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Abstract. We introduce the notion of metric Lie algebras of Killing type, which

are characterized by the fact that all conformal Killing symmetric tensors are sums

of Killing tensors and multiples of the metric tensor. We show that if a Lie algebra

is either 2-step nilpotent, or 2- or 3-dimensional, or 4-dimensional non-solvable, or 4-

dimensional solvable with 1-dimensional derived ideal, or has an abelian factor, then it

is of Killing type with respect to any positive definite metric.

1. Introduction

Symmetric Killing tensors on (pseudo-)Riemannian manifolds are symmetric tensors
whose symmetrized covariant derivative vanishes. They define first integrals of the ge-
odesic flow on the tangent bundle, they are polynomial in the momenta, and were first
considered in the physics literature, see e.g. [13], [15].

More generally, one can define conformal Killing tensors as symmetric tensors whose
symmetrized covariant derivative is the symmetric product of the metric with some other
symmetric tensor. They have the remarkable property of being conformally invariant [7,
Lemma 3.2] and still define polynomial first integrals for null geodesics.

Recently, Killing and conformal Killing symmetric tensors also appeared in the frame-
work of geometric inverse problems [6], [12], integrable systems [10] and Riemannian
geometry [2], [3], [7], [8].

In order to explain in more detail the relationship between Killing and conformal
Killing tensors, let us denote by (M, g) a Riemannian manifold, by d : SympTM −→
Symp+1TM the symmetrized covariant derivative and by L : SympTM −→ Symp+2TM
the product with the metric tensor. Then K ∈ Γ(SympTM) is Killing if and only if
dK = 0, and conformal Killing if and only if dK ∈ Im(L).

Since the operators d and L commute, it turns out that if K ∈ Γ(SympTM) is Killing,
then K + LR is conformal Killing for every R ∈ Γ(Symp−2TM). The conformal Killing
tensors obtained in this way are called of Killing type. We are interested in the existence
of genuine conformal Killing tensors, i.e. which are not of Killing type. For instance,
any conformal vector field on a Riemannian manifold which is not a Killing vector field
provides a genuine symmetric tensor in this sense.
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In the present paper we will study this problem for left-invariant symmetric tensors
on Riemannian Lie groups, where it can be interpreted in terms of an algebraic problem
on the corresponding metric Lie algebras. The paper is organized as follows.

In Section 2 we review Killing and conformal Killing symmetric tensors on Riemannian
manifolds, with a special focus on Riemannian Lie groups. As a preliminary result, we
show that every left-invariant conformal vector field is Killing, so the genuine example
provided above does not apply in our case. We introduce the notion of metric Lie algebra
of Killing type (defined by the fact that all the left-invariant conformal Killing tensors
on the corresponding Lie group are of Killing type). In Section 3 we use a particular
decomposition associated to 2-step nilpotent Lie algebras to show, in Theorem 3.3, that
they are always of Killing type, for any possible metric. The proof is based on an
inductive argument explained in Proposition 3.1.

We then show that every metric Lie algebra carrying a certain “naturally reductive”-
like decomposition is of Killing type. The details are given in Proposition 4.1. As
applications of this result we show that extensions by derivations and central extensions
of Lie algebras endowed with ad-invariant metrics are of Killing type (Corollary 4.3 and
Corollary 4.4).

Using these results and the classification of low-dimensional metric Lie algebras, we
show in Section 5 that every metric Lie algebra of dimension 2 or 3 is of Killing type,
and we obtain a similar result in Section 6 for two particular classes of Lie algebras of
dimension 4 (those which are either non-solvable or have 1-dimensional derived ideal).

Based on the above results, there is perhaps not enough evidence in order to conjecture
that all metric Lie algebras are of Killing type. However, all our attempts in order to
construct a counterexample have failed so far. We hope to make further progress on this
question in a subsequent work.

Acknowledgments. This work was supported by the Procope Project No. 57445459
(Germany) / 42513ZJ (France).

2. Conformal Killing tensors

2.1. Generalities. We follow the notations from [8]. Let V be a vector space of dimen-
sion n endowed with a (positive definite) metric g. We define Sym0V = R and for p ≥ 1
we denote by SympV the subspace of symmetrized p-tensors on V :

v1 · . . . · vp :=
∑
σ∈Sp

vσ(1) ⊗ . . .⊗ vσ(p),

where vi ∈ V and Sp is the set of permutations of {1, . . . , p}. In particular we have
v · u = v ⊗ u + u ⊗ v for every u, v ∈ V . We further denote by Sym∗V the space of all
symmetric tensors on V , that is, Sym∗V =

⊕
p≥0 SympV .

The metric g on V induces a metric, also denoted by g, on SympV as follows:

g(v1 · . . . · vp, u1 · . . . · up) :=
∑
σ∈Sp

n∏
i=1

g(vi, uσ(i)).
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This allows us to identify every symmetric tensor K ∈ SympV with a multilinear sym-
metric map on V , also denoted by K, through the identity

(2.1) K(v1, . . . , vp) := g(K, v1 · . . . · vp), for all v1, . . . , vp ∈ V.
Given v ∈ V and K ∈ SympV , we denote by vyK the contraction of K with v, that is,
(vyK)(v1, . . . , vp−1) := K(v, v1, . . . , vp−1), for every v1, . . . , vp ∈ V . The linear maps

v· : SympV −→ Symp+1V
K 7→ v ·K and

vy : SympV −→ Symp−1V
K 7→ vyK

are adjoint to each other with respect to the above defined metric on SympV .
As usual, symmetric endomorphisms of V are identified with symmetric bilinear maps

on V through the metric g, and thus with symmetric tensors in Sym2V via (2.1). Given
a symmetric endomorphism K of V , the corresponding symmetric 2-tensor in Sym2V ,
also denoted by K, is

(2.2) K =
1

2

n∑
i=1

Kei · ei,

where {ei} is an orthonormal basis of V . If L denotes the symmetric tensor
∑n

i=1 ei · ei,
the symmetric endomorphism and the symmetric bilinear form corresponding to L are
2Id and 2g respectively.

Given M ∈ End(V ), we denote by M∗ its metric adjoint. The symmetric part of M
has its corresponding symmetric tensor, which we denote by SM ∈ Sym2V . From (2.2)
we have

(2.3) SM =
1

2

n∑
i=1

1

2
(M +M∗)ei · ei =

1

2

n∑
i=1

Mei · ei.

In addition, the endomorphism M extends as a derivation of the algebra SympV . In
particular, on decomposable symmetric 2-tensors, it satisfies

M(u · v) = Mu · v + u ·Mv.

If K is a symmetric endomorphism of V , then the action of M on the corresponding
symmetric tensor K is

M

(
1

2

n∑
i=1

Kei · ei

)
=

1

2

n∑
i=1

(MKei · ei +Kei ·Mei) =
n∑
i=1

MKei · ei = 2SMK .

Consequently, this action, viewed in End(V ), reads M(K) = (MK +KM∗). So if M is
symmetric, M(K) = (MK +KM) and if M is skew-symmetric, M(K) = [M,K].

In particular, for L =
∑n

i=1 ei · ei we have M(L) = 4SM . Since M acts as a derivation,
we further get

M(L ·K) = 4SM ·K + L ·M(K), for every K ∈ SympV.(2.4)

This implies, by immediate induction, that for every j ≥ 1 and every K ∈ SympV ,

(2.5) [M,Lj] ·K = 4jS · Lj−1 ·K.
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The multiplication by L in SympV induces a linear operator, which we denote also by
L, namely

L : SympV −→ Symp+2V, K 7→
n∑
i=1

ei · ei ·K.

The contraction with the metric gives rise to the linear map

Λ : SympV −→ Symp−2V, K 7→
n∑
i=1

eiyeiyK.

Notice that Λ vanishes on Sym0V and on Sym1V ' V . Moreover, if K is a symmetric
endomorphism of V , viewed as an element in Sym2V as in (2.2), then ΛK = trK. We
define, for each p ≥ 0, Symp

0V := ker(Λ : SympV −→ Symp−2V ) as the subspace of
trace-free symmetric tensors.

Since the contraction and symmetric product by vectors are metric adjoints, it follows
that Λ and L are adjoint operators. This implies that every K ∈ SympV decomposes
uniquely as

K = K0 + LR, where ΛK0 = 0 and R ∈ Symp−2V.(2.6)

We call K0 the trace-free part of K.
Finally, we consider the linear map deg : Sym∗V −→ Sym∗V which on symmetric

p-tensors K verifies degK = pK. One can easily check that the operators previously
defined verify the commutation law

(2.7) [Λ,L] = 2nId + 4 deg .

Let now (M, g) be a Riemannian manifold with Levi-Civita connection ∇. The linear
maps L, Λ and deg extend to sections of the vector bundles SympTM for all p ≥ 0.

We shall consider further geometric operators on these vector bundles. Let {ei}ni=1

denote a local orthonormal frame and define the symmetrized covariant derivative

(2.8) d : Γ(SympTM) −→ Γ(Symp+1TM), K 7→ dK =
n∑
i=1

ei · ∇eiK,

and its formal adjoint

(2.9) δ : Γ(SympTM) −→ Γ(Symp−1TM), K 7→ δK = −
n∑
i=1

eiy∇eiK.

These operators are related to the linear operators Λ and L previously defined as follows:

[Λ, δ] = 0 = [L, d], [Λ, d] = −2δ.(2.10)

We are now in position to introduce the objects which are the subject of study of the
paper.

Definition 2.1. Let (M, g) be a Riemannian manifold. A symmetric p-tensor K ∈
Γ(SympTM) is a Killing tensor if dK = 0, and a conformal Killing tensor if dK = LB
for some symmetric tensor B ∈ Γ(Symp−1TM).
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One can easily check that (conformal) Killing 1-tensors on (M, g) correspond to (con-
formal) Killing vector fields.

Remark 2.2. A symmetric tensor is conformal Killing if and only if its trace-free part is
conformal Killing. Indeed, given a symmetric p-tensor K on (M, g) with decomposition
K = K0 + LR as in (2.6), then, since d and L commute, we have

dK = dK0 + LdR.

Hence dK = LB for some symmetric p− 1-tensor B if and only if dK0 = L(B − dR).

From [8] we have a necessary and sufficient condition for a trace-free symmetric tensor
to be conformal Killing:

Proposition 2.3 ([8]). A trace-free symmetric tensor K0 is conformal Killing if and
only if dK0 = a0LδK0, where a0 := − 1

n+2p−2 .

It is always possible to construct conformal Killing tensors from a Killing tensor.
Indeed, given a Killing p-tensor K and a symmetric p− 2-tensor R, one has

d(K + LR) = LdR,

so that K + LR is conformal Killing. Loosely speaking, the conformal Killing tensors
constructed in this way are Killing up to the image of L. Clearly, not every conformal
Killing tensor is of this form. For instance, conformal Killing vector fields on (M, g)
which are not Killing, are not of the form K + LR with K Killing. We introduce the
following definition:

Definition 2.4. A conformal Killing p-tensor K is of Killing type if there exist a sym-
metric tensor R such that K + LR is Killing.

We show in the next result, among other equivalences, that a similar relation as the
one mentioned above holds in this case: a symmetric Killing tensor is of Killing type if
and only if its trace free part is of Killing type too.

Proposition 2.5. Let K be a conformal Killing symmetric p-tensor and let B be the
unique p − 1-tensor satisfying dK = LB. If K0 denotes the trace-free part of K, the
following statements are equivalent:

(1) K is of Killing type,
(2) K0 is of Killing type,
(3) B ∈ Im(d),
(4) δK0 ∈ Im(d).

Proof. Using (2.6), it is easy to check that (1) and (2) are equivalent. Next, since d and
L commute, for every R ∈ Γ(Symp−2TM) we have

d(K + LR) = L(B + dR).

As L is injective, this implies that K + LR is Killing if and only if B = −dR, thus
proving that (1) is equivalent to (3).
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Finally, we will show the equivalence between (2) and (4). First notice that K0 is
conformal Killing by Remark 2.2, so Proposition 2.3 yields dK0 = L(− 1

n+2p−2δK0). By

the equivalence between (1) and (3) we get that K0 is of Killing type if and only if
δK0 ∈ Im(d). �

2.2. Conformal Killing tensors on Riemannian Lie groups. In this section we
describe the geometry of Riemannian Lie groups and study their left-invariant Killing
and conformal Killing tensors.

LetG be a connected Lie group endowed with a Riemannian metric g which is invariant
under left translations, and let g denote the Lie algebra of G. The metric g is determined
by its value on the tangent space at the identity, which we identify with g. Let ∇ denote
the Levi-Civita connection of (G, g). Koszul’s formula evaluated on left-invariant vector
fields X, Y, Z on G reads

(2.11) 〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉+ 〈[Z,X], Y 〉+ 〈[Z, Y ], X〉).

From this formula we obtain in particular that the covariant derivative of two left-
invariant vector fields is again left-invariant. We identify a left-invariant vector field X
with its value x ∈ g at the identity, so that (2.11) becomes

(2.12) ∇xy =
1

2

(
[x, y]− ad∗x y − ad∗y x

)
,

where ad∗x denotes the metric adjoint of adx with respect to g.
We are interested in studying left-invariant symmetric tensors on (G, g) which satisfy

the conformal Killing condition. To this purpose, we will consider the left-invariant
sections of SympTG, which are determined by their values at the identity. This is why,
from now on, we will identify the space of left-invariant symmetric tensors on (G, g) with
elements in Sympg. In particular, we will say that an element in Sympg is a (conformal)
Killing tensor, if its corresponding left-invariant symmetric tensor on (G, g) has this
property.

The differential operators d and δ of (G, g) defined in (2.8) and (2.8) preserve the
left-invariant sections of Sym∗TG, so they define algebraic operators, also denoted by
d : Sympg −→ Symp+1g and δ : Sympg −→ Symp−1g. If {e1, . . . , en} is an orthonormal
basis of g, then

(2.13) dK :=
n∑
i=1

ei · ∇eiK, δK := −
n∑
i=1

eiy∇eiK.

Note that d and δ are metric adjoints if and only if g is unimodular.
For each x ∈ g, let Sx denote the symmetric tensor Sadx associated to adx as in (2.3).

Using (2.12), we obtain:

dx =
n∑
i=1

ei · ∇eix =
1

2

n∑
i=1

ei · (adei x− ad∗ei x− ad∗x ei) = −
n∑
i=1

ei · adx ei,
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whence

(2.14) dx = −(adx + ad∗x) = −2Sx, for every x ∈ g.

Example 2.6. Let G be a connected Lie group with Lie algebra g and let g be a bi-
invariant Riemannian metric on G, that is, such that left- and right-translations are
isometries. Then the metric g on g is ad-invariant, namely

(2.15) g(adx y, z) + g(y, adx z) = 0, for every x, y, z ∈ g.

It is well known that in this case g decomposes as an orthogonal direct sum of orthogonal
ideals g = s ⊕ z, where s is a compact semisimple Lie algebra and z is the center of g
(see for instance [1]).

For these metric Lie algebras, the operator d vanishes identically. Indeed, equation
(2.15) states that adx is skew-symmetric with respect to g. Therefore, in view of (2.14),
dx = 0 for every x ∈ g and thus vanishes on every symmetric p-tensor. In other words,
every symmetric tensor in Sym∗g is a Killing tensor.

The following result shows that on any Riemannian Lie group, the space of left-
invariant conformal Killing tensors of degree p ≤ 2 coincides with the space of Killing
tensors of the given degree. For conformal vector fields this fact was already known (see
[14]); we include the proof here for the sake of completeness.

Proposition 2.7. Let K be a left-invariant symmetric p-tensor on (G, g) with p ≤ 2.
If K is a conformal Killing tensor then K is a Killing tensor.

Proof. Let K be a left-invariant conformal Killing 1-tensor on (G, g), that is K is an
element in g. Then there exists c ∈ R such that and dK = cL. From (2.14), we know
that dK = −2SK so contracting dK twice with K we get

2c|K|2 = −2g(SKK,K) = −g(ad∗K K,K) = 0.

Therefore, either c = 0 or K = 0, and in both situations, K is a Killing vector field.
Assume now that K is a conformal Killing 2-tensor so that dK = LB for some B ∈ g.

For every x ∈ g and making use of (2.8), one has

xyxyxydK = 6g([x,Kx], x) and xyxyxy(L ·B) = 4|x|2g(B, x).

Therefore, the equality dK = LB implies

g([x,Kx], x) =
2

3
|x|2g(B, x), for all x ∈ g.

In particular, if x is an eigenvector of the symmetric endomorphism K, the previous
equation gives

g(B, x)|x|2 = 0.

Since K is symmetric and g has a basis of eigenvectors of K, B must be zero and thus
K is Killing. �
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Despite this result, one should notice that for p ≥ 3, there exist left-invariant symmet-
ric p-tensors which are conformal Killing but not Killing. Trivial examples are provided
by symmetric p-tensors of the form LR where R is an arbitrary symmetric p− 2-tensor
which is not Killing. In fact, in this situation, d(LR) = LdR 6= 0 since the operator L
is injective. In the following example we construct a conformal Killing tensor which is
neither Killing nor in the image of L.

Example 2.8. Let g be the Lie algebra of dimension six having an orthonormal basis
{e1, . . . , e6} satisfying the Lie bracket relations

[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6.

Then for each i = 4, . . . , 6, ei is in the center of g so it defines a left-invariant Killing
vector field and thus a Killing 1-tensor. Moreover, T := e1 · e6 − e2 · e5 + e3 · e4 is a
symmetric Killing 2-tensor on g (see [4]), that is, dT = 0.

Since d is a derivation, the symmetric 3-tensor K := T · (e4 + e5 + e6) is also a Killing
tensor. It is easy to check that ΛK = 2(e1 − e2 + e3) so K is not trace-free.

Consider the decomposition of K = K0 + LR as in (2.6); here R is a vector in g.
As pointed out in the previous subsection, the trace-free part K0 is a conformal Killing
3-tensor. We claim that K0 is not Killing.

Indeed, dK0 = −LdR, so if K0 were Killing, R would be Killing too, which would
imply R ∈ z. In addition, ΛK = ΛLR which, by (2.10) and (2.7), gives

2(e1 − e2 + e3) = 16R

which clearly is not in the center z of g, thus leading to a contradiction. Hence K0 is
conformal Killing but not Killing. Notice that, in addition, K0 is of Killing type since
K = K0 + LR is Killing.

In view of the above considerations, it makes sense to introduce the following notion:

Definition 2.9. A metric Lie algebra (g, g) is called of Killing type if every conformal
Killing tensor is of Killing type.

By the equivalence between (1) and (3) in Proposition 2.5, and the fact that L is
injective and commutes with d, a metric Lie algebra (g, g) is of Killing type if and only
if Im(d) ∩ Im(L) = Im(Ld).

3. Conformal Killing tensors on 2-step nilpotent Lie groups

In this section we consider the case where the Riemannian manifold is a 2-step nilpo-
tent Lie group endowed with a left-invariant metric and we show that the corresponding
metric Lie algebra is of Killing type.

Let (N, g) be a Riemannian Lie group and let n denote the Lie algebra of N . The
center and the commutator of n are, respectively,

z = {z ∈ n | [x, z] = 0, for all x ∈ n}, n′ = [n, n] := span{[x, y] | x, y ∈ n}.
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The Lie algebra n is said to be 2-step nilpotent if it is non abelian and ad2
x = 0 for all

x ∈ n. Equivalently, n is 2-step nilpotent if 0 6= n′ ⊆ z.
For the rest of the section we assume that n is 2-step nilpotent and N is a connected

2-step nilpotent Lie group with Lie algebra n. We shall describe the main geometric
properties of (N, g) through linear objects in the metric Lie algebra (n, g), following the
work of Eberlein [5].

Let v be the orthogonal complement of z in n so that n = v⊕ z as an orthogonal direct
sum of vector spaces. Each central element z ∈ z defines an endomorphism j(z) : v −→ v
by the equation

(3.1) 〈j(z)x, y〉 := 〈z, [x, y]〉 for all x, y ∈ v.

Each endomorphism j(z) belongs to so(v), the Lie algebra of skew-symmetric endomor-
phisms of v with respect to g.

Many geometric features of the Riemannian manifold (N, g) are captured by the linear
map j : z −→ so(v). In particular, by (2.12) we readily obtain that the covariant
derivative of left-invariant vector fields is expressed as follows:

(3.2)


∇xy = 1

2
[x, y] if x, y ∈ v,

∇xz = ∇zx = −1
2
j(z)x if x ∈ v, z ∈ z,

∇zz
′ = 0 if z, z′ ∈ z.

In particular, we have

(3.3) ∇xv ⊂ z, ∇xz ⊂ v, ∀x ∈ v,

(3.4) ∇vv ⊂ v, ∇zz = 0, ∀z ∈ z,

The space of left-invariant symmetric Killing p-tensors on (N, g) is identified with
Sympn. The decomposition n = v⊕ z induces the following decomposition on the space
of left-invariant symmetric tensors:

(3.5) Sympn =

p⊕
l=0

Symlv · Symp−lz.

Given K ∈ Sympn, we denote K(l) its component in Symlv ·Symp−lz with respect to this
decomposition and we call it as the component of K of v-degree l.

For any symmetric p-tensor K ∈ Symlv · Symp−lz, we denote degv(K) = lK and
degz(K) = (p− l)K, so that deg(K) = degv(K) + degz(K).

Using (3.3), (3.4) it is easy to prove that d(v) ⊂ v · z while d(z) = 0. Recall that d is
a derivation of Sympn, so for every p > 0 and q ≥ 0 the following inclusions hold:

(3.6) d(Symqz) = 0 and d(Sympv · Symqz) ⊂ Sympv · Symq+1z,

As noticed above, for unimodular Lie algebras, in particular for nilpotent ones, the
operator δ : Sympn −→ Symp−1n defined in (2.13) is the adjoint of d. Therefore, (3.6)
implies:

(3.7) δ(Symqz) = δ(Symqv) = 0 and δ(Sympv · Symqz) ⊂ Sympv · Symq−1z.
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Let nv and nz denote the dimensions of v and z respectively, so that n := nv + nz is
the dimension of n. Let {e1, . . . , env} and {z1, . . . , znz} be orthonormal bases of v and z,
respectively. We define the following operators on Sympn: for every K ∈ Sympn,

LvK :=
nv∑
i=1

ei · ei ·K, LzK :=

nz∑
i=1

zi · zi ·K

and

ΛvK :=
nv∑
i=1

eiyeiyK, ΛzK :=

nz∑
i=1

ziyziyK.

It is easy to check that these operators give a decomposition of L and Λ as L = Lv + Lz

and Λ = Λv + Λz, and the following equalities hold

(3.8) [Λv,Lv] = 2nvId + 4 degv, [Λz,Lz] = 2nzId + 4 degz, and [Λz,Lv] = [Λv,Lz] = 0.

Recall that the left-invariant vector fields induced by elements in z define Killing vector
fields of (N, g). So for every i = 1, . . . , nz, dzi = 0 and hence

d(LzK) =

nz∑
i=1

d(zi · zi ·K) =

nz∑
i=1

zi · zi · dK = LzdK.

Moreover, [d,L] = 0 (see (2.10)), therefore

(3.9) [d,Lz] = 0 = [d,Lv].

Fix l ∈ Z≥0 and consider the real sequence (br)r≥0 defined by

b0 = 0, br+1 = br − 2nv − 4(l + 2r), for r ≥ 0.

It is clear that br < 0 for every r ≥ 1.

Proposition 3.1. Let K0 ∈ Sympn be a trace-free conformal Killing tensor. Then for
every l = 0, . . . , p and r ≥ 0, one has

(3.10) dΛr
zK

(l)
0 = a0

(
LzδΛ

r
zK

(l)
0 + LvδΛ

r
zK

(l−2)
0 + brδΛ

r−1
z K

(l)
0

)
,

where a0 = − 1
n+2p−2 .

Proof. We make the proof for each l ∈ {0, . . . , p} fixed, by induction on r. Since K0 is
conformal Killing, from Proposition 2.3 we have that dK0 = a0LδK0. Projecting this
equality to Symlv · Symp+1−lz, and using (3.6) and (3.7), we obtain

(3.11) dK
(l)
0 = a0LzδK

(l)
0 + a0LvδK

(l−2)
0 , l = 0, . . . , p.

Therefore (3.10) holds for r = 0 since b0 = 0.
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Now assume that (3.10) holds for some r ≥ 0 and apply Λ to this equation. Using
(2.10), (2.7) and (3.8), we obtain

dΛΛr
zK

(l)
0 − 2δΛr

zK
(l)
0 = a0

[
(LzΛv + LzΛz + (2nzId + 4 degz))δΛ

r
zK

(l)
0

+(LvΛz + LvΛv + (2nvId + 4 degv))δΛ
r
zK

(l−2)
0 + brδΛΛr−1

z K
(l)
0

]
= a0

[
LzδΛΛr

zK
(l)
0 + (2nz + 4(p− l − 2r − 1))δΛr

zK
(l)
0

+LvδΛΛr
zK

(l−2)
0 + (2nv + 4(l − 2))δΛr

zK
(l−2)
0 + brδΛΛr−1

z K
(l)
0

]
.

This is an equality between symmetric tensors, each of which is a sum of tensors of
v-degrees l and l − 2. Taking the projection of this equality onto Symlv · Symp+1−l we
get

dΛr+1
z K

(l)
0 − 2δΛr

zK
(l)
0 = a0

[
LzδΛ

r+1
z K

(l)
0 + LvδΛ

r+1
z K

(l−2)
0 )

+(2nz + 4(p− l − 2r − 1))δΛr
zK

(l)
0 + brδΛ

r
zK

(l)
0

]
,

and, since a0 = − 1
n+2p−2 , this is equivalent to

dΛr+1
z K

(l)
0 = a0

[
LzδΛ

r+1
z K

(l)
0 + LvδΛ

r+1
z K

(l−2)
0 ) + (br − 2nv − 4(l + 2r))δΛr

zK
(l)
0

]
.

This proves that (3.10) holds for r + 1. �

Corollary 3.2. If K0 is a trace-free conformal Killing p-tensor, then δK0 ∈ Im(d).

Proof. The result holds trivially for p = 0 and, by Propositions 2.3 and 2.7, it also holds

for p = 1, 2, so we assume p ≥ 3. It is enough to show that δK
(l)
0 ∈ Im(d) for each

l = 0, . . . , p.
Fix a natural number t such that t ≥ p/2. We claim that for every s = 0, . . . , t,

(3.12) δΛt−s
z K

(l)
0 ∈ Im(d), for every l = 0, . . . , p.

Once this claim is proved, and taking s = t, we will obtain δK
(l)
0 ∈ Im(d) as we wanted

to show.
Notice that for every l = 0, . . . , p, the inequality p− l− 2t ≤ 0 holds. Hence Λt

zK
(l)
0 ∈

Symlv and thus δΛt
zK

(l)
0 = 0 for every l = 0, . . . , p by (3.7). Therefore, (3.12) holds for

s = 0.
Suppose that (3.12) holds for some 0 ≤ s < t and, for each l = 0, . . . , p, let B

(l)
t−s be

a symmetric tensor such that δΛt−s
z K

(l)
0 = dB

(l)
t−s. Using (3.10) for r = t − s and the

commutation of d with Lz and Lv, we obtain

a0bt−sδΛ
t−(s+1)
z K

(l)
0 = −dΛt−s

z K
(l)
0 + a0

(
LzδΛ

t−s
z K

(l)
0 + LvδΛ

t−s
z K

(l−2)
0

)
= −dΛt−s

z K
(l)
0 + a0 d

(
LzB

(l)
t−s + LvB

(l−2)
t−s

)
.

Since a0bt−s 6= 0 we obtain δΛ
t−(s+1)
z K

(l)
0 ∈ Im(d). �
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By Proposition 2.5, Definition 2.9 and Corollary 3.2 we obtain at once:

Theorem 3.3. Every 2-step nilpotent metric Lie algebra is of Killing type.

4. Conformal Killing tensors on extensions of Lie algebras

In this section, we view symmetric Killing tensors as polynomials in a given orthonor-
mal basis of the metric Lie algebra. We will decompose them with respect to a particular
variable, corresponding to a specific direction inside the metric Lie algebra, assuming
that the symmetric differential of vectors in this direction are polynomial in the remain-
ing variables.

Let (g, g) be a metric Lie algebra and let t ∈ g be a unit vector. Denote by E := 〈t〉⊥

and let

LE :=
∑

e2i ∈ Sym2E ⊂ Sym2g,

where {ei} is an orthonormal basis of E. Notice that E is, in general, not a subalgebra
of g.

The space of symmetric 2-tensors Sym2g splits as orthogonal direct sum

Sym2g = Sym2E ⊕ t · g,

and it is clear that LE ∈ Sym2E and L = LE + t2. As before, we will also view LE as an
operator on Sym∗g by LE(K) := LE ·K.

Using the fact that d and L commute, we have

dLE = d(L− t2) = Ld− 2t · dt− t2 · d = LEd− 2t · dt,

so [d,LE] = −2t · dt. By immediate induction, for any k ≥ 0 we have:

(4.1) [d,LkE] = −2k t · dt · Lk−1E .

Let {e1, . . . , en} be an orthonormal basis of E. A symmetric p-tensor on g can be
viewed either as a polynomial in the variables t, ei, i = 1, . . . , n with real coefficients,
or as a polynomial in the variable t with coefficients in the ring of polynomials in ei,
i = 1, . . . , n. That is, Sym∗g = R[e1, . . . , en, t] = R[e1, . . . , en][t].

We will now prove a technical result, which will have several useful applications later.

Proposition 4.1. Suppose that in (g, g) there exists a unit vector t ∈ g such that for

E := 〈t〉⊥ we have adt(E) ⊆ E and for every x, y, z ∈ E,

(4.2) g(adx y, z) + g(y, adx z) = 0.

Then the metric Lie algebra (g, g) is of Killing type. In addition, if dt 6= 0 then any
Killing tensor on (g, g) is of even degree in t.

Proof. We first remark that the hypotheses imply that dx ∈ t · E for every x ∈ E.
Indeed, given x, y, z ∈ E, by formula (2.14) we have

dx(y, z) = −g(adx y, z)− g(y, adx z),
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which is zero because of (4.2). Moreover, dx(t, t) = −2g(adx t, t) = 2g(adt x, t) = 0 since

adt x ∈ E = 〈t〉⊥. Therefore, dx ∈ t · E and thus there exists M ∈ End(E) such that

(4.3) dx = t ·Mx, for every x ∈ E.

We shall prove in addition, that dt is a multiple of the symmetric 2-tensor SM corre-
sponding to the symmetric part of M . Indeed, for x, y ∈ E, (2.14) and (4.3) give

g(Mx, y) = yytydx = −yyty(adx + ad∗x) = −g(adx t, y)− g(t, adx y).

Now using this equation and (2.14) we obtain

g((M +M∗)x, y) = g(Mx, y) + g(x,My) = −g(adx t, y)− g(ady t, x) = −dt(x, y).

Therefore,

(4.4) dt = −2SM .

Let K be a symmetric tensor on g such that dK = LB, for some symmetric tensor B
in g. In order to prove the first statement, we need to show that B ∈ Im(d).

We apply the division algorithm in R[e1, . . . , en][t] to write

K = (LE + t2) · P (t) + t · T + C

where P ∈ R[e1, . . . , en][t] and T,C ∈ R[e1, . . . , en]. The conformal Killing condition
for K gives dK = LdP + d(t · T + C) = LB, which implies d(t · T + C) = LB̃, with
B̃ := B − dP . We claim that, under the hypotheses above, B̃ = 0 and thus B ∈ Im(d).

To prove this claim, notice that d(t · T + C) = LB̃ gives

dt · T + t · dT + dC = (LE + t2) · B̃.

Equations (4.3) and (4.4) imply that dt · T has zero degree in t and dC (resp. t · dT )
either vanishes or has degree 1 (resp. 2) in t; consequently, the polynomial (LE + t2) · B̃
has at most degree 2 in t, so B̃ has zero degree in t and the following system holds:

dT = t · B̃(4.5)

dC = 0(4.6)

dt · T = LE · B̃.(4.7)

Notice that (4.5) and (4.7) together imply

(4.8) LE · dT = t · dt · T.

From (4.7) and the fact that LE is injective, it is clear that dt · T = 0 implies our claim
B̃ = 0. So let us assume dt · T 6= 0.

Since T 6= 0, there is some k ≥ 0 such that T = LkE · T0 with T0 6= 0 not divisible by
LE. Then using the commutation formula (4.1), we get

(4.9) dT = d(LkE · T0) = LkE · dT0 − 2kt · dt · Lk−1E · T0 = Lk−1E · (LE · dT0 − 2kt · dt · T0).
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Notice that (4.3) implies that dT0 = t ·M(T0), since T0 is a symmetric tensor in E. This
fact, together with (4.9) and (4.4), allow us to write (4.8) as

(4.10) LE ·M(T0) = −2(2k + 1)SM · T0.

Since LE does not divide T0, we obtain that LE divides SM in the polynomial ring
R[e1, . . . , en], and thus SM = aId = a

2
LE, for some a ∈ R. Hence, by (4.10), we get

M(T0) = −a(2k + 1) · T0.

Let A denote the skew-symmetric part of M and l := deg T0. Then M(T0) = alT0 +
A(T0) so the last equation reads

A(T0) = −a(2k + 1 + l)T0.

Since A is skew-symmetric, A(T0) = aT0 = 0 which gives M(T0) = 0, and thus dT0 = 0.
Then, by (4.9) we obtain dT = 0, which by (4.5) gives B̃ = 0, as claimed.

For the second part, assume that K is a Killing p-tensor so that B above is zero, that
is, dK = 0. The first part of the proof implies that B̃ = −dP = 0, and thus T = 0 by
(4.7) since, by assumption, dt 6= 0. Hence K = L · P (t) + C where P is a Killing tensor
in Sym∗g and C is a Killing tensor in Sym∗E ⊂ Sym∗g.

Now we proceed by induction on the degree p of K. Let ξ = at +
∑n

i=1 aiei, with
a, ai ∈ R for i = 1, . . . , n, be a Killing vector field. By (4.3) we have

0 = dξ = adt+
n∑
i=1

ait ·Mei.

Since 0 6= dt ∈ Sym2E, this implies that a = 0 and thus K has zero degree in t.
Suppose that every Killing p − 2-tensor in g has even degree on t and let K be a

Killing p-tensor. Then, K = L · P + C with P a Killing p − 2-tensor and C a Killing
tensor of zero degree in t. Therefore, L · P = (LE + t2) · P has even degree in t and the
same holds for K. �

Remark 4.2. The hypotheses in Proposition 4.1 can be interpreted by saying that the
decomposition g = 〈t〉 ⊕ E satisfies all conditions for being naturally reductive, except
for the adt-invariance of the metric on E.

We shall apply the previous result to two particular cases of metric Lie algebras.

Corollary 4.3. Let (g, g) be a metric Lie algebra with a codimension 1 ideal h, and
let h denote the restriction of g to h. If the metric Lie algebra (h, h) is such that h is
adh-invariant, then (g, g) is of Killing type.

Proof. We shall apply Proposition 4.1 to a unit vector t spanning h⊥ and E := h. Since
h is an ideal of g, the condition adt(h) ⊆ h is automatically satisfied. Moreover, since
h is ad-invariant on h, (4.2) is satisfied. So the result follows by a direct application of
the aforementioned proposition. �
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The previous result in particular implies that if a Lie algebra g possesses a codimension
one abelian ideal, then (g, g) is of Killing type, for any choice of the metric g.

Besides this application to Lie algebras possessing codimension one ideals, Proposition
4.1 can also be applied to certain Lie algebras with non-trivial center.

Let (g, g) be a metric Lie algebra and let t be a unit vector in the center of g. Let
p : g −→ h := g/ 〈t〉 be the quotient map, and denote by p(x) =: x̄ for x ∈ g. We endow
h with the unique Lie algebra structure [ , ]h making p a Lie algebra morphism. The
bilinear map

(4.11) ω : h× h −→ R, ω(x̄, ȳ) := g([x, y], t), ∀ x̄, ȳ ∈ h,

is a well defined closed 2-form in h.
Let E denote the orthogonal of t in g and consider the metric h on h such that

p|E : E −→ h is an isometry. We consider the Lie algebra Rt ⊕ω h, whose underlying
vector space is Rt⊕ h and with Lie bracket verifying:

(4.12) [x, y] = [x, y]h + ω(x, y)t, [x, t] = 0 for all x, y ∈ h.

Moreover, we consider in Rt⊕ω h the metric h̃ extending h such that h is orthogonal to
t and t has unit length. Then the linear map defined by

f : g −→ Rt⊕ h, f(x) = x̄+ g(x, t)t,

is a Lie algebra isomorphism and an isometry from (g, g) to (Rt⊕ h, h̃).
In these notations we have:

Corollary 4.4. Let (g, g) be a metric Lie algebra with non-trivial center and assume
there is a central vector of unit length t such that the metric induced on the Lie algebra
(h, [ , ]h) defined above is adh-invariant. Then (g, g) is of Killing type.

Proof. Since t is in the center of g, we have dt = 0 by (2.14). So, in particular, dt ∈
Sym2E, for E := 〈t〉⊥. The fact that the metric h in h is ad-invariant implies that (4.2)
holds, since the projection p : E −→ h is an isometry. Therefore, the result follows from
Proposition 4.1. �

Finally, we shall consider Lie algebras which are direct sum of two orthogonal ideals,
one of which is one-dimensional.

Proposition 4.5. Let (g, g) be a metric Lie algebra which can be decomposed as an
orthogonal direct sum of ideals as g = Rt⊕ h. Then (g, g) is of Killing type.

Proof. The Lie algebra g is a direct sum of orthogonal ideals Rt and h, and we may
assume that t is of unit length.

By (2.8), the differential d on vectors of (g, g) verifies

(4.13) dt = 0, dx = d0x, ∀x ∈ h,

where, if h denotes the metric induced by g on h, d0 is the symmetric differential of
(h, h). We shall consider an orthonormal basis {e1, . . . , en} of (h, h).
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Let K be a conformal Killing tensor in (g, g), and decompose it, as an element in
R[e1, . . . , en][t], with respect to the variable t:

K(t) = (L0 + t2) · P (t) + t · T + C,

where P is a polynomial in R[e1, . . . , en][t] and T,C are polynomials in R[e1, . . . , en].
Then using (4.13) and the decomposition of K, the equation dK = LB becomes

(L0 + t2) · dP (t) + t · d0T + d0C = (L0 + t2) ·B,
where L0 is the operator induced by the metric in h. Rearranging the terms in the last
equation we get

t · d0T + d0C = (L0 + t2) · (B − dP ).

The left-hand side of this equation is a polynomial of degree at most one in t, and
the right-hand side has degree at least 2 on t, unless B − dP = 0. This implies that
B = dP ∈ Im(d) must hold. �

5. Metric Lie algebras of dimension at most 3

In this section we shall prove that every metric Lie algebra of dimension ≤ 3 is of
Killing type.

Recall that on abelian Lie algebras, every metric is ad-invariant, so any abelian metric
Lie algebra is of Killing type in virtue of Example 2.6.

Moreover, any 2-dimensional Lie algebra is solvable, and a Lie algebra of dimension
3 is either simple or solvable. By a simple inspection of the isomorphism classes of 2-
and 3-dimensional real Lie algebras (see [9, I. 4]) one can check that every solvable Lie
algebra of dimension 2 and 3 has a codimension one abelian ideal. In our context, this
fact together with Corollary 4.3 imply the following.

Proposition 5.1. Every solvable metric Lie algebra of dimension 2 or 3 is of Killing
type.

In the 3-dimensional simple case, we shall refer to a result due to Milnor.

Proposition 5.2. [11, §4] Any metric simple Lie algebra of dimension 3 admits an
orthonormal basis {x, y, z} whose Lie brackets verify

(5.1) [x, y] = az, [y, z] = bx, [z, x] = cy,

for some non vanishing constants a, b, c ∈ R.

We shall use the basis above to show that every simple metric Lie algebra of dimension
3 is of Killing type.

Let (g, g) be a metric simple Lie algebra of dimension 3 and let {x, y, z} be an or-
thonormal basis as in Proposition 5.2. Using (2.14), the differential map d in the basis
elements becomes

(5.2) dx = α yz, dy = β xz, dz = γ xy,

where α := c− a, β := a− b, γ := b− c.
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Since α + β + γ = 0, we have that either d : g −→ Sym2g is injective or has a kernel
of odd dimension. The former case corresponds to a 6= b 6= c 6= a, the latter can occur
only when, up to reordering, a = b 6= c or a = b = c.

Proposition 5.3. Every metric simple Lie algebra of dimension 3 is of Killing type.

Proof. Let g be a metric on a simple Lie algebra g of dimension 3 and let {x, y, z} be
an orthonormal basis of (g, g) as in Proposition 5.2.

We may apply Proposition 4.1 to t := x and its orthogonal, E := span{y, z}. By (5.1),
we have that adx(E) ⊆ E and [E,E] ⊆ 〈x〉. The latter implies that Equation (4.2) is
verified. Therefore, the hypotheses of Proposition 4.1 are satisfied and thus (g, g) is of
Killing type. �

The rest of the section aims to describe the set of left-invariant Killing tensors of
3-dimensional metric simple Lie algebras such that d : g −→ Sym2g is injective. This
description will be used in the next section to study conformal Killing tensors on 4-
dimensional metric Lie algebras.

Let (g, g) be a 3-dimensional simple metric Lie algebra and let {x, y, z} be an or-
thonormal basis as in Proposition 5.2, whose differentials are given by (5.2). Let J
denote the symmetric tensor

(5.3) J := αy2 − βx2.

Then dJ = 2αβxyz − 2βαxyz = 0 so J is a Killing tensor on (g, g).
Let Q(J,L) be the set of polynomials in the symmetric 2-tensors J and L, namely,

Q(J,L) = {
k∑
i=1

λiJ
riLsi | λi ∈ R, ri, si, k ∈ Z≥0}.

Since J and L are Killing and d is a derivation of the algebra of symmetric tensors, every
element in Q(J,L) is a Killing tensor in (g, g). The following result shows that if d is
injective, then every symmetric Killing tensor in (g, g) lies in Q(J,L).

Proposition 5.4. Let (g, g) be a 3-dimensional simple metric Lie algebra, and let
{x, y, z} be an orthonormal basis such that (5.2) holds. If α, β, γ are all non-zero, then
every symmetric Killing tensor on (g, g) is in Q(J,L).

Proof. Notice that, since the differentials of the basis elements have the form (5.2), the

hypotheses of Proposition 4.1 hold for t ∈ {x, y, z} and E := 〈t〉⊥. Moreover, these
differentials are non-zero since α, β, γ do not vanish.

Therefore, by the second part of Proposition 4.1, any symmetric Killing tensor in g has
even degree in each of the variables x, y, z. In particular, g has no Killing vectors (i.e.
Killing tensors of degree 1), and every Killing 2-tensor has the form K = mx2+ny2+lz2,
with m,n, l ∈ R. Moreover, using (5.2), 0 = dK implies

0 = αm+ βn+ γl = αm+ βn− (α + β)l,
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and thus m− l = (l−n)β
α

. Making use of L to rewrite K as K = lL+(m− l)x2 +(n− l)y2,
we obtain

K = lL +
(n− l)
α

(αy2 − βx2) = lL +
(n− l)
α

J.

So every symmetric Killing 2-tensor on (g, g) is in Q(J,L).
Now we proceed by induction. Suppose that every symmetric Killing p − 2-tensor

is in Q(J,L), and let K be a Killing p-tensor. By (the second part of the proof of)
Proposition 4.1 applied to t := x, we can write K as K = LP +C, where P ∈ R[x, y, z]
and C ∈ R[y, z] are both Killing tensors of degree p−2 and p, respectively. The inductive
hypothesis implies that P ∈ Q(J,L), and thus LP ∈ Q(J,L). We shall prove that C = 0
and thus the result will follow.

Since C is a symmetric p-tensor in R[y, z], we may write it as C =
∑p

i=0 λiy
izp−i, for

some λi ∈ R. Then

0 = dC = x ·
p∑
i=0

(iβλiy
i−1zp−i+1 + (p− i)γλiyi+1zp−i−1).

Hence the coefficients must satisfy

λp = λp−1 = 0, and (i+ 1)βλi+2 + (p− i)γλi = 0, for i = 0, . . . , p− 2.

This implies λi = 0 for all i, and thus C = 0. �

6. 4-dimensional metric Lie algebras

Let (g, g) be a 4-dimensional metric Lie algebra. Using Levi’s decomposition theorem
and the fact that the only semisimple Lie algebras of dimension ≤ 4 are simple and
3-dimensional, we obtain that g is either solvable or a direct sum of ideals g = s ⊕ R,
with s being 3-dimensional simple. In general, this decomposition is not orthogonal with
respect to g. We will consider the two cases separately.

6.1. Non-solvable case. Let g be a metric on a non-solvable 4-dimensional Lie algebra
g. As mentioned above, g is the direct sum of ideals g = s⊕ R, so in particular, it has
non-trivial center. Fix a unit vector t in the center of g and denote E := 〈t〉⊥. As seen
in Section 4, (g, g) is isometrically isomorphic to the central extension (s⊕ω R, g0 + gR),
where ω is defined as in (4.11), and g0 is the metric induced on g/ 〈t〉 ' s such that the
quotient map p|E : E −→ g/ 〈t〉 is an isometry.

Let {x, y, z} be an orthonormal basis of (s, g0) as in Proposition 5.2. We shall write
ω in this basis as

(6.1) ω = p x ∧ y + q y ∧ z + r z ∧ x, p, q, r ∈ R.

The symmetric differential d0 of (s, g0) verifies (5.2), with α+β+γ = 0. Recall that J
defined in (5.3) and the symmetric tensor L0 induced by g0 are Killing tensor in (s, g0).
We further denote by ξ := 2(qx+ ry+ pz), where p, q, r are the coefficients of ω in (6.1).
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We now view ω as an endomorphism of s and extend it as a derivation to the algebra
Sym∗s. Since ω is skew-symmetric, we have ω(L0) = 0 and straightforward computation
gives ω(ξ) = 0. In addition, using (5.3) and (6.1) we obtain

ω(J) = 2αy(−px+ qz)− 2βx(py − rz)

= −2p(α + β)xy + 2qαyz + 2rβxz

= 2pγxy + 2qαyz + 2rβxz = 2d0(qx+ ry + pz).

These relations motivate the following definition. Let Qp(ξ, J,L0) ⊆ Symps denote
the ring of symmetric p-tensors which are polynomials in J,L0 and ξ.

Lemma 6.1. For every p ≥ 1 and Sp ∈ Qp(ξ, J,L0) there exists Sp−1 ∈ Qp−1(ξ, J,L0)
such that ω(Sp) = d0Sp−1.

Proof. Since both ω and d0 are derivations of Sym∗s, it is enough to prove the result for
monomials. Let m,n, l ∈ Z≥0 with 2m+ 2n+ l = p, so that JmLn0ξ

l ∈ Qp(ξ, J,L0).
Recall that dJ = dL0 = 0 and, as shown above, ω(J) = d0ξ, ω(ξ) = 0 = ω(L0). Then

either m = 0, in which case ω(JmLn0ξ
l) = 0, or m ≥ 1 and we can write

ω(JmLn0ξ
l) = mω(J)Jm−1Ln0ξ

l =
m

l + 1
d0

(
Jm−1Ln0ξ

l+1
)
,

with Jm−1Ln0ξ
l+1 ∈ Qp−1(ξ, J,L0). �

Lemma 6.2. Assume that the coefficients α, β, γ in (5.2) corresponding to the basis of
(s, g0) are all non-zero. Let Ap, Ap−1 be symmetric tensors in (s, g0) of degrees p and
p− 1, respectively, such that

(6.2) d0Ap−1 = ω(Ap), d0Ap = L0ω(Ap−1).

Then there exist sequences of symmetric tensors {Ai}pi=0 and {Si}pi=0 such that for every
i = 0, . . . , p, Si ∈ Qi(ξ, J,L0) and

d0Ai−1 = ω(Ai)(6.3)

d0Ai = d0Si − L0ω(Ai−1).(6.4)

In particular, ω(A2) = λω(J) for some λ ∈ R.

Proof. Set Sp := 0 which clearly belongs to Qp(ξ, J,L0). Then, by (6.2) we have that
(6.3) and (6.4) are valid for i = p. Now we proceed by induction.

Suppose that (6.3) and (6.4) are valid for a certain fixed value i. We shall define Ai−2
and Si−1.

Equation (6.4) for i implies that d0(Ai − Si) = −L0ω(Ai−1) and thus Ai − Si is a
conformal Killing tensor in (s, g0). By Proposition 5.3 it is of Killing type, so ω(Ai−1) ∈
Im(d). That is, there exists a symmetric tensor Ai−2 such that d0Ai−2 = ω(Ai−1), so
they verify (6.3) for i− 1.

Moreover, we obtain that Si−Ai−L0Ai−2 is a Killing tensor in (s, g0). Since α, β, γ are
non-zero, Proposition 5.4 shows that Si − Ai − L0Ai−2 =: Ki ∈ Q(J,L0). This together
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with (6.4) for i, imply

d0Ai−1 = ω(Ai) = ω(Si −Ki)− L0Ai−2,

where Si −Ki ∈ Qi(ξ, J,L0). Due to Lemma 6.1, there exists Si−1 ∈ Qi−1(ξ, J,L0) such
that ω(Si −Ki) = d0Si−1. So the previous equation becomes

d0Ai−1 = d0Si−1 − L0Ai−2,

giving (6.4) for i− 1.
To show the last claim for A2, notice that (6.4) for i = 2 implies that A2 − S2 is a

conformal Killing tensor in (s, g0) which, by Proposition 2.7, is in fact a Killing tensor.
Therefore, A2− S2 ∈ Q(J,L) and thus A2 ∈ Q2(ξ, J,L). Hence, by Lemma 6.1, we have
ω(A2) = λd(ξ) = λω(J), for some λ ∈ R, since Q1(ξ, J,L) is spanned by ξ. �

Let (g, g) be a 4-dimensional metric Lie algebra. As pointed before, (g, g) is isometri-
cally isomorphic to a central extension (s⊕ω R, g0 + gR), where (s, g0) is a 3-dimensional
metric simple Lie algebra. By (4.12), the Lie bracket in g satisfies:

(6.5) adt = 0, and adw = ads
w +ω(w) t, for all w ∈ s,

where ads denotes the adjoint representation of s. If d and d0 denote, respectively, the
differentials of (g, g) and (s, g0) on symmetric tensors, then the previous equation and
(2.14) give

(6.6)
dw = −(adw + ad∗w) = d0w − ω(x) · w, for all w ∈ s,
dt = 0.

These formulas imply that for every symmetric tensor R on g, one has

(6.7) d(R) = d0R− ω(R) · t.

Proposition 6.3. Every non-solvable 4-dimensional metric Lie algebra is of Killing
type.

Proof. Let (g, g) be a 4-dimensional non-solvable metric Lie algebra and consider the
central extension (s⊕ω R, g0 + gR) to which it is isometrically isomorphic.

Let {x, y, z} be an orthonormal basis of (s, g0) given in Proposition 5.2, so that the
differential operator d0 of (s, g0) satisfies (5.2).

Notice that ω = 0 if and only if the metric Lie algebra (g, g) is the orthogonal direct
product of (s, g0) and (R, gR). In this case, Proposition 4.5 shows that (g, g) is of Killing
type. So from now on we assume ω 6= 0. Also, if α, β, γ in (5.2) are all zero, then the
metric of (s, g0) is ad-invariant. Therefore, the result holds by Proposition 4.5.

Suppose now that only one of the coefficients is zero. Without loss of generality, we
may assume γ = 0 and β = −α 6= 0; equivalently, b = c in the basis given in Proposition
5.2. We claim that it is always possible to find an element u ∈ s such that the hypotheses
of Proposition 4.1 hold, which thus implies that (g, g) is of Killing type.
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If ω(z) = 0, we take u := x whose orthogonal space E in (g, g) is spanned by y, z, t.
Then [x, t] = 0 and by (5.1) and (6.5) we have

[x, y] = az + ω(x, y)t, [x, z] = −by, and [E,E] ⊆ 〈x〉 .

So adx preserves E and (4.2) is satisfied.

If ω(z) 6= 0, we fix u := ω(z) = rx− qy. In this case, E := 〈u〉⊥ is spanned by qx+ ry,
z and t. Again, [u, t] = 0 and, using (5.1), (6.5) and the equality b = c, we obtain

[ω(z), qx+ ry] = (r2 + q2)(z + pt), [ω(z), z] = −b(qx+ ry)− (r2 + q2)t,

so adω(z) preserves E, and moreover, [E,E] ⊆ 〈ω(z)〉. This proves our claim.
Finally, suppose that α, β, γ in (5.2) are all non-zero and let d denote the differential

operator of (g, g) on symmetric tensors. Let K be a conformal Killing tensor in (g, g),
with dK = LB for some symmetric tensor B. Viewing K as a polynomial in R[x, y, z][t]
and using the division algorithm, we write as before

K(t) = (L0 + t2) · P (t) + t · T + C,

where P is viewed as a polynomial in the variable t with coefficients in R[x, y, z], and T
and C are polynomials in x, y, z, that is, symmetric tensors in s. The conformal Killing
equation give

LB = dK = d (LP + t · T + C) = LdP + t · dT + dC,

which is equivalent to

(6.8) (L0 + t2) · B̃ = t · dT + dC,

with B̃ := B − dP , a polynomial in R[t, x, y, z]. Using (6.7) in this equation we further
get

(L0 + t2) · B̃ = t · d0T − ω(T ) · t2 + d0C − ω(C) · t.
The right hand side of this equality is a polynomial of degree at most 2 in t, hence B̃
is constant in t, that is B̃ ∈ R[x, y, z]. Moreover, comparing the components with equal
degree in t gives rise to the system of equations on symmetric tensors in s:

B̃ = −ω(T ),(6.9)

d0T = ω(C),(6.10)

L0B0 = d0C.(6.11)

In order to prove that K is of Killing type, we need to show (by Proposition 2.5) that
B is in Im(d) or, equivalently, that B − dP = B̃ = −ω(T ) is in Im(d). This is the last
part of the proof.

We apply Lemma 6.2 to Ap := C and Ap−1 := T . This is possible because T and C
verify the system above, so they clearly satisfy (6.2). Therefore, there exist sequences of
symmetric tensors {Ai}pi=0 and {Si}pi=0, such that Si ∈ Qi(ξ, J,L0) and (6.3) and (6.4)
hold, with the additional property ω(A2) = λω(J) for some λ ∈ R.
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Consider the symmetric p − 2-tensor in g defined as R =
∑p−2

i=0 t
i · Ap−i. Then, by

(6.7), (6.3) and (6.4), we have

dR =

p−2∑
i=0

ti · d0Ap−i −
p−2∑
i=0

ti+1 · ω(Ap−i) =

p−2∑
i=0

ti · d0Ap−i −
p−1∑
i=1

ti · ω(Ap−i+1)

= d0Ap−2 − tp−1 · ω(A2) = ω(Ap−1)− tp−1 · ω(A2).

Recall that ω(A2) = λω(J), so

d(λtp−2 · J) = λtp−2d0J − λtp−1 · ω(J) = −tp−1 · ω(A2).

Therefore the previous equation reads dR − d(λtp−2J) = ω(Ap−1) which, by definition
of Ap−1, gives d(R− λtp−2J) = ω(T ) ∈ Im(d) and the result follows. �

6.2. Solvable case. Let (g, g) be a metric solvable Lie algebra of dimension 4. The
commutator ideal g′ = [g, g] of such Lie algebra is nilpotent and of dimension ≤ 3. Due
to the classification of nilpotent Lie algebras in small dimension, we know that g′ is
either abelian or isomorphic to the Heisenberg Lie algebra of dimension 3.

If g′ is abelian and 3-dimensional, then Corollary 4.3 implies that (g, g) is of Killing
type. Other 4-dimensional solvable Lie algebras may admit codimension one abelian
ideals; this is the case when dim g′ = 1 as the following result shows.

Proposition 6.4. Let g be a 4-dimensional solvable Lie algebra such that dim g′ = 1,
then g has a codimension one abelian ideal. In particular, (g, g) is of Killing type for
any metric g on g.

Proof. Let u be a unit vector spanning the commutator g′ of g. Then, there is a linear
map f : g −→ R such that

[v, u] = f(v)u, for all v ∈ g.

Let x, y, u be an orthonormal basis of ker f and let z be a unit vector in (ker f)⊥. The
possibly non-vanishing Lie brackets are

[z, u] = f(z)u, [x, y] = αu, [z, x] = βu, [z, y] = γu,

where α, β, γ ∈ R. The Jacobi identity implies

αf(z)u = [z, [x, y]] = [[z, x], y] + [x, [z, y]] = 0.

If α = 0, then ker f is an abelian ideal of g. Otherwise, f(z) = 0 and u is a central
element. In this case, define v := γx − βy if at least one of β or γ are non-zero, and
v := x if α = β = 0. It is easy to verify that {u, v, z} spans an abelian ideal in g.

Therefore, Corollary 4.3 implies that for any metric g in g, the metric Lie algebra
(g, g) is of Killing type. �

Our tools fail to show that the remaining metric solvable Lie algebras of dimension 4
are of Killing type. This concerns Lie algebras whose commutator has dimension 2, or
dimension 3 and is isomorphic to the Heisenberg Lie algebra. However, we were not able
to find conformal Killing tensors on such Lie algebras, which are not of Killing type.
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Sup. (4), 27 (5), 611–660 (1994).

[6] C. Guillarmou, G.P. Paternain, M. Salo, G. Uhlmann. The X-ray transform for connections in

negative curvature. Comm. Math. Phys. 343 (1), 83–127 (2016).

[7] K. Heil, A. Moroianu, U. Semmelmann. Killing and Conformal Killing tensors. J. Geom. Phys. 106,

383–400 (2016).

[8] K. Heil, A. Moroianu, U. Semmelmann. Killing tensors on tori. J. Geom. Phys., 117, 1–6 (2017).

[9] N. Jacobson. Lie algebras. Dover Publications Inc., New York, 1979. Republication of the 1962

original.

[10] V.S. Matveev, V.V. Shevchishin. Two-dimensional superintegrable metrics with one linear and one

cubic integral. J. Geom. Phys. 61 (8), 1353–1377 (2011).

[11] J. Milnor. Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976).

[12] G.P. Paternain, M. Salo, G. Uhlmann. Invariant distributions, Beurling transforms and tensor

tomography in higher dimensions. Math. Ann. 363 (1-2), 305–362 (2015).

[13] R. Penrose, M. Walker. On quadratic first integrals of the geodesic equations for type {22} space-

times. Commun. Math. Phys. 18, 265–274 (1970).

[14] J. Tan, Z. Chen, N. Xu. Conformal vector fields on Lorentzian Lie groups of dimension 4. J. Lie

Theory. 28 (3), 757–765 (2018).

[15] N.M.J. Woodhouse. Killing tensors and the separation of the Hamilton-Jacobi equation. Commun.

Math. Phys. 44 (1), 9–38 (1975).

Universidad Nacional de Rosario, CONICET, 2000, Rosario, Argentina

Email address: delbarc@fceia.unr.edu.ar
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