr(A + S) = TrS. So if A and S satisfy either of the conditions in Theorem 6.2,
then S must vanish. Therefore, adb = A is nilpotent and skew-symmetric, so it has to vanish
as well.

This fact corroborates Proposition 5.1, stating that the only nilpotent conformal Lie groups
admitting left-invariant Weyl-Einstein structures are the abelian ones.

Remark 6.5. Assume that g is an almost abelian Lie algebra which is not nilpotent. Then
the codimension 1 abelian ideal h is unique [10, Theorem 2.4]. Given a metric g on g, the
endomorphisms A and S are thus determined up to sign, because the unit vector b is unique
up to sign. Of course, the conditions in Theorem 6.2 do not depend on the choice of the sign.

The Lee forms θ occurring in Theorem 6.2 are of the form θ = µb, and thus g′ ⊂ ker(θ).
Therefore, θ is a closed left-invariant 1-form on G, so since G is simply connected, θ = df for
some differentiable function f on G. Hence, the Weyl-Einstein structure ∇ is the Levi-Civita
connection of the Riemannian metric h := e2fg ∈ c, i.e. ∇ = ∇h.

This observation leads to the following consequence of Theorem 6.2.

Corollary 6.6. Let (G, c) be a simply connected almost abelian conformal Lie group. Every
left-invariant Weyl-Einstein structure on (G, c) is the Levi-Civita connection of an Einstein
Riemannian metric in c.

Notice that the converse may not hold in general since an Einstein metric h = e2fg with
g left-invariant may not satisfy that θ := df is left-invariant, and thus the Weyl-Einstein
structure would fail to be left-invariant.

We now compute the curvature of the Einstein metrics that arise from Weyl-Einstein
structures on simply connected almost abelian conformal Lie groups.

Proposition 6.7. Let (G, c) be a simply connected almost abelian conformal Lie group ad-
mitting a left-invariant Weyl-Einstein structure ∇ and let g be a left-invariant metric in c.
Denote by θ the left-invariant Lee form of ∇ with respect to g, and assume that θ 6= 0. Then
the Riemannian metric h := e2fg, where f verifies θ = df , is Ricci-flat.
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Moreover, denoting A and S the endomorphisms associated to (g, g), one has that h is flat
if and only if either S = kIdh for some k ∈ R or there is a codimension 1 subspace U ⊂ h
such that S|U = αIdU for some α ∈ R, and S|U⊥ = 0.

Proof. Let ∇ denote a left-invariant Weyl-Einstein structure on (G, c), let g ∈ c be left-
invariant, so that (g = Rbnh, g) is the corresponding metric Lie algebra. From Theorem 6.2,
we know that that the Lee form θ ∈ g∗ has the form θ = µb, where µ ∈ R depends on the
endomorphisms A and S of (g, g). In any case, dθ = 0 and, G being simply connected, there
is a differentiable function f such that θ = df and h := e2fg is an Einstein metric. Then
∇ = ∇h 6= ∇g, because we assume θ 6= 0.

We compute Ric∇
h

by using the formula of conformal change of metrics [2, §1.159], which
reads

(85) Ric∇
h

= Ric∇
g −(n− 2)

(
∇gθ − θ ⊗ θ

)
+
(
δgθ − (n− 2)‖θ‖2

g

)
g.

Note that this coincides with the expression of Ric∇ given in (13). Since θ is closed, we have
∇gθ = (∇gθ)sym, so using (56) and the fact that θ = µb we further get

∇gθ − θ ⊗ θ = − adsym
θ −µ2b⊗ b = −µS − µ2b⊗ b, δgθ = Tr adθ = µTrS.

These equalities together with (67) and (85) imply

(86) Ric∇
h

= −Tr(S2)b⊗b+[A, S]−TrS ·S−(n−2)
(
−µS−µ2b⊗b

)
+
(
µTrS−µ2(n−2)

)
Id.

In particular, Ric∇
h

preserves both Rb and h. The part of Ric∇
h

on Rb⊗ Rb is

(87) (−Tr(S2) + (n− 2)µ2 + µ
(
TrS − µ(n− 2)

)
)b⊗ b

and the part on h⊗ h can be written as

(88) [A, S] +
(
TrS − µ(n− 2)

)
(µIdh − S).

Recall that A, S and µ verify one of the two conditions in Theorem 6.2.

On the one hand, if S = kId for some k ∈ R, then one can have µ = 0 or µ = k. However,
since we assume µ 6= 0, the only possibility is µ = k and S 6= 0. It is easy to check that in

this case (87) and (88) vanish and thus Ric∇
h

= 0.

On the other hand, if S 6= 0, (TrS)2 = Tr(S2)(n−2) and [A, S] = 0, then µ = TrS/(n−2)
and thus one has that (87) and (88) vanish again. Therefore h is Ricci-flat in both cases.

In order to prove the second part of the statement, we compute the curvature tensor Rh

by using the formulas relating the curvature of two conformal metrics [2, §1.159]. From these
formulas, it is easy to see that Rh = 0 if and only if the following equation holds

(89) Rg = g ? (∇θ − θ ⊗ θ +
1

2
|θ|2g),
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where Rg is the curvature of (G, g) and ? denotes the Kulkarni-Nomizu product (cf. [2,
§1.110]).

The curvature Rg on left-invariant vector fields is given in (66), so we shall compute the
right hand side of (89). Using that θ = µb is closed, ∇gθ = (∇gθ)sym and from (56) we get

(90) T := g ? (∇θ − θ ⊗ θ +
1

2
|θ|2g) = g ? (−µS − µ2b⊗ b+

1

2
µ2g)

We prove first that Rg = T in the two cases in the statement, that is, when S = kIdh for
some k ∈ R and also if there is a codimension 1 subspace U ⊂ h such that S|U = αIdU for
some α ∈ R, and S|U⊥ = 0.

Suppose first that S = kId for some k ∈ R. Since θ = µb defines a Weyl-Einstein structure,
we know from Theorem 6.2 that µ = k, which we assume to be non-zero. Then one can easily
check that T = −1

2
k2g ? g and thus, by using (66), one gets that Rg = T . Therefore, (89)

holds and thus Rh is flat.

Now assume that there is a subspace U ⊂ h of codimension 1 such that S|U = αIdU for
some 0 6= α ∈ R and S|U⊥ = 0; note that (TrS)2 = Tr(S2)(n − 2). According to Theorem
6.2, µ = TrS/(n − 2) = α since θ is the Lee form of a Weyl-Einstein structure. With these
elements, one can explicitly compute the curvature Rg using (66) and the tensor T in (89),
to show that Rg = T . Hence Rh = 0 in this case as well.

Conversely, suppose θ = µb with µ 6= 0 defines a left-invariant Weyl-Einstein structure with
Rh = 0. We will show that if S 6= kId for any k ∈ R, then there is a subspace U satisfying
the conditions in the statement.

Assume that S 6= kId for any k ∈ R, then S,A satisfy (2) in Theorem 6.2. In particular,
[A, S] = 0. For every v ∈ h, (90) gives

Tb(v, v) := T (b, v, b, v) = −µg(Sv, v),

and using (66) and [A, S] = 0, we have

Rb(v, v) := g(Rg(b, v)b, v) = −g(S2v, v).

Since Rh = 0, T = Rg by (89) and thus Tb(v, v) = Rb(v, v) for every v ∈ h. In particular, if v
is an eigenvector of S associated to the eigenvalue λ this equality gives

−µλ|v|2 = Tb(v, v) = Rb(v, v) = −λ2|v|2.
This implies that the only non-zero eigenvalue of S is µ. Since S 6= 0, (TrS)2 = Tr(S2)(n−2)
and TrS = µ(n− 2), one must have dim kerS = 1, and S|(kerS)⊥ = µId(kerS)⊥ completing the
proof. �

Example 6.8. Consider an inner product vector space (h, g0) of dimension n − 1 ≥ 3 and
let S0 be a non-trivial trace free symmetric endomorphism such that every eigenspace of S0

is of dimension at most n− 3.
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Let ∇ be the Weyl-Einstein structure on the simply connected Riemannian solvable Lie
group corresponding to (g = Rb n h, g) built from S0 as in Example 6.3 and let θ be the
left-invariant Lee form corresponding to ∇ by g.

By Proposition 6.7, the Weyl structure∇ is not flat. Thus, the Riemannian metric h = e2fg,
where f satisfies df = θ, is Ricci-flat but not flat. Notice, that h is not left-invariant.

7. 3-dimensional solvable Riemannian Lie groups

In this section we apply the above results in order to classify simply connected solvable
Riemannian Lie groups (G, g) of dimension 3 carrying left-invariant Weyl-Einstein structures.
This is possible because of the following simple observation:

Lemma 7.1. Every solvable Lie algebra of dimension 3 is almost abelian.

Proof. If g is a 3-dimensional solvable Lie algebra, its derived algebra g′ is a nilpotent ideal
of dimension at most 2, so it is abelian.

If dim(g′) = 2, g′ is then a codimension 1 abelian ideal. If dim(g′) = 0, g is abelian. Finally,
if dim(g′) = 1, let ξ be a generator of g′ and let m be the kernel of the linear map g → g′

given by x 7→ [x, ξ]. Since dim(m) ≥ 2, there exists a vector ζ ∈ m \ g′. Then ξ and ζ span a
codimension 1 abelian ideal of g. �

Left-invariant Riemannian metrics on 3-dimensional simply connected Lie groups were
classified, up to automorphisms, by Ha and Lee [8]. Recall that, for simply connected Lie
groups, the classes of left-invariant metrics up to Lie group automorphisms are in one-to-one
correspondence with classes of metric Lie algebras (g, g) up to Lie algebra automorphisms.

In what follows we introduce some notation and review the results in [8] which are of
interest for us, namely those corresponding to solvable Lie algebras which are either abelian,
or solvable and non-nilpotent (see Proposition 5.1).

Let g be a solvable Lie algebra of dimension 3. If g is abelian, then every metric g on g is
equivalent, up to automorphisms, to the standard metric g•. Now, if g is neither nilpotent
nor abelian, then g is isomorphic to a Lie algebra having a basis B = {x, y, z} whose Lie
brackets satisfy one of the following:

• g = Sol: [x, y] = 0, [z, x] = x, [z, y] = −y ,
• g = so(2) nR2: [x, y] = 0, [z, x] = −y, [z, y] = x,
• g = RnId R2: [x, y] = 0, [z, x] = x, [z, y] = y,
• g = gt: [x, y] = 0, [z, x] = y, [z, y] = −tx+ 2y, for some t ∈ R.
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We shall denote {x∗, y∗, z∗} the dual basis of B and the symmetric product of two covectors
ξ, ζ ∈ g∗ by ξ � ζ := 1

2
(ξ ⊗ ζ + ζ ⊗ ξ). Consider the following symmetric bilinear forms on g:

gν = x∗ � x∗ + y∗ � y∗ + ν z∗ � z∗
gµ,ν = x∗ � x∗ + µ y∗ � y∗ + ν z∗ � z∗
hµ,ν = x∗ � x∗ + 2x∗ � y∗ + µ y∗ � y∗ + ν z∗ � z∗
mν = x∗ � x∗ + x∗ � y∗ + y∗ � y∗ + ν z∗ � z∗

where µ, ν are real parameters such that the above are indeed positive definite.

By [8], every inner product g on g is, up to an automorphism, one of the following:

• if g = RnId R2, g = gν with 0 < ν.
• if g = so(2) nR2, g = gµ,ν with 0 < ν and 0 < µ ≤ 1.
• if g = gt where t > 1, g = hµ,ν with 0 < ν and 0 < µ ≤ t.
• if g = g0, g = gµ,ν or g = mν with 0 < µ, ν.

One should notice that in [8], the metrics on Sol and on gt for any value of t ∈ R are classified.
However, we do not give the full classification for these cases since they will not appear in
our results.

Theorem 7.2. Let (G, g) be a solvable and simply connected Riemannian Lie group of di-
mension 3 with Lie algebra g. Then (G, [g]) admits a left-invariant Weyl-Einstein structure
if and only if (g, g) is one of the following metric Lie algebras

(1) (R3, g•).
(2) (RnId R2, gν), for any ν > 0.
(3) (so(2) nR2, g1,ν), for any ν > 0.
(4) (gt, ht,ν) for t > 1 and for any ν > 0.
(5) (g0,mν) for any ν > 0.

A possible proof of this theorem would be to go through the list of metric solvable Lie
algebras of dimension 3 given by Ha and Lee [8], to compute the endomorphisms A and S for
each case, and then to apply Theorem 6.2. However, we proceed by a constructive approach
which relies on the following preliminary result.

Lemma 7.3. Let (G, g) be a solvable and simply connected Riemannian Lie group of dimen-
sion 3 with Lie algebra g. Then (G, [g]) admits a left-invariant Weyl-Einstein structure if and
only if g admits an orthonormal basis {b, u, v} whose Lie brackets satisfy one of the following
relations

(1) there are k, l ∈ R such that [b, u] = ku− lv, [b, v] = lu− kv and [u, v] = 0;
(2) there is 0 6= α ∈ R such that [b, u] = αu, [b, v] = [u, v] = 0.
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Proof. Since g is solvable of dimension 3, it is almost abelian. So let h be an abelian ideal of
dimension 2 and let b be a unit norm vector spanning h⊥. Denote S and A the symmetric
and skew-symmetric parts of adb |h, respectively.

According to Theorem 6.2 and Corollary 6.6, G admits an Einstein metric conformal to g
if and only if either S = kIdh for some k ∈ R, or (TrS)2 = Tr(S2) and [A, S] = 0, with S 6= 0.

Assume S = kIdh for some k ∈ R and let {u, v} be an orthonormal basis of h. It is easy to
check that the matrix of adb in this basis has the form

(91) [adb]{u,v} =

(
k l
−l k

)
,

for some l ∈ R, thus giving (1).

Assume now that (TrS)2 = Tr(S2) and [A, S] = 0 with S 6= 0. Since S is not a multiple
of the identity and dim h = 2, [A, S] = 0 implies A = 0. Let {u, v} be an orthonormal
basis of h of eigenvectors of S and let α 6= β be the respective eigenvalues. The condition
(TrS)2 = Tr(S2) implies αβ = 0; without loss of generality, we may assume β = 0. Hence,
the Lie bracket satisfies [b, u] = αu, [b, v] = [u, v] = 0. �

Proof of Theorem 7.2. Assume that (G, [g]) admits a left-invariant Weyl-Einstein structure
and let {b, u, v} be the orthonormal basis of (g, g) satisfying one of the conditions in Lemma
7.3. We shall make a change of this basis to show that (g, g) is indeed one of the metric Lie
algebras listed in the statement.

Suppose that we are in case (1) of Lemma 7.3 and there are k, l ∈ R such that (91) holds.
If k = l = 0, then g is abelian and thus g is isometrically isomorphic to (g, g•). In the case
l = 0, and k 6= 0, consider the basis

z :=
1

k
b, x := u, y := v.

It is straightforward to check that {x, y, z} verifies the Lie bracket relations of RnId R2 and
the metric g in this basis takes the form gν with ν = k−2. To the contrary, when k = 0 and
l 6= 0, the basis

z :=
1

l
b, x := u, y := v.

verifies the Lie bracket relations of so(2) n R2 and the metric g in this basis takes the form
g1, 1

l2
.

Now assume that k, l 6= 0, and consider the linearly independent vectors

z :=
1

k
b, x := u, y := u− l

k
v.
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Then,

[adz]{x,y} =

(
0 −(1 + l2

k2
)

1 2

)
, [g]{x,y,z} =

1 1 0

1 1 + l2

k2
0

0 0 1
k2

 ,

so we get that g = gt with t := 1 + l2

k2
> 1 and the metric g = ht, 1

k2
.

Assume now that g admits a g-orthonormal basis {b, u, v} satisfying (2) of Lemma 7.3, for
some α 6= 0. Consider the basis

z :=
2

α
b, x := −1

2
u−
√

3

2
v, y := −u,

for which one has

[adz]{x,y} =

(
0 0
1 2

)
, [g]{x,y,z} =

1 1
2

0
1
2

1 0
0 0 4

α2

 .

It is easy to check that g = g0 with metric g = g 4
α2

, so we get the only remaining case.

Conversely, if (g, g) is one of the metric Lie algebras in the statement, reversing the changes
of bases above and using Lemma 2.7, one can easily check that (G, [g]) admits a left-invariant
Weyl-Einstein structure. �
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A. Schichl: École polytechnique, 91120, Palaiseau, France, and ETH Zürich, 8006, Zürich,
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