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ABSTRACT. We report on some recent progress achieved in [CLMS] on the ergodicity of
the frame flow of negatively-curved Riemannian manifolds. We explain the new ideas
leading to ergodicity for nearly 0.25-pinched manifolds and give perspectives for future
work.

1. ERGODICITY IN DYNAMICAL SYSTEMS

1.1. Historical background. The theory of dynamical systems originates from the study
of classical mechanics and the description of solutions to differential equations govern-
ing the evolution of points in phase space. A well-known historical example pioneered
by Kepler and Newton in the XVII century and later enriched with a modern mathemat-
ical language by Poincaré in the late XIX century is our solar system, where planets are
identified with points and their motion is governed by the law of gravitation. These me-
chanical systems, in the absence of a dissipative correction, share the property that they
preserve a natural volume form on the phase space.

While it is usually impossible to predict the evolution of a single trajectory due to
an inherent sensitivity to initial conditions, it is tempting to adopt a statistical approach
and describe the long-time behaviour of almost all points, measured with respect to this
natural flow-invariant form. This is the slant of ergodic theory. From this perspective, a
natural property one may investigate on a given dynamical system is the equidistribu-
tion of a generic point in phase space, namely, whether it will spend in each region of
the phase space an average time proportional to its volume. Phrased in mathematical
language, ergodicity is the property that any measurable subset that is invariant by the
dynamical transformation must have zero or full measure.

These physical considerations paved the way for a more systematic search of er-
godic dynamical systems in mathematics. In a seminal article [Hop36], using what is
now known as the classical Hopf argument, Hopf proved that geodesic flows on closed
negatively-curved surfaces are ergodic with respect to a natural smooth measure called
the Liouville measure, providing one of the first rigorous examples of chaotic systems
of geometric flavour. Later, Anosov [Ano67] introduced in his thesis the notion of uni-
formly hyperbolic flows (also known as Anosov flows nowadays) and showed that they
are ergodic whenever they preserve a smooth measure. Moreover, he proved that all ge-
odesic flows on negatively-curved Riemannian manifolds are uniformly hyperbolic and
thus ergodic. From a statistical perspective, these flows are now well understood and
finer properties such as mixing or even exponential mixing are (almost) completely set-
tled, see Liverani [Liv04] and Tsujii-Zhang [TZ], among other references on this ques-
tion.
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Shortly after Anosov’s work, Brin-Pesin [BP74], Pugh-Shub [PS00], and others, inves-
tigated more general systems exhibiting a weaker form of hyperbolic behaviour, known
as partially hyperbolic systems. While these dynamics still preserve some expanding
and contracting directions, they also come with other neutral or central directions, in
which the map/flow may behave infinitesimally as an isometry for instance. Histori-
cal examples of partially hyperbolic dynamics are provided by frame flows over closed
negatively-curved Riemannian manifolds, which are at the core of the present article.

1.2. Ergodicity of the frame flow. Statement of results. Let (M n , g ) be a closed con-
nected oriented n-dimensional Riemannian manifold with negative sectional curva-
ture. Let SM := {

(x, v) ∈ T M | |v |g = 1
}

be the unit tangent bundle over M and let

F M := {
(x, v,e2, . . . ,en) | (x, v) ∈ SM , (v,e2, . . . ,en)oriented orthonormal basis of Tx M

}
be the principal SO(n)-bundle (over M) of oriented orthonormal frames.

We can also consider p : F M → SM , (x, v,e2, . . . ,en) 7→ (x, v) as a principal SO(n −1)-
bundle over SM , that is, a point w ∈ F M over (x, v) = p(w) corresponds to an orthonor-
mal frame (e2, . . . ,en) of the orthogonal complement v⊥ ⊂ Tx M . Denoting by ∇ the
Levi-Civita connection on M , the geodesic flow (ϕt )t∈R is defined on SM by setting
for t ∈ R, (x, v) ∈ SM , ϕt (x, v) := (γx,v (t ), γ̇x,v (t )), where t 7→ γx,v (t ) is the unit-speed
curve on M solving the geodesic equation ∇γ̇x,v γ̇x,v = 0 with initial conditions γx,v (0) =
x, γ̇x,v (0) = v .

The frame flow (Φt )t∈R on F M is then defined as follows:

Φt (x, v,e2, ...,en) := (ϕt (x, v),τx,v (t )e2, . . . ,τx,v (t )en),

where τx,v (t ) denotes the parallel transport along the geodesic segment γx,v ([0, t ]) with
respect to the connection ∇. Moreover, since the geodesic flow (ϕt )t∈R preserves the
Liouville measure µ on SM , the frame flow (Φt )t∈R preserves a smooth measure ω on
P induced by µ and the Haar measure on SO(n −1). It is therefore natural to study the
ergodicity of the frame flow with respect to the smooth measure ω.

It was first shown by Brin [Bri75] (for n = 3) and later by Brin-Gromov [BG80] (for n
odd and different from 7) that negatively-curved n-dimensional manifolds have an er-
godic frame flow. As we shall see below in §3, once the dynamical framework is settled,
the proof boils down to a (non-trivial) statement in algebraic topology on the classifi-
cation of topological structures over even dimensional spheres. It is however hopeless
to expect all negatively-curved manifolds to have an ergodic frame flow: indeed, it can
be checked that Kähler manifolds of real dimension n = 2m ≥ 4 such as compact quo-
tients Γ\CHm of the complex hyperbolic space (where ΓÉ Isom(CHm) is a lattice) do not
have an ergodic frame flow1 due to the reduction of their holonomy group from SO(n)
to U(m).

Denoting by κg (u ∧ v) the sectional curvature of the 2-plane spanned by u, v ∈ T M ,
we will say that (M , g ) has δ-pinched negative curvature for some δ ∈ (0,1] if there exists
a constant C > 0 such that the following inequalities hold:

−C ≤ κg (u ∧ v) ≤−Cδ.

1This may be seen as follows: the complex structure J of a Kähler manifold commutes with parallel transport
τx,v (t ), so the set

{
(x, v,e2, . . . ,en ) ∈ F M | gx (J v,e2) ≥ 0

}
is invariant and has positive, but not full measure. In

the even-dimensional case, the situation therefore requires additional care.
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Note that, up to rescaling the metric, one can always assume that C = 1. Since Kähler
manifolds are at most 0.25-pinched by a result of Berger [Ber60], Brin [Bri82] stated the
following natural conjecture:

Conjecture 1.1 (Brin ’82). If (M , g ) is δ-pinched for some δ> 0.25, then the frame flow is
ergodic.

More generally, Brin conjectures in the same article (see [Bri82, Conjecture 2.9]) that
the frame flow should be ergodic as long as there is no reduction of the holonomy group
of the manifold. However, up to now, ergodicity of the frame flow in dimension 7 and on
even-dimensional manifolds was only known for nearly-hyperbolic manifolds, that is,
manifolds with a pinching δ very close to 1: strictly greater than 0.8649... in even dimen-
sions different from 8, due to Brin-Karcher [BK84], and strictly greater than 0.9805... in
dimensions 7 and 8, due to Burns-Pollicott [BP03]. There has been no progress on Con-
jecture 1.1 in the past twenty years, until our result in [CLMS]:

Theorem 1.2 (Cekić-Lefeuvre-Moroianu-Semmelmann ’21). The frame flow is ergodic
if the manifold is δ(n)-pinched, where δ(7) ∼ 0.497, and asymptotically δ(n) ∼ 0.277 for
n ≡ 2 mod 4 and δ(n) ∼ 0.557 for n ≡ 0 mod 4.

The precise version of Theorem 1.2 can be found in [CLMS, Theorem 1.2]. Neverthe-
less, the numerical value of δ(n) is depicted in Figure 1 for n ∈ {4, ...,150}.
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FIGURE 1. In green: the bounds existing in the literature [BG80, BK84, BP03]. In orange:
the bounds provided by Theorem 1.2. In blue: the conjectural 0.25 threshold.

While former attempts to prove Conjecture 1.1 were mostly based on algebraic topol-
ogy or on the geometry of the universal cover of the manifold, the strategy of proof for
Theorem 1.2 is different and relies on the introduction of new ideas from Riemannian
geometry. More precisely, we make systematic use of the twisted version of an energy
identity on the unit tangent bundle known as the Pestov identity, first introduced by
Mukhometov [?, Muk81] and Amirov [?], then in its classical form by Pestov and Shara-
futdinov [?, Sha94] and finally stated in full generality by Guillarmou-Paternain-Salo-
Uhlmann [GPSU16]. This identity has found several applications in the past twenty
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years, be it in the study of inverse spectral problems, see Croke-Sharafutdinov [CS98],
or in tensor tomography [PSU13].

Our argument actually consists of three distinct parts, each of them belonging to a
different area of mathematics:

(1) Hyperbolic dynamical systems: the frame bundle p : F M → SM is a principal
SO(n −1)-bundle; using the hyperbolic structure of the geodesic flow, one can
prove that the non-ergodicity of the frame flow entails the existence of a sub-
group H � SO(n−1) called the transitivity group and an H-principal subbundle
F M ⊃Q → SM which is an ergodic component of the frame flow, see §2.

(2) Algebraic topology: in particular, restricting to an arbitrary point x0 ∈ M , one
obtains an H-subbundle Qx0 → Sx0 M 'Sn−1 of the frame bundle of Sn−1; this
is already a strong topological constraint, called reduction of the structure group
of the sphere, which rules out most possible cases for the subgroup H , see §3.

(3) Riemannian geometry: when topology is not sufficient to rule out the existence
of a structure group reduction, we show that, according to the possible values of
H , one can produce a smooth flow-invariant section f ∈C∞(SM ,E ), where E =
π∗Λp T M (with p = 1,2,3) or E =π∗Sym2T M , andπ : SM → M is the projection.
In turn, the existence of such object can be ruled out by means of the twisted
Pestov identity whenever the pinching δ is sufficiently large, see §4.3.

Three exotic dimensions appear in this setting: n = 7,8, and 134. They correspond to
special topological structures possibly carried by the spheres S6,S7, and S133, respec-
tively. The induced flow-invariant sections obtained in point (3) above then take values
in π∗Λp T M for p = 2,3. It is more difficult to rule out the existence of such objects and
our method requires a larger pinching than in other cases, see Figure 1 (for instance, the
orange dot on the right-hand side corresponds to the case n = 134).

On the other hand, when n ≡ 2 mod 4, the maximal number of linearly independent
vector fields on the sphereSn−1 is 1, which simplifies our analysis and eventually yields
a flow-invariant section of π∗T M , whereas in the case n ≡ 0 mod 4, it is at least 3 and
we get a flow-invariant orthogonal projector which is a section of π∗Sym2T M .

The purpose of this article is to explain the circle of ideas leading to Theorem 1.2 and
unlocking the long-standing problem of frame flow ergodicity. This strategy may also
prove seminal for additional progress. It comes with many interesting new open ques-
tions, summed up in the last paragraph §5, some of them being related to (polynomial)
structures over spheres. Eventually, it would be interesting to understand to what extent
the techniques of the present paper may apply to the broader setting of non-isometric
partially hyperbolic dynamics. This is left for future investigation.

Acknowledgment: M.C. has received funding from an Ambizione grant (project number
201806) from the Swiss National Science Foundation. We are grateful to an anonymous
referee for giving us a historical overview of the Pestov identity.

2. PRINCIPAL BUNDLE EXTENSIONS OF ANOSOV FLOWS

2.1. A partially hyperbolic flow. Let M be a smooth closed manifold. We recall that
a vector field X ∈ C∞(M ,T M ) generates an Anosov flow (ϕt )t∈R if there exists a con-
tinuous flow-invariant splitting of the tangent bundle T M = RX ⊕E s

M
⊕E u

M
into flow-

direction, stable and unstable bundles, and uniform constants C ,λ> 0 such that for all
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t ≥ 0:
‖dϕt v‖ ≤Ce−λt‖v‖, ∀v ∈ E s

M , ‖dϕ−t v‖ ≤Ce−λt‖v‖, ∀v ∈ E u
M , (2.1)

where ‖ • ‖ is the norm induced by an arbitrary Riemannian metric on M . In the fol-
lowing, we will further assume that X preserves a smooth measure µ. In particular, this
implies that (ϕt )t∈R is ergodic with respect to µ. The goal of this paragraph is to study
the ergodic properties of some specific extensions of (ϕt )t∈R which we now describe.

Given p : P →M , a G-principal bundle, where G is a compact Lie group, we say that a
flow (Φt )t∈R is a principal extension of (ϕt )t∈R to the bundle P if it satisfies the following
two conditions:

ϕt ◦p = p ◦Φt , Rg ◦Φt =Φt ◦Rg , ∀t ∈R, ∀g ∈G , (2.2)

where Rg : P → P denotes the fiberwise right-action of the group. Such a flow then
preserves a natural smooth measure ω which can be locally written as ω = µ×HaarG ,
the right factor being the normalized Haar measure on the group.

Understanding the ergodicity of (Φt )t∈R with respect to ω is a very natural question
in order to describe the long-time statistical properties of the extended flow. As men-
tioned in §1.2, an archetypal example fitting in this framework is the frame flow over
a negatively-curved Riemannian manifold (M , g ), which will be further discussed in §3
(in this case P = F M and M = SM).

Principal extensions of Anosov flows are intrinsically more complicated to study due
to their lack of uniform hyperbolicity. Indeed, the vertical direction V := kerd p now be-
comes a neutral or central direction, in the sense that the differential of the flow (Φt )t∈R
acts as a linear isometry on V and the tangent bundle to P then splits as

T P =RXP ⊕E s
P ⊕E u

P ⊕V,

where XP is the vector field generating (Φt )t∈R and E s,u
P satisfy an expanding/contract-

ing property similar to (2.1). Note that the subbundles E s,u
P also integrate to produce a

(Hölder-continuous) foliation on P by strong stable and unstable manifolds W s,u
P , see

Pesin [Pes04] or Hasselblatt-Pesin [HP06] for the related case of partially hyperbolic dif-
feomorphisms.

2.2. Transitivity group. Parry’s free monoid. Following Hopf’s argument in the Anosov
case, it is natural to expect (at least heuristically) that the ergodic component of an ar-
bitrary point z ∈ P consists of all the other points z ′ ∈ P that one can reach from z by
following a concatenation of flow- and so-called us-paths, namely, paths that are either
fully contained in a flowline of (Φt )t∈R or in a strong stable/unstable leaf W s,u

P . The full
accessibility of a flow is the property that any other point z ′ ∈ P can be reached from z by
such a concatenation of paths and it is expected that volume-preserving partially hyper-
bolic dynamical systems are ergodic whenever they are accessible2: this is known as the
Pugh-Shub conjecture [PS00]. Under a certain additional center bunching assumption,
the Pugh-Shub conjecture was proved by Burns-Wilkinson [BW10]. Taking advantage of
the very algebraic structure of principal extensions of Anosov flows, Brin [Bri75] trans-
lated the accessibility property into a key algebraic notion, called the transitivity group:
this is a subgroup H ÉG (well-defined up to conjugacy in G) describing all the points in
a fiber that are reachable by flow- and us-paths, which we now describe.

2A refinement of this notion is the essential accessiblity, that is, accessibility up to measure zero, but this will
not be needed here.
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It will be convenient to fix an arbitrary periodic point z? ∈ M for the flow (ϕt )t∈R,
generating a periodic orbitγ? ⊂M of period T?. Denote by H the set of orbits of (ϕt )t∈R
that are homoclinic to γ?, namely, which accumulate in the past and in the future to γ?.
Volume preserving (and more generally, transitive) Anosov flows satisfy that H is dense
in M . Given γ ∈H and a point w in the fiber P? := Pz? (which we can think of as a frame
for instance), there is a natural way to “parallel transport” w along γ (even though γ has
infinite length!) in order to produce another point, denoted by ρ(γ)w . This construction
goes as follows (see Figure 2, and [CL] for more details):

(1) One picks an arbitrary point z− ∈ γ∩W u
M

(z?) (i.e. such that dM (ϕ−t z?,ϕ−t z−) →
0 as t →+∞, and this convergence is exponentially fast); then, in the fiber Pz−
over z−, there exists a unique point w− ∈W u

P (w) such that dP (Φ−t w,Φ−t w−) →
0 as t →+∞. The map P?→ Pz− , w 7→ w− is called the unstable holonomy.

(2) One then “pushes” w− by the flow (Φt )t∈R until it reaches a point w+ :=ΦT (w−)
over z+ ∈ γ∩W s

M
(z?), where T > 0 is the unique time such that z+ =ϕT (z−);

(3) Eventually, applying a similar (but stable this time) holonomy to (1), one can
produce an element ρ(γ)w ∈ P?.

z?

z
−

Wu

M
(z?)

M

P

Pz?

Pz
−

'
−tz?

'
−tz−

−tw

Φ
−

FIGURE 2. Bottom: black lines represent flowlines of (ϕt )t∈R on M ; red lines represent
strong unstable leaves. Top: black lines represent flowlines of (Φt )t∈R on P ; blue and
red parallelograms represent fibers of P .

It is important to have in mind that the above-mentioned holonomies are actually
parallel transports in strong stable/unstable/flow leaves of (ϕt )t∈R with respect to a dy-
namical G-principal connection ∇ on the principal bundle P →M induced by the lifted
flow (Φt )t∈R. If we identify the fiber P? 'G , then ρ(γ) can be identified with left multi-
plication by an element of the group G itself, that is, ρ(γ) ∈G . Hence, introducing Parry’s
free monoid3 G as the formal set of words

G :=
{
γ

k1
i1

...γ
kp

ip
| p ∈N,k j ∈N,γi j ∈H , j = 1, ..., p

}
,

we see that the above-mentioned construction produces a natural representation ρ :
G → G whose image H := ρ(G) É G is called the transitivity group. Note that this sub-
group is only well-defined up to conjugacy as it requires to choose a (non-canonical)
identification P? 'G . Moreover, it can be checked that H is nothing but the holonomy
group of the dynamical connection ∇ on P , see [Lef] for instance. This object turns out
to be crucial in understanding the ergodicity of the flow (Φt )t∈R:

3A monoid is a set endowed with an associative product, a neutral element, but no inverse.
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Proposition 2.1 (Brin). The flow (Φt )t∈R is ergodic if and only if H =G.

Following Proposition 2.1, a sound strategy to prove ergodicity is therefore to assume
that H �G is a strict subgroup and to seek a contradiction. The key idea is to show that
whenever H 6= G , one can produce additional flow-invariant geometric structures over
M using representation theory and to prove by means of topological and/or geometric
arguments that actually such structures cannot exist.

2.3. Flow-invariant structures. Let us recall at this stage a general principle of differ-
ential geometry one has to bear in mind:

“Any object that is algebraically H-invariant will produce a global smooth
flow-invariant object over the base manifold M .”

(P)

In addition, this object will be parallel with respect to the dynamical connection. How-
ever, the dynamical connection is only Hölder regular, and to make Principle (P) rigor-
ous one needs non-Abelian Livšic theory, developed in [CL]. This idea has two impor-
tant manifestations. First of all, if ρ : G → Aut(V ) is a finite-dimensional representation
whose restriction to H fixes a non-zero vector ξ ∈V , then the corresponding associated
vector bundle P ×ρ V → M carries a parallel section with respect to the connection in-
duced by the dynamical connection ∇, and this object will have a constant algebraic
type4. Secondly, H is invariant by the action by itself (as a subgroup of G), and (P) leads
to the following remarkable result:

Proposition 2.2 (Brin). There exists a flow-invariant H-principal subbundle Q ⊂ P over
M .

Non-ergodicity of (Φt )t∈R thus entails the existence of a strict subbundle Q → M of
the G-principal bundle P → M . This is already a strong topological constraint called
reduction of the structure group of the bundle.

3. STRUCTURE GROUP REDUCTION OF THE FRAME BUNDLE ON SPHERES

We now specialize the considerations above to the case where (M n , g ) is a smooth
compact oriented Riemannian manifold with negative sectional curvature of dimension
n ≥ 3, M = SM is the unit tangent bundle, X the geodesic vector field, and P = F M →
SM the principal SO(n −1)-bundles of frames as explained in §1.2, on which we study
the frame flow (Φt )t∈R.

Assuming that the frame flow is not ergodic, the transitivity group H is a strict sub-
group of SO(n −1) and by Proposition 2.2, there exists an H-principal bundle Q ⊂ F M
over SM . Restricting Q to the fiber Sx M 'Sn−1 over some x ∈ M defines an H-principal
bundle Qx ⊂ F (Sn−1) over Sx M , i.e. a structure group reduction of the orthonormal
frame bundle of the round sphere to H . Alternatively, this can be seen as follows: since
the two hemispheres of Sn−1 are contractible (hence, any bundle over these is trivial),
an SO(n −1)-principal bundle over Sn−1 is simply given by the data of a clutching func-
tion c at the equator c :Sn−2 → SO(n −1), taking values in SO(n −1), and defined up to
homotopy (equivalently, c is an element of the homotopy group πn−2(SO(n −1))). The

4For instance, if ξ is a skew-symmetric endomorphism squaring to −1, then the parallel section will have the
same properties.
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bundle admits a reduction of its structure group to H É SO(n − 1) if c can be factored
through H (here ι : H → SO(n −1) is the embedding):

H

ι

��
Sn−2

c0

99

c
// SO(n −1)

This fact alone has already strong topological consequences. Indeed, using the work of
Adams [Ada62], Leonard [Leo71], and Čadek–Crabb [ČC06], one can prove:

Proposition 3.1. The following holds:

(1) If n ≥ 3 is odd and n 6= 7, there is no reduction of the structure group of Sn−1 to a
strict subgroup of SO(n −1).

(2) For all other n ≥ 4, if there exists a reduction of the structure group of Sn−1 to a
strict subgroup H of SO(n −1), then up to conjugation, H is contained in one of
the following subgroups K of SO(n −1):

• If n = 7, K = U(3) ⊂ SO(6);
• If n = 8, K = G2 or K = SO(p)×SO(7−p) ⊂ SO(7) with p = 1,2,3;
• If n = 134, K = E7 ⊂ SO(133) or K = SO(132) ⊂ SO(133);
• If n ≡ 2 mod 4, n 6= 134, K = SO(n −2) ⊂ SO(n −1);
• If n ≡ 0 mod 4, n 6= 8, K = SO(p)×SO(n −1−p) ⊂ SO(n −1) with 1 ≤ p ≤

(n −2)/2.

Note that the Brin–Gromov result [BG80] about the ergodicity of the frame flow on
negatively curved compact Riemannian manifolds in odd dimensions different from 7
is a direct consequence of Proposition 2.1 and Proposition 3.1 (1) (which was proved by
Leonard [Leo71]).

Remark 3.2. Let us also point out that, unlike other topological reductions which do
appear, we actually do not know whether the E7-structure on S133 exists or not. This is
still an open question.

We will now use the discussion of §2.3 in order to produce new flow-invariant geo-
metric objects whenever the flow is not ergodic, that is, whenever the transitivity group
H is strictly contained in SO(n − 1). There is a natural associated vector bundle V =
F M ×ρ Rn−1 → SM , given by the canonical representation ρ : SO(n − 1) → Aut(Rn−1),
called the normal bundle. This bundle is also isomorphic to the vertical bundle of the
spherical fibration SM → M , that is, the vector bundle whose fiber at (x, v) ∈ SM is the
(n −1)-dimensional space v⊥ ⊂ Tx M . There is a natural way to parallel transport sec-
tions of this bundle along geodesic flowlines with respect to the (lift of the) Levi-Civita
connection and, therefore, it makes sense to talk about flow-invariant sections.

The key point is then that for each group K occurring in Proposition 3.1 (2), one can
find non-zero K -invariant vectors in some tensorial representations. More precisely:

• U(3) ⊂ SO(6) preserves a non-zero 2-form inΛ2R6;
• G2 preserves a non-zero 3-form inΛ3R7;
• E7 ⊂ SO(133) preserves a non-zero 3-form5 inΛ3R133;

5Indeed, the embedding of E7 in SO(133) is obtained via the adjoint representation of E7 on its Lie algebra
e7 =R133, so E7 preserves the canonical 3-form of e7.
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• SO(n −2) ⊂ SO(n −1) preserves a unit vector in Rn−1;
• For 1 ≤ p ≤ (n−2)/2, SO(p)×SO(n−1−p) ⊂ SO(n−1) preserves the orthogonal

projection of Rn−1 onto Rp .

Following §2.3, this implies in turn that in all these cases, one can produce a smooth
parallel (with respect to the dynamical connection) object over SM . In particular, this
object is flow-invariant:

Theorem 3.3. If the frame flow of M is not ergodic, there exists a non-vanishing flow-
invariant section f ∈C∞(SM ,E ), where E is one of the following bundles:

(1) E = V , (2) E =Λ2V for n = 7,
(3) E =Λ3V for n = 8 or n = 134, (4) E = Sym2V .

For instance, if n = 7, H É U(3) and thus H fixes a an element Λ2R6 which is an al-
most complex structure, namely, a skew-symmetric endomorphism squaring to −1R6 .
In turn, this gives rise to the existence of a flow-invariant section f ∈ C∞(SM ,Λ2V )
of constant algebraic type, that is, such that for every (x, v) ∈ SM , f (x, v) is a skew-
symmetric endomorphism on v⊥ squaring to −1v⊥ . Our aim is now to show that, under
some pinching condition, one can rule out the existence of such a flow-invariant geo-
metric structure on the unit tangent bundle SM .

4. BOUNDING THE DEGREE OF FLOW-INVARIANT OBJECTS

The existence of flow-invariant structures provided by Theorem 3.3 is not enough to
obtain a contradiction. Indeed, such objects do actually exist in some settings as we
shall see below in §4.2. However, under some pinching condition and using Fourier
analysis on SM , one can actually describe very accurately the analytic properties of
flow-invariant objects. This is eventually what will give us the contradiction we are seek-
ing.

4.1. Fourier degree of sections. If ∆ denotes the Laplacian acting on functions on the
round sphere Sn−1 ⊂Rn , the eigenspaces

Ωk := {
f ∈C∞(Sn−1) |∆ f = k(n +k −2) f

}
, k ≥ 0,

consist in restrictions to Sn−1 of harmonic homogeneous polynomials of degree k on
Rn . Elements in Ωk are called spherical harmonics of degree k. Every function f ∈
C∞(Sn−1) has a unique decomposition (in the L2-sense) as f = ∑

j≥0 f j , with f j ∈ Ω j .
This decomposition also applies to functions defined on the sphere bundle SM of a
Riemannian manifold (M , g ), or more generally to sections of the pull-back to SM of
vector bundles over M .

More precisely, if E := π∗E denotes the pull-back to SM of a vector bundle E over
M , its restriction to any fiber Sx M 'Sn−1 is trivial, so the restriction of any section f ∈
C∞(SM ,E ) to Sx M can be identified with a vector-valued function f |Sx M : Sn−1 → Ex .
The vertical Laplacian ∆V acts on sections of E and satisfies (∆V f )|Sx M = ∆( f |Sx M ) for
every x ∈ M . Correspondingly, setting for x ∈ M ,

Ωk (E )x := {
f ∈C∞(Sx M ,E ) |∆V f = k(n +k −2) f

}
,

we get a vector bundleΩk (E ) → M and the decomposition of any section f ∈C∞(SM ,E )
as f = ∑

j≥0 f j , with f j ∈ C∞(M ,Ω j (E )). If the above sum is finite, i.e. f = ∑k
j=0 f j with

fk 6= 0, we say that f has finite degree k. If the above sum only contains even (resp. odd)
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spherical harmonics, i.e. f =∑
j≥0 f2 j (resp. f =∑

j≥0 f2 j+1), we say that f is even (resp.
odd).

From the description of Ωk as the set of harmonic homogeneous polynomials on Rn

of degree k, it easily follows that Ωk (E )x can be identified with Symk
0 (T ∗

x M)⊗Ex by the

tautological map π∗ : Symk
0 (T ∗

x M)⊗Ex →Ωk (E )x defined as follows: if K ∈ Symk
0 (T ∗

x M)
is a trace-free symmetric tensor of degree k and s ∈ Ex , one defines

π∗(K ⊗ s)(x,v) := 1

k !
K (v, . . . , v)sx , ∀v ∈ Sx M . (4.1)

More generally, (4.1) identifies Symk (T ∗M)⊗E with ⊕ j≥0Ωk−2 j (E ) with the convention
thatΩ j (E ) = {0} for j < 0.

Whenever E is equipped with a metric connection ∇E , we can consider the pull-back
connection π∗∇E on E :=π∗E . We set X := (π∗∇E )X , where X is the geodesic vector field
on SM , which is nothing but the generator of the parallel transport of sections of E with
respect to ∇E along geodesics. This operator may be seen to have the mapping property

X : C∞(M ,Ωk (E )) →C∞(M ,Ωk−1(E ))⊕C∞(M ,Ωk+1(E )) (4.2)

and can thus be decomposed as a sum X = X−+X+ onto each summand of (4.2). The
operator X+ is elliptic and has finite-dimensional kernel (when M is compact) whose
elements are called twisted conformal Killing tensors. Moreover, the mapping property
(4.2) ensures that X maps even (resp. odd) sections to odd (resp. even) sections. El-
ements in the kernel of X are flow-invariant; equivalently, they have the property of
invariance under parallel transport along geodesic flowlines.

4.2. Examples. Link with Killing forms.

4.2.1. Tautological section. The tautological section, defined by s(x, v) := v , is a flow-
invariant section of the pull-back bundle π∗T M over SM of Fourier degree 1. Flow-
invariance is understood as above in the sense that Xs = 0, where X = (π∗∇)X and ∇ =
∇T M is the Levi-Civita connection on T M . Equivalently, s corresponds to the identity
endomorphism IdT M , viewed as a section of Sym1(T ∗M)⊗T M , via the mapping (4.1),
namely, π∗(IdT M )(x,v) := IdTx M (v) = v . We use the notation Sym1(T ∗M) to insist on the
fact that one could consider more general objectsφ in Symp (T ∗M)⊗T M as in (4.1), and
then the mapping to the unit tangent bundle would yield a section (x, v) 7→φx (v, ..., v) ∈
π∗T M .

4.2.2. Normal bundle. The normal bundle V on SM is naturally identified with a sub-
bundle ofπ∗(T M) of codimension 1: as already mentioned, it is in fact the subbundle s⊥

orthogonal to the tautological section s. Any section f ∈C∞(SM ,V ) which has Fourier
degree 1 as a section of π∗(T M) corresponds to an endomorphism φ of T M via the
above identification f(x,v) = π∗(φ)(x,v) = φx (v), which further satisfies g (φ(v), v) = 0 for
every v ∈ SM , i.e. it is skew-symmetric.

4.2.3. Exterior forms. More generally, if ω is a (p +1)-form on M , it can be viewed as a
p-form on SM taking values in the normal bundle V by defining π∗ω ∈ C∞(SM ,ΛpV )
as π∗ω(x,v) := vyωx (interior product with v). Conversely, a section of Fourier degree
1 of π∗(Λp (T ∗M)) which takes values in the subbundle ΛpV of π∗(Λp (T ∗M)), corre-
sponds to a (p +1)-form on M . Indeed, if ω ∈ C∞(M ,Sym1(T ∗M)⊗Λp (T ∗M)) has the
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property that (π∗ω)(x,v) ∈Λp (V ) for every v ∈ SM , this just means that ω is totally skew-
symmetric as a covariant (p +1)-tensor.

4.2.4. Flow-invariance and Killing forms. It can be easily checked that the flow-invari-
ance condition Xπ∗ω = 0 translates into ∇T M

v ω(v,•, ...,•) = 0 for every v ∈ T M , that is,
the covariant derivative of ω is totally skew-symmetric. Such a form is called a Killing
form on M . A typical example where such a situation occurs with p = 1 is the case of a
Kähler manifold (M , g , J ), where J 2 = −1T M is the almost-complex structure satisfying
∇T M J = 0. Since J is skew-symmetric, it defines an element ofΛ2(T ∗M). Setting f(x,v) :=
π∗(J )(x,v) = Jx v , the above discussion shows that f ∈ C∞(SM ,V ) is flow-invariant. In
turn, by §2.3, this shows that the transitivity group H cannot be equal to SO(n−1) since
it has to fix at least one invariant vector, that is, H É SO(n −2), hence showing that the
frame flow is not ergodic.

4.3. Bounding the degree via the Pestov identity. We will now explain the last steps in
the proof of Theorem 1.2. Assuming that the frame flow is not ergodic, Proposition 2.1
implies that the transitivity group H is a strict subgroup of SO(n−1), so by Theorem 3.3
there exists a non-vanishing section f ∈ C∞(SM ,E ), where E = ΛpV ⊂ π∗(Λp (T ∗M))
(with p = 1,2,3) or E = Sym2V ⊂π∗(Sym2(T ∗M)), satisfying X f = 0. The ultimate goal is
to prove that f is of degree 1 under some pinching condition. The key identity for that is
the twisted Pestov identity, originally stated in [GPSU16, Proposition 3.5], and restated
in its present form in [CLMS, Lemma 2.3]:

Lemma 4.1 (Twisted Pestov identity). Let (M , g ) be an n-dimensional compact Riemann-
ian manifold and E a Euclidean vector bundle over M, endowed with a metric connection
∇E . If E denotes the pull-back of E to SM, the following identity holds for all k ∈Z≥0, and
u ∈C∞(M ,Ωk (E )):

(n +k −2)(n +2k −4)

n +k −3
‖X−u‖2

L2 −
k(n +2k)

k +1
‖X+u‖2

L2 +‖Z u‖2
L2 =QE

k (u,u), (4.3)

where Z is a first order differential operator which we do not make explicit and QE
k is a

symmetric bilinear form explicitly defined in terms of the Riemannian curvature of (M , g )
and the curvature tensor of ∇E .

Using the Cauchy-Schwarz inequality, one can show that when (M , g ) has sectional
curvature bounded from above by −δ< 0,

QE
k (u,u) ≤ (−δk2 +kq(E))‖u‖2

L2 , (4.4)

where q(E) only depends on the curvature tensor of ∇E . In particular, there exists an
integer k0 such that QE

k (u,u) ≤ 0 for every k ≥ k0.
Now, if f ∈C∞(SM ,E ) satisfies X f = 0, we write f =∑

k≥0 fk with fk ∈C∞(M ,Ωk (E ))
which satisfy ‖ fk‖H 1 → 0 as k →∞. Moreover, by (4.2) writing X = X++X− gives

X+ fk +X− fk+2 = 0, for every k ≥ 0. (4.5)

Applying (4.3) to u = fk we get for every k > k0:

(n +k −2)(n +2k −4)

n +k −3
‖X− fk‖2

L2 ≤
k(n +2k)

k +1
‖X− fk+2‖2

L2 .

In particular, this implies ‖X− fk‖2
L2 ≤ ‖X− fk+2‖2

L2 for every k ≥ k0. On the other hand,

‖X− fk‖2
L2 tends to 0 as k →∞ because ‖X− fk‖2

L2 ≤ ‖X fk‖2
L2 ≤ ‖ fk‖2

H 1 → 0 by smoothness
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of f , so X− fk = 0 for k ≥ k0. By (4.5) we then also have X+ fk = 0 for k ≥ 2+k0, so using
(4.3) and (4.4) for u := fk shows that fk = 0 for k ≥ 2+k0. This gives the following result,
originally proved in [GPSU16, Theorem 4.1]:

Corollary 4.2. Every f ∈C∞(SM ,E ) with X f = 0 has finite degree.

Corollary 4.2 shows that if the frame flow of (M , g ) is not ergodic, the non-vanishing
flow-invariant section f ∈C∞(SM ,E ) given by Theorem 3.3 has finite degree. The idea
is that under a suitable pinching hypothesis, one can show that the section f has degree
1. By §4.2, it defines a Killing form on M , the existence of which is obstructed either by
negative curvature, or by its algebraic properties. We now explain the remaining argu-
ments leading to Theorem 1.2 in cases (1)–(3)6 of Theorem 3.3.

End of the proof of Theorem 1.2. The proof is divided into three steps.

Step 1. We first show by topological arguments that the section f given by Theorem
3.3 is odd. For instance, in case (1), if non-zero, the restriction of the even part of f to
a fiber of SM defines a constant length vector field on Sn−1 of even degree, thus a poly-
nomial map ξ : Sn−1 → Sn−1 satisfying ξ(v) = ξ(−v) for every v ∈ Sn−1. In particular,
the topological degree of ξ is even. On the other hand ξ is homotopic to the identity via[
0, π2

] 3 t 7→ ξt (v) := cos(t )ξ(v)+ sin(t )v , so its topological degree is 1, which is a contra-
diction.

Step 2. Under some curvature pinching assumption, we then show that the degree
of f must be strictly smaller than 3, hence precisely equal to 1 by the first step. This is
the key point of the proof, and is based on subtle estimates in the curvature term QE

k
appearing in the right-hand side of the twisted Pestov identity (4.3). In order to keep
the discussion simple, we will only give the main idea. Decomposing the flow-invariant
section f = fk + fk−2 + ...+ f1, where fk 6= 0 and k is odd, and setting u := fk 6= 0, we see
by (4.2) that the flow-invariance X f = 0 implies X+u = 0, that is, u is a twisted conformal
Killing tensor. Applying (4.3), we thus obtain:

0 ≤ (n +k −2)(n +2k −4)

n +k −3
‖X−u‖2 +‖Z u‖2 =QE

k (u,u) ≤ F (k,δ)‖u‖2, (4.6)

where F (k,δ) is the maximum of the symmetric bilinear form QE
k on the unit sphere

of Ωk (E ). As (4.4) indicates, it can be shown that for fixed δ, the sequence k 7→ F (k,δ)
decreases to −∞. Hence, there is a k(δ) such that for all k ≥ k(δ), F (k,δ) < 0. In turn,
this implies by (4.6) that u ≡ 0 which contradicts the assumption that u 6= 0. Now, it
can be checked that the function δ 7→ k(δ) is a decreasing function, and that there exists
δ(n) < 1 such that for δ> δ(n) sufficiently close to 1, k(δ) < 3. Hence, we conclude that
whenever δ > δ(n), if the twisted conformal Killing tensor u in (4.6) is of degree ≥ 3, it
must vanish identically. This is a contradiction and thus u is of degree 1 by the first step.

Step 3. Once we have established that the Fourier degree of the flow-invariant section
f ∈ C∞(SM ,ΛpV ) is 1, following §4.2, we know that f defines a Killing (p +1)-form on
M , with p ∈ {1,2,3}, that is a (p +1)-form ω such that ∇T M

v ω(v,•, ...,•) = 0. The first two
cases are ruled out by [BMS20], while we use some ad-hoc arguments in order to show
that such special Killing 4-forms vanish identically (see [CLMS, Lemma 3.13]). �

6Case (4) is slightly more technical and we refer to [CLMS, Section 4] for further details.
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5. OPEN QUESTIONS

In order to improve Theorem 1.2, it is clear that a deeper algebraic understanding of
the curvature term QE

k appearing in the right-hand side of the twisted Pestov identity
is missing. This is probably the main challenge for future work and numerical experi-
ments might help studying this term more accurately. We list below some other open
questions related to frame flow ergodicity:

• Exponential mixing for the frame flow: Using representation theory, exponen-
tial mixing was proved by Moore [Moo87] on hyperbolic manifolds, and re-
proved recently in dimension n = 3 by Guillarmou-Küster [GK21] using semi-
classical analysis. Rapid mixing of isometric extensions of diffeomorphisms was
studied by Dolgopyat [Dol02] and more recently, by Siddiqi [Sid] in the case of
flows. However, due to low regularity issues of the stable/unstable foliation, go-
ing beyond constant curvature is still an open question.

• E7-structure onS133: As pointed out in Remark 3.2, it is not known yet whether
this possible structure actually does exist on S133. The main obstacle seems to
be the computation of π132(E7) and this group is still unknown to the best of our
knowledge.

• Existence of polynomial structures over spheres: Whenever the frame flow is
not ergodic, the arguments above give a flow-invariant section f ∈ C∞(SM ,E )
with finite Fourier degree. In turn, restricting to the sphere over a point x ∈ M ,
this entails the existence of a polynomial structure on the sphere (for instance, a
vector field whose coordinates are all homogeneous polynomials). These struc-
tures were studied by Wood [Woo68] but their complete classification is far from
being understood.
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