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Abstract. We study left-invariant conformal Killing 2- or 3-forms on simply connected

2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of

dimension greater than or equal to 4, then every such form is automatically coclosed (i.e.

it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie

groups with center of dimension at most 3 and admitting left-invariant non-coclosed con-

formal Killing 2- and 3-forms are: the Heisenberg Lie groups and their trivial 1-dimensional

extensions, endowed with any left-invariant metric, and the simply connected Lie group

corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular

1-parameter family of metrics. The explicit description of the space of conformal Killing

2- and 3-forms is provided in each case.

1. Introduction

Killing and conformal Killing forms on Riemannian manifolds are natural extensions to
higher degrees of the notions of Killing and conformal vector fields. Killing forms were
introduced in the 50’s by Yano [24] and conformal Killing forms were introduced a few
years later by Kashiwada [12] and Tachibana [22], but their modern systematic study only
began in 2003 with the work of Semmelmann [20].

By definition, a conformal Killing form on a Riemannian manifold (also called twistor
form or conformal Killing-Yano form by some authors) is an exterior p-form whose covariant
derivative with respect to the Levi-Civita connection is determined by its exterior deriv-
ative and its co-differential (see Definition 3.1 below). A conformal Killing form whose
co-differential vanishes is called a Killing form, and in order to distinguish this case, a
conformal Killing form is called strict if its co-differential is non-zero.

Most classification results for Killing and conformal Killing forms were obtained on com-
pact Riemannian manifolds with special holonomy. More precisely, Killing forms were
classified on compact Kähler manifolds [23], on compact symmetric spaces [7], on compact
quaternion-Kähler manifolds [16], and compact manifolds with holonomy G2 or Spin(7)
[21]. Moreover, it was shown in [17] that conformal Killing forms on Riemannian products
of compact manifolds are determined by Killing forms on the factors, and in [15], [18] that
conformal Killing forms on compact Kähler manifolds are necessarily of type (p, p) and
they are in 1-1 correspondence with the Hamiltonian 2-forms introduced by Apostolov,
Calderbank, Gauduchon and Tonnesen-Friedman [3], [4], [5].
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If the manifold has generic holonomy, further geometric restrictions are required in order
to obtain classification results. We mention [19], where Killing forms are studied on compact
nearly Kähler 6-manifolds, and [14], where compact manifolds carrying Killing 1-forms
whose exterior derivative is conformal Killing are classified.

More recently, (conformal) Killing forms have been studied on Riemannian Lie groups,
under the left-invariance assumption. In this case, the problem reduces to an algebraic
system on the Lie algebra, which however is rather complicated, and classification results
can be obtained only under further assumptions.

In [11] Herrera and Origlia study 5-dimensional metric Lie algebras carrying strict con-
formal Killing 2-forms and obtain their classification when the center is of dimension at
least 2. In [1] Andrada and Dotti show that a metric Lie algebra carries a strict con-
formal Killing 2-form whose co-differential is the metric dual of a central element if and
only if the Lie algebra is a central extension of an even-dimensional Lie algebra carrying a
non-degenerate Killing 2-form, whose inverse (as endomorphism) corresponds to a closed
2-form.

More general results can be obtained on 2-step nilpotent metric Lie algebras. Killing 2-
forms on such Lie algebras were first studied in [6], and the classification of 2-step nilpotent
metric Lie algebras admitting Killing 2-forms and 3-forms was given in [8] (see also [2]
for the case of 2-forms). Killing p-forms for p ≥ 4 were later considered in [9], where the
classification of 2-step nilpotent metric Lie algebras carrying such objects is obtained under
the additional assumption that the center of the Lie algebra has dimension at most 2.

In the present paper we pursue our quest by studying conformal Killing forms of degree
at most 3 on 2-step nilpotent metric Lie algebras. Since every conformal Killing 1-form is
the metric dual of a conformal vector field, and is automatically Killing on any Lie algebra,
we only study the degrees 2 and 3.

In Theorem 4.1 we show that every conformal Killing 2-form on a 2-step nilpotent metric
Lie algebra is automatically Killing except on the Heisenberg Lie algebras h2q+1 where, for
every metric, the space of conformal Killing 2-forms is 1-dimensional (and every Killing
2-form vanishes). Then, in Theorem 5.6 we prove that the space of conformal Killing 3-
forms coincides with the space of Killing 3-forms, except for the trivial extensions R⊕h2q+1

of Heisenberg Lie algebras, endowed with arbitrary metrics, and for a 1-parameter family
of metrics on the free 2-step nilpotent Lie algebra on 3-generators n3,2. In these two
exceptional cases we show that the space of conformal Killing 3-forms has dimension 2 and
the space of Killing 3-forms is 1-dimensional.

2. Preliminaries: Riemannian geometry of 2-step nilpotent Lie groups

This section includes basic material on the geometry of 2-step nilpotent Lie groups en-
dowed with a Riemannian metric which is invariant under left-translations.

Let N be a connected Lie group and let g be a left-invariant Riemannian metric on N .
Each element a of the Lie group defines a left-translation La : N −→ N with h 7→ La(h) =
ah, which is an isometry of the metric. Therefore, g is determined by its value on the
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tangent space at the identity, which is identified with the Lie algebra n of N . Denote by
∇ the Levi-Civita connection of (N, g).

For every left-invariant vector fields X, Y, Z on N , Koszul’s formula reads

(2.1) g(∇XY, Z) =
1

2
{g([X, Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)}.

This shows, in particular, that that the Levi-Civita connection preserves left-invariance,
that is, the covariant derivative of a left-invariant vector field with respect to another
left-invariant vector field is again left-invariant.

From now on we will identify left-invariant vector fields X on N with their values x ∈ n
at the identity. The Levi-Civita covariant derivative defines a linear map ∇ : n −→ so(n),
which by (2.1) satisfies

(2.2) ∇xy =
1

2

(
[x, y]− ad∗x y − ad∗y x

)
, x, y ∈ n,

where ad∗x denotes the adjoint of adx with respect to g.
Recall that a Lie algebra n is said to be 2-step nilpotent if it is not abelian and ad2

x = 0
for all x ∈ n. Equivalently, n is 2-step nilpotent if its commutator n′ := [n, n] is non-trivial
and is contained in the center z of n.

For the rest of the section we assume that N is a simply connected Lie group correspon-
ding to a 2-step nilpotent Lie algebra n. The main geometric properties of (N, g) will be
described through linear objects in the metric Lie algebra (n, g), following [10].

Let v be the orthogonal complement of z in n. Since n is 2-step nilpotent, the orthogonal
decomposition as a sum of vector spaces n = v ⊕ z is non-trivial. Each z ∈ z defines a
skew-symmetric endomorphism j(z) : v −→ v by the formula

(2.3) g(j(z)x, y) := g(z, [x, y]) for all x, y ∈ v.

These endomorphisms verify

(2.4)
⋂
z∈z

ker j(z) = 0.

Indeed, if x ∈ v is in ker j(z) for all z ∈ z, then (2.3) implies that x lies also in z, so x = 0.
Moreover, since n′ ⊆ z, the Lie algebra structure of n is completely determined by the map
j : z −→ so(v).

Using this linear map, we can also describe important geometric data of the Riemannian
manifold (N, g). For instance, after (2.2), the covariant derivative verifies

(2.5)


∇xy = 1

2
[x, y] if x, y ∈ v,

∇xz = ∇zx = −1
2
j(z)x if x ∈ v, z ∈ z,

∇zz
′ = 0 if z, z′ ∈ z.

We can thus observe the following behaviour of the covariant derivative

(2.6) ∇xv ⊂ z, ∇xz ⊂ v, for all x ∈ v,

and

(2.7) ∇zv ⊂ v, ∇zz = 0, for all z ∈ z.
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3. Conformal Killing forms on Lie groups

In this section we introduce our object of study, namely, conformal Killing forms on
Riemannian manifolds. Afterwards, we describe basic properties of left-invariant conformal
Killing forms on Riemannian Lie groups.

Let (M, g) be an oriented n-dimensional Riemannian manifold and denote by ∇ the
Levi-Civita connection, by d the exterior derivative and by d∗ its formal adjoint. Recall
that, with respect to a local orthonormal frame e1, . . . , en of (TM, g), the operator d∗ reads

d∗ = −
n∑
i=1

eiy ∇ei .

Definition 3.1 ([20]). A conformal Killing k-form on (M, g) is an exterior k-form α that
satisfies

(3.1) ∇Y α =
1

k + 1
Y y dα− 1

n− k + 1
Y [ ∧ d∗α

for every vector field Y in M . Here Y [ denotes the metric dual 1-form of Y , i.e.
Y [ = g(Y, ·).

By applying the Hodge duality to formula (3.1) one can readily check that α is conformal
Killing form if and only its Hodge dual ∗α is conformal Killing.

Conformal Killing forms on (M, g) which are coclosed are called Killing forms. Notice
that, given a vector field X on M , X[ is a conformal Killing (respectively Killing) 1-form
if and only if X is a conformal (respectively Killing) vector field. Most of the time, we will
identify vector fields with their metric dual 1-forms.

Let now N be a Lie group with Lie algebra n and let g be a left-invariant metric on N .
Left-invariant differential k-forms on N , that is, invariant under La for all a ∈ N , can be
identified to elements in Λkn∗. Since d and d∗ preserve left-invariance, they define linear
operators on Λ∗n∗, which we denote with the same symbols for simplicity. In particular,
the linear operator d : Λkn∗ −→ Λk+1n∗ is the Lie algebra differential, and d∗ is the metric
adjoint of d as soon as n is unimodular. An element α ∈ Λkn∗ corresponds to a left-invariant
conformal Killing form on (N, g) if and only if

(3.2) ∇yα =
1

k + 1
yy dα− 1

n− k + 1
y ∧ d∗α, for all y ∈ n.

Along the text, we will say that α ∈ Λkn∗ is a conformal Killing form if it satisfies (3.2),
and that it is a Killing form if it satisfies the additional condition d∗α = 0. We will denote
by CKk(n, g) ⊆ Λkn∗ the space of conformal Killing k-forms on (n, g) and by Kk(n, g) ⊆
CKk(n, g) the space of Killing k-forms.

Every skew-symmetric endomorphism n ' n∗ extends as a derivation of the exterior
algebra. Namely, an endomorphism f : n −→ n defines the derivation f∗ of Λ∗n∗ by the
formula

(3.3) f∗α :=
n∑
i=1

f(ei) ∧ eiy α, for all α ∈ Λ∗n∗,
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where e1, . . . , en is any orthonormal basis of (n, g).
Assume that n is 2-step nilpotent (and thus unimodular) and consider the orthogonal

decomposition n = v ⊕ z as in Section 2. One has an induced decomposition of the space
of k-forms on n as follows

(3.4) Λkn∗ =
⊕
d∈Z

Λdv∗ ⊗ Λk−dz∗,

where, by convention, for every vector space E and d < 0 we set ΛdE∗ := 0. Of course the
sum in (3.4) is finite, having at most k+1 non-zero summands. We denote by πk,d : Λkn∗ −→
Λdv∗ ⊗ Λk−dz∗ the corresponding projections. Given α ∈ Λkn∗, we write accordingly αd :=
πk,d(α), so α =

∑
d∈Z αd = α0 + . . .+ αk.

Let us introduce the further direct sum decomposition Λkn∗ = Λk
evn
∗ ⊕ Λkn∗odd, where

(3.5) Λk
evn
∗ :=

⊕
d even

Λdv∗ ⊗ Λk−dz∗, and Λk
oddn

∗ :=
⊕
d odd

Λdv∗ ⊗ Λk−dz∗.

We say that a k-form α is of even v-degree if α ∈ Λk
evn
∗ and of odd v-degree if α ∈ Λk

oddn
∗.

Correspondingly, we will denote by

Kkev(n, g) ⊆ CKkev(n, g) ⊆ Λk
evn
∗ and Kkodd(n, g) ⊆ CKkodd(n, g) ⊆ Λk

oddn
∗

the spaces Killing and conformal Killing k-forms on (n, g) of even and odd v-degree. We
will see later on (in Remark 3.3) that the even and odd components of every conformal
Killing form are again conformal Killing.

Since every linear form in v∗ annihilates n′, the exterior differential d vanishes on v∗ and
maps z∗ to Λ2v∗. We thus obtain that for k ≥ 0,

(3.6) d(Λdv∗ ⊗ Λk−dz∗) ⊆ Λd+2v∗ ⊗ Λk−d−1z∗, for all d ∈ Z,

and correspondingly

(3.7) d∗(Λdv∗ ⊗ Λk−dz∗) ⊆ Λd−2v∗ ⊗ Λk−d+1z∗. for all d ∈ Z,

Moreover, since ∇y is a derivation of the exterior algebra of n for every y ∈ n, using
(2.6)–(2.7) we obtain for every d ∈ Z,

(3.8) ∇x(Λ
dv∗ ⊗ Λk−dz∗) ⊆ (Λd−1v∗ ⊗ Λk−d+1z∗)⊕ (Λd+1v∗ ⊗ Λk−d−1z∗), for all x ∈ v,

and

(3.9) ∇z(Λ
dv∗ ⊗ Λk−dz∗) ⊆ Λdv∗ ⊗ Λk−dz∗, and ∇z(Λ

kz∗) = 0, for all z ∈ z.

Proposition 3.2. Let n be a 2-step nilpotent Lie algebra with orthogonal decomposition
n = v⊕ z. Then a k-form α on n is a conformal Killing form if and only if for every x ∈ v
and z ∈ z, its components with respect to the decomposition (3.4) verify

πk,d+1(∇x(αd + αd+2)) =
1

k + 1
xydαd −

1

n− k + 1
x ∧ d∗αd+2,(3.10)

∇zαd =
1

k + 1
zydαd−2 −

1

n− k + 1
z ∧ d∗αd+2,(3.11)



CONFORMAL KILLING FORMS ON 2-STEP NILPOTENT RIEMANNIAN LIE GROUPS 6

for each d ∈ Z. In particular, if α ∈ Λkn∗ is conformal Killing, then either d∗α2 = 0 or
dim z = k − 1.

Proof. Let α be a k-form on n and consider its components αd with respect to (3.4), for
d ∈ Z. Suppose that α is a conformal Killing form. By (3.2) we obtain

(3.12)
∑
d∈Z

∇yαd =
1

k + 1

∑
d∈Z

yydαd −
1

n− k + 1

∑
d∈Z

y ∧ d∗αd, for all y ∈ n.

For every x ∈ v, take y = x in (3.12) and, for each d ∈ Z, project this equation onto
Λd+1v∗ ⊗ Λk−d−1z∗. By using (3.6)–(3.9), this procedure gives

πk,d+1(∇x(αd + αd+2)) =
1

k + 1
xydαd −

1

n− k + 1
x ∧ d∗αd+2,

yielding to (3.10). Similarly, for every z ∈ z, taking y = z in (3.12) and projecting onto
Λdv∗ ⊗ Λk−dz∗ we get (3.11).

Conversely, by (3.6)–(3.9), one can show that if (3.10) and (3.11) hold, then α satisfies
(3.12) and thus it is a conformal Killing form.

For the last part of the proof, assume that α ∈ Λkn∗ is conformal Killing. Since α0 ∈ Λkz∗,
we have ∇zα0 = 0 by (2.7). This fact together with (3.11) implies z ∧ d∗α2 = 0 for all
z ∈ z; the latter is satisfied only when d∗α2 = 0 or dim z = k − 1. �

Remark 3.3. From Proposition 3.2, we can see that the system of equations that an
exterior form has to satisfy in order to be a conformal Killing form is uncoupled between
even v-degree and odd v-degree. This implies

(3.13) CKk(n, g) = CKkev(n, g)⊕ CKkodd(n, g), for all k = 1, . . . , n.

The similar decomposition for the space of Killing forms,

(3.14) Kk(n, g) = Kkev(n, g)⊕Kkodd(n, g), for all k = 1, . . . , n.

was obtained in [9, Remark 4.3] where, however, the odd and even degree components of
a form are defined with respect to the degree in z instead of v. This alternative definition
interchanges the two summands in (3.14) when the total degree k is odd, but does not
affect the decomposition itself.

4. Conformal Killing 2-forms on 2-step nilpotent Riemannian Lie groups

The main result of this section is to describe explicitly those 2-step nilpotent metric Lie
algebras admitting strict conformal Killing 2-forms. We will see that these examples will
arise within the family of Heisenberg Lie algebras.

Recall that the Heisenberg Lie algebra h2q+1 of dimension 2q + 1 admits a basis
e1, . . . , e2q, z such that the only non-trivial Lie brackets are

(4.1) [e2i−1, e2i] = z, i = 1, . . . , q.

In particular, the center z of h2q+1 is 1-dimensional and spanned by z. Conversely, it is
easy to prove that every 2-step nilpotent Lie algebra with 1-dimensional center has odd
dimension 2q + 1 and is isomorphic to the Heisenberg Lie algebra h2q+1.
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Given an inner product on h2q+1, the orthogonal decomposition n = v⊕z verifies dim v =
2q and, for every z ∈ z, j(z) ∈ so(v) is non-singular by (2.4).

Theorem 4.1. On any 2-step nilpotent metric Lie algebra (n, g), CK2(n, g) = K2(n, g), ex-
cept when n is a Heisenberg Lie algebra where, for every metric g, CK2(n, g) is 1-dimensional
and K2(n, g) = 0.

Proof. Let (n, g) be a metric 2-step nilpotent Lie algebra and let α ∈ CK2(n, g). Write
α = α0 + α1 + α2 with respect to the decomposition (3.4). From (3.6) and (3.7) we obtain

(4.2) dα = dα1 + dα0 ∈ Λ3v∗ ⊕ (Λ2v∗ ⊗ z∗) and d∗α = d∗α2 ∈ z∗.

Moreover, by the second part of Proposition 3.2, either d∗α2 = 0 or z is 1-dimensional; the
former case implies that α is Killing by (4.2). Therefore, if α is strict, then dim z = 1 and
thus α0 = 0.

Assume that dim(z) = 1, so that n is isomorphic to a Heisenberg Lie algebra h2q+1. We
shall prove that CK2(h2q+1, g) is 1-dimensional, for every metric g.

Fix a unit vector z ∈ z and write the component α1 of α as α1 = β ∧ z for some β ∈ v∗.
Then (3.11) for d = 1 yields

∇zβ ∧ z = 0,

which implies ∇zβ = 0. However, ∇zβ = −1
2
j(z)β, and j(z) is non-singular by (2.4), so

finally β = 0.
Consequently α = α2 ∈ Λ2v∗ and thus dα = 0. Denoting d∗α = cz for some c ∈ R, (3.11)

for d = 2 reduces to ∇zα = 0, which by (2.5) is equivalent to j(z)∗α = 0. In other words,
j(z) commutes with the skew-symmetric endomorphism of v associated to α. Moreover,
notice that for every x ∈ v, ∇xα ∈ v⊗ z and (3.10) for d = 0 is equivalent to

zy ∇xα =
c

n− 1
x, for all x ∈ v.

Since zy α = 0, this last equation together with (2.5) imply

0 = ∇x(zy α) = ∇xzy α + zy ∇xα = −1

2
(j(z)x)y α +

c

n− 1
x, for all x ∈ v.

This implies that the endomorphism of v associated to α has to be proportional to j(z)−1;
equivalently, α is a multiple of the 2-form g(j(z)−1·, ·).

Conversely, one can show that α := g(j(z)−1·, ·) is a conformal Killing form by reversing
the above computations and using Proposition 3.2. Moreover, α is a strict conformal Killing
form, since d∗α = n−1

2
z. Due to (3.6) and the fact that α ∈ Λ2v∗, we get dα = 0 and thus its

Hodge dual ∗α is a Killing 2q− 1-form, for any chosen orientation of (n, g). This concludes
the proof. �

Remark 4.2. From the last part of the proof of Theorem 4.1, one can deduce that when
the space of conformal Killing 2-forms does not coincide with the space of Killing 2-forms,
then it has the precise description: CK2(h2q+1, g) = ∗K2q−1(h2q+1, g).

In general, such a description of conformal Killing 2-forms does not hold on arbitrary
metric Lie algebras. Indeed, in [11, Section 6.1] the authors exhibit metric Lie algebras
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carrying conformal Killing 2-forms which cannot be written as linear combinations of Killing
forms and Hodge duals of Killing forms.

5. Conformal Killing 3-forms on 2-step nilpotent Riemannian Lie groups

This last section aims to show that strict conformal Killing 3-forms only appear on 1-
dimensional trivial extensions of Heisenberg Lie algebras R ⊕ h2q+1 (for any metric), and
on the free 2-step nilpotent Lie algebra n3,2 of dimension 6, endowed with a particular
1-parameter family of metrics.

Let (n, g) be a 2-step nilpotent metric Lie algebra. As a consequence of the decomposition
in (3.13), in order to describe the space CK3(n, g) of conformal Killing 3-forms, it is enough
to study the spaces of conformal Killing 3-forms of even or odd v-degree.

5.1. The case of even v-degree. We start by focusing our attention on CK3
ev(n, g).

Proposition 5.1. For any 2-step nilpotent metric Lie algebra (n, g), CK3
ev(n, g) = K3

ev(n, g),
except when n is a 1-dimensional trivial extension of a Heisenberg Lie algebra where, for
every metric g, CK3

ev(R⊕h2q+1, g) is 2-dimensional and K3
ev(R⊕h2q+1, g) is 1-dimensional.

Proof. Let α be a 3-form on n of even v-degree, and consider its decomposition α = α0 +α2

with respect to (3.4). From (3.6) we obtain

(5.1) dα = dα0 + dα2 ∈ (Λ2v∗ ⊗ Λ2z∗)⊕ Λ4v∗,

and from (3.7) we get

(5.2) d∗α = d∗α2 ∈ Λ2z∗.

If α is a conformal Killing form on (n, g), then by Proposition 3.2, for all x ∈ v and z ∈ z
the following system is satisfied

(5.3)


π3,1(∇x(α0 + α2)) = 1

4
xy dα0 − 1

n−2
x ∧ d∗α2,

π3,3(∇xα2) = 1
4
xy dα2,

0 = − 1
n−2

z ∧ d∗α2,

∇zα2 = 1
4
zy dα0,

where we recall that πk,d : Λkn∗ −→ Λdv∗ ⊗ Λk−dz∗ denote the projections with respect to
the direct sum decomposition (3.4). The third equation of the above system shows that if
dim(z) 6= 2, then d∗α = d∗α2 = 0 and thus α is a Killing form. Hence CK3

ev(n, g) = K3
ev(n, g)

if dim z 6= 2.
Consider now the case dim(z) = 2. In this case α0 ∈ Λ3z∗ vanishes and thus α = α2, so

for every x ∈ v and z ∈ z, (5.3) becomes

(5.4)


π3,1(∇xα2) = − 1

n−2
x ∧ d∗α2,

π3,3(∇xα2) = 1
4
xy dα2,

∇zα2 = 0.

Let z1, z2 be an orthonormal basis of z. We denote Ai := j(zi) = −dzi ∈ Λ2v∗ ' so(v),
for i = 1, 2, and write α = B1 ∧ z1 +B2 ∧ z2, with B1, B2 ∈ Λ2v∗.
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We have π3,1(∇xα2) = ∇xB1 ∧ z1 +∇xB2 ∧ z2, and

g(d∗α2, z1 ∧ z2) = g(α2,−A1 ∧ z2 + z1 ∧ A2) = −g(B2, A1) + g(B1, A2),

where the scalar products on the right hand side are the 2-form scalar products. We thus
obtain

(5.5) d∗α2 = (−g(B2, A1) + g(B1, A2))z1 ∧ z2.

The first equation in (5.4) thus becomes

z2y ∇xB1 − z1y ∇xB2 = − 1

n− 2
(−g(B2, A1) + g(B1, A2))x, for all x ∈ v.

Using (2.5) we compute z2y ∇xB1 = ∇x(z2y B1)− (∇xz2)y B1 = 1
2
B1(A2x), and similarly

z1y ∇xB2 = 1
2
B2(A1x), whence

1

2
B1(A2x)− 1

2
B2(A1x) = − 1

n− 2
(−g(B2, A1) + g(B1, A2))x, for all x ∈ v.

Since the 2-form scalar products are half of the endomorphism scalar products, the above
equation is equivalent to

(5.6) B1A2 −B2A1 = λId,

for some λ ∈ R.
Using (2.5) and the fact that dzi = −Ai for i = 1, 2, the second equation in (5.4) becomes

−1

2
(B1 ∧ A1x+B2 ∧ A2x) = −1

4
xy (B1 ∧ A1 +B2 ∧ A2), for all x ∈ v,

or equivalently

B1 ∧ A1x+B2 ∧ A2x = B1x ∧ A1 +B2x ∧ A2, for all x ∈ v.

Contracting this equation with x yields

(5.7) B1x ∧ A1x+B2x ∧ A2x = 0, for all x ∈ v.

Finally, the last equation in (5.4) is equivalent to the fact that B1 and B2 commute with
A1 and A2.

Assume now that A1 and A2 are linearly independent. Then Proposition 5.4 from [8]
shows that B1 and B2 are linear combinations of A1 and A2: B1 = a11A1 + a12A2, B2 =
a21A1 + a22A2, for some aij ∈ R, i, j = 1, 2. Reinjecting in the last equation yields (a12 −
a21)A1x∧A2x = 0 for every x ∈ v, so a12−a21 = 0. This shows that g(B2, A1) = g(B1, A2),
whence dα = d∗α2 = 0 by (5.5), so α is a Killing form. Hence CK3

ev(n, g) = K3
ev(n, g) also

in this case.
It remains to consider the case where A1 and A2 are proportional where, by performing a

rotation in z if necessary, one can assume that A2 = 0. In this case (n, g) is the orthogonal
direct sum of the abelian 1-dimensional algebra 〈z2〉 and the Heisenberg algebra h2q+1 of
dimension 2q + 1 := n− 1. Moreover, from (5.6) and (5.7) we see that B1 is proportional
to A1 and B2 is proportional to A−1

1 . That is, α belongs to the vector space spanned by
A1 ∧ z1 and A−1

1 ∧ z2.
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It is easy to check from the above that these two 3-forms are indeed conformal Killing
on (n, g). Moreover, d∗(A1 ∧ z1) = 0, d(A−1

1 ∧ z2) = 0 and d∗(A−1
1 ∧ z2) = q z1 ∧ z2 by (3.6)

and (5.5).
Therefore CK3

ev(R ⊕ h2q+1, g) is spanned by the Killing 3-form A1 ∧ z1 and the strict
conformal Killing 3-form A−1

1 ∧ z2 which, being closed, is the Hodge dual of a Killing
2q−1-form. In particular, K3(R⊕h2q+1, g) is 1-dimensional. This completes the proof. �

5.2. The case of odd v-degree. Now we continue by describing the space CK3
odd(n, g).

It follows from [8, Proposition 5.1] that K3
odd(n, g) = 0 for any 2-step nilpotent metric Lie

algebra (n, g). Therefore, every non-zero conformal Killing 3-form on (n, g) of odd v-degree
is automatically strict.

Let α in Λ3
oddn

∗ be a 3-form of odd v-degree and consider its decomposition α = α1 +α3

with respect to (3.4). From (3.6) we obtain

(5.8) dα = dα1 ∈ Λ3v∗ ⊗ z∗,

and from (3.7) we get

(5.9) d∗α = d∗α3 ∈ v∗ ⊗ z∗.

Assume from now on that α is a conformal Killing form. Then, by Proposition 3.2, for
every x ∈ v and z ∈ z the following system is verified

(5.10)


π3,0(∇xα1) = 0,

π3,2(∇x(α1 + α3)) = 1
4
xy dα1 − 1

n−2
x ∧ d∗α3,

∇zα1 = − 1
n−2

z ∧ d∗α3,

∇zα3 = 1
4
zy dα1.

Let p and m denote the dimensions of v and z respectively. We fix orthonormal bases
x1, . . . , xp of v and z1, . . . , zm of z and write

(5.11) α1 =
m∑

s,r=1

ξsr ∧ zs ∧ zr,

with ξsr = −ξrs ∈ v. Using the notation As := j(zs) = −dzs ∈ Λ2v∗ ' so(v), we compute

(5.12) dα1 =
m∑

s,r=1

d(ξsr ∧ zs ∧ zr) = −2
m∑

s,r=1

ξsr ∧ dzs ∧ zr = 2
m∑

s,r=1

As ∧ ξsr ∧ zr,

and for every s = 1, . . . ,m and x ∈ v,

g(d∗α3, x ∧ zs) = g(α3, d(x ∧ zs)) = g(α3, x ∧ j(zs)) = g(Asy α3, x),

where Asy α3 := 1
2

∑p
a=1As(xa)y xay α3 is the contraction of α3 with the 2-form As. The

previous formula thus implies

(5.13) d∗α3 =
m∑
s=1

(Asy α3) ∧ zs.
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Since ∇zk = −1
2
j(zk)∗ = −1

2
(Ak)∗ for every k = 1, . . . ,m, we can then write the third

and fourth equations in (5.10) as

(5.14)
m∑

s,r=1

(Akξsr) ∧ zs ∧ zr =
2

n− 2
zk ∧

m∑
s=1

(Asy α3) ∧ zs, for all k = 1, . . . ,m,

and

(5.15) (Ak)∗α3 =
m∑
s=1

As ∧ ξsk, for all k = 1, . . . ,m.

It is easy to check that (5.14) is equivalent to

(5.16) Akξij = 0, for all k 6= i, j, and Aiξij = − 1

n− 2
Ajy α3, for all i 6= j.

After a straightforward computation, it turns out that the first equation in (5.10) is
equivalent to

Akξij + Aiξjk + Ajξki = 0, for all i, j, k,

which is clearly a consequence of (5.16).
We finally interpret the second equation in (5.10). For k = 1, . . . ,m and x ∈ v, we have

by (5.12)–(5.13):

zky (
1

4
xy dα1 −

1

n− 2
x ∧ d∗α3) =

1

2

m∑
s=1

(Asx ∧ ξsk + g(x, ξsk)As)−
1

n− 2
x ∧ (Aky α3),

and

zky π3,2(∇x(α1 + α3)) = π2,2(zky ∇x(α1 + α3))

= π2,2(∇x(zky α1)−∇xzky (α1 + α3))

= π2,2(∇x(2
m∑
s=1

ξsk ∧ zs)) +
1

2
Akxy α3

=
m∑
s=1

Asx ∧ ξsk +
1

2
Akxy α3.

Consequently, the second equation in (5.10) is equivalent to

(5.17) Akxy α3 +
m∑
s=1

(Asx ∧ ξsk − g(x, ξsk)As) +
2

n− 2
x ∧ (Aky α3) = 0,

for all x ∈ v and k = 1, . . . ,m. We denote by βk := − 1
n−2

Aky α3, so (5.16)–(5.17) read

(5.18) Akξij = δikβj − δjkβi, for all i, j, k = 1, . . . ,m,

and

(5.19) Akxy α3 +
m∑

s=1,s 6=k

(Asx ∧ ξsk − g(x, ξsk)As)− 2x ∧ βk = 0,
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for all x ∈ v and k = 1, . . . ,m. We thus obtain that (5.10) is equivalent to the system of
equations given by (5.15), (5.18) and (5.19).

Taking the interior product with Akx in (5.19) and using (5.18) yields

(5.20)
m∑

s=1,s 6=k

(g(Akx,Asx)ξsk − g(βs, x)Asx− g(x, ξsk)AsAkx) + 2g(βk, Akx)x = 0,

for all x ∈ v and k = 1, . . . ,m. Recall that for every j 6= k we have Akξjk = −βj and
Ajξjk = βk, and for all s 6= j, k we have Asξjk = 0. Thus (5.20) applied to x = ξjk reads

−g(βj, βk)ξjk − g(βj, ξjk)βk +
m∑

s=1,s 6=k

g(ξjk, ξsk)Asβj − 2g(βk, βj)ξjk = 0,

and using that g(βj, ξjk) = −g(Akξjk, ξjk) = 0 (since Ak is skew-symmetric), we obtain

(5.21) 3g(βj, βk)ξjk =
m∑

s=1,s 6=k

g(ξjk, ξsk)Asβj, for all x ∈ v, and j 6= k.

Taking the scalar product with ξjk in (5.21) yields

3g(βj, βk)||ξjk||2 = −
m∑

s=1,s 6=k

g(ξjk, ξsk)g(βj, Asξjk) = −||ξjk||2g(βj, βk), for all j 6= k.

If g(βj, βk) 6= 0, the above relation gives ξjk = 0, so βk = Ajξjk = 0, a contradiction.
Thus

(5.22) g(βj, βk) = 0, for all j 6= k.

Taking the scalar product with ξij in (5.21) for some i 6= j, k and using (5.22) gives

0 =
m∑

s=1,s 6=k

g(ξjk, ξsk)g(Asβj, ξij) = −g(ξjk, ξik)||βj||2,

whence

(5.23) g(ξjk, ξik)βj = 0, for all i 6= j 6= k 6= i.

We next take x = xa in (5.20) and sum over a = 1, . . . , p to obtain

m∑
s=1,s 6=k

(− tr(AsAk)ξsk − Asβs − AsAkξsk)− 2Akβk = 0, for all k = 1, . . . ,m,

whence, using (5.18) again,

(5.24) 2Akβk +
m∑

s=1,s 6=k

tr(AsAk)ξsk = 0, for all k = 1, . . . ,m.
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Applying Ak to this equation, taking the scalar product with βk and using (5.22), yields,

||Akβk||2 = −g(A2
kβk, βk) =

1

2

m∑
s=1,s 6=k

tr(AsAk)g(Akξsk, βk)

= −1

2

m∑
s=1,s 6=k

tr(AsAk)g(βs, βk) = 0,

thus showing that

(5.25) Akβk = 0, for all k = 1, . . . ,m.

The following technical result shows that if α is non-zero, then at least two of the vectors
βi, i = 1, . . . ,m are non-zero.

Lemma 5.2. If α is non-vanishing, then there exist i, j ∈ {1, . . . ,m} with i 6= j such that
βi 6= 0 6= βj. In particular, the center of n has dimension m ≥ 2.

Proof. Suppose for a contradiction that α 6= 0 and there exists ` ∈ {1, . . . ,m} such that
βi = 0 for all i ∈ {1, . . . ,m}\{`}.

By relabelling the subscripts, we may assume that ` = 1, that is, βi = 0 for all i = 2, . . .m.
We claim that β1 = 0.

If m = 1, then (5.25) together with (2.4) readily imply β1 = 0, thus proving our claim
in this case. Assume now that m ≥ 2.

From (5.18) we obtain Akξij = 0 for all i, j ≥ 2 and for every k, so by (2.4), ξij = 0 for
every i, j ≥ 2. For k = 2, (5.20) reads

(5.26) g(A2x,A1x)ξ12 − g(β1, x)A1x− g(x, ξ12)A1A2x = 0, for all x ∈ v.

Polarizing this equality yields

0 = (g(A2x,A1y) + g(A2y, A1x))ξ12 − g(β1, x)A1y(5.27)

−g(x, ξ12)A1A2y − g(β1, y)A1x− g(y, ξ12)A1A2x, for all x, y ∈ v.

Applying this to y = ξ12 and using (5.18) and (5.25), we obtain

0 = −g(β1, ξ12)A1x− ||ξ12||2A1A2x, for all x ∈ v.

Since g(β1, ξ12) = −g(A2ξ12, ξ12) = 0, this equation reads

(5.28) 0 = ||ξ12||2A1A2.

If ξ12 = 0, then β1 = −A2ξ12 = 0 proving our claim. Otherwise, if ξ12 6= 0, then (5.28)
implies A1A2 = 0, so reinjecting this into (5.27) gives

−g(β1, x)A1y − g(β1, y)A1x = 0, for all x, y ∈ v.

Taking y = β1 in this last equation and using (5.25) we obtain that either A1 = 0 or β1 = 0.
We finish the proof of the claim by showing that A1 = 0 also implies β1 = 0.

Indeed, if A1 = 0 then (5.15) for k = 1 yields 0 =
∑m

s=1 As ∧ ξs1, so
m∑
s=1

(Asx ∧ ξs1 + g(x, ξs1)As) = 0, for all x ∈ v.
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This, together with (5.17) for k = 1 gives

m∑
s=1

g(x, ξs1)As = 0, for all x ∈ v.

Applying this equality to ξ21, taking x = ξ21 and using (5.18), yields ||ξ21||2β1 = 0. Since
ξ21 6= 0, we finally get β1 = 0.

We thus proved our claim: βi = 0 for all i = 1, . . . ,m. Hence, by (5.9) and (5.13),
and taking into account that βs = − 1

n−2
Asy α3, we get d∗α = 0 and therefore α is a

Killing 3-form of odd v-degree. On the other hand from [8, Proposition 5.1] we know that
K3

odd(n, g) = 0. This contradicts the assumption α 6= 0 thus concluding the proof. �

We are now ready to describe the space of conformal Killing 3-forms of odd v-degree
for every 2-step nilpotent metric Lie algebra (n, g). This will be done by considering the
different possibilities for the dimension of the center of n.

Proposition 5.3. On a 2-step nilpotent metric Lie algebra (n, g) with dim z ≤ 2, every
conformal Killing 3-form of odd v-degree vanishes.

Proof. Let (n, g) be a 2-step nilpotent metric Lie algebra. If dim z = 1, then the result
follows from Lemma 5.2. So we consider the case m = dim z = 2.

Assume that there exists a non-zero conformal Killing 3-form α of odd v-degree. We
write as before α = α3 + α1 with α3 ∈ Λ3v∗ and α1 as in (5.11), for a fixed orthonormal
basis z1, z2 of z. To simplify the notation, we denote by ξ := ξ12 = −ξ21. From (5.18) we
obtain

(5.29) A1ξ = β2, A2ξ = −β1.

By Lemma 5.2, β1 6= 0 6= β2 so (5.29) implies ξ 6= 0. By rescaling α if necessary, we may
assume that ||ξ|| = 1. Formula (5.19) for k = 1 becomes

(5.30) A1xy α3 − A2x ∧ ξ + g(x, ξ)A2 − 2x ∧ β1 = 0, for all x ∈ v.

Taking x = β1 in this equation and using (5.25) yields A2β1 ∧ ξ = 0. Thus A2β1 = aξ
where the real number a is given by a = g(ξ, A2β1) = −g(β1, A2ξ) = ||β1||2. Consequently,

(5.31) A2β1 = ||β1||2ξ.

Now we make the interior product in (5.30) with A1x and then take the inner product
with β1. Using (5.25) again we obtain

g(A1A2x, x)g(ξ, β1) + g(ξ, A1x)g(A2x, β1) + g(x, ξ)g(A2A1x, β1) = 0, for all x ∈ v.

This equation, in view of (5.29) and (5.31), is equivalent to

(5.32) 2||β1||2g(x, ξ)g(x, β2) = 0, for all x ∈ v.

Since ξ is non-zero, this implies that either β1 = 0 or β2 = 0, which contradicts
Lemma 5.2. This concludes the proof. �

Since the case where dim z = 3 is more involved, we treat next the case dim z ≥ 4.
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Proposition 5.4. On a 2-step nilpotent metric Lie algebra (n, g) with dim z ≥ 4, every
conformal Killing 3-form of odd v-degree vanishes.

Proof. Let (n, g) be a 2-step nilpotent metric Lie algebra with center of dimension m ≥ 4.
Let α be a conformal Killing 3-form on (n, g) of odd v-degree. We write α = α3 + α1, with
α3 ∈ Λ3v∗ and α1 as in (5.11), where z1, . . . , zm is a fixed orthonormal basis of z. We claim
that:

(5.33) g(ξij, βk) = 0, for all i, j, k = 1, . . . ,m.

Indeed, since m ≥ 4, given i, j, k ∈ {1, . . . ,m} we can find r ∈ {1, . . . ,m} such that
r /∈ {i, j, k}. Using (5.18), we obtain

g(ξij, βk) = g(ξij, Arξrk) = −g(Arξij, ξrk) = 0,

as claimed.
Suppose for a contradiction that α 6= 0. Then, by Lemma 5.2, there exist i 6= j such that

βi 6= 0 6= βj. Let k be such that i 6= k 6= j. Taking the scalar product of the expression in
(5.20) with ξik, and using (5.25), we get

(5.34)
m∑

s=1,s 6=k

g(Akx,Asx)g(ξsk, ξik) + g(βi, x)g(βk, x) = 0, for all x ∈ v.

Since βi is nonzero, (5.34) and (5.23) account to

(5.35) g(Akx,Aix)||ξik||2 + g(βi, x)g(βk, x) = 0, for all x ∈ v.

Polarizing this equation one gets for all x, y ∈ v:

(g(Akx,Aiy) + g(Aky, Aix))||ξik||2 + g(βi, x)g(βk, y) + g(βi, y)g(βk, x) = 0.

We take x = ξkj in this equation and use (5.18) and (5.33) to obtain

(5.36) g(βj, Aiy)||ξik||2 = 0, for all y ∈ v.

Notice that ξik 6= 0 since βi = −Akξik is non-zero. So from (5.36) we get 0 = Aiβj = A2
i ξij.

Taking the scalar product with ξij and using the skew-symmetry of Ai yields 0 = Aiξij = βj,
which is a contradiction. �

Finally, we consider the case where dim z = 3 and start by exhibiting an example of a
2-step nilpotent metric Lie algebra carrying a non-zero conformal Killing 3-form of odd
v-degree.

Let n3,2 be the 6-dimensional free 2-step nilpotent Lie algebra on 3-generators, which
admits a basis v1, v2, v3, u1, u2, u3 satisfying the Lie bracket relations

(5.37) [v1, v2] = u3, [v2, v3] = u1, [v3, v1] = u2.

Clearly the center of n3,2 is spanned by ui, i = 1, 2, 3.
We consider the one parameter family of metrics gλ, with λ ∈ R+, on n3,2 defined by the

fact that v1, v2, v3, u1/λ, u2/λ, u3/λ is a gλ-orthonormal basis. Denoting by zi := ui/λ for
i = 1, 2, 3, one can easily check that the endomorphisms j(zi) satisfy [j(zi), j(zj)] = λj(zk),
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for every even permutation (i, j, k) of {1, 2, 3}. Therefore, by [8, Proposition 5.8], the space
of Killing 3-forms on (n3,2, gλ) is 1-dimensional and spanned by

η := z1 ∧ v2 ∧ v3 + z2 ∧ v3 ∧ v1 + z3 ∧ v2 ∧ v1 + 2z1 ∧ z2 ∧ z3.

In particular, K3
odd(n3,2, gλ) = 0 and K3

ev(n3,2, gλ) = span{η}.
Since the Hodge dual of a Killing form is a conformal Killing form, we then obtain that

∗η ∈ CK3(n3,2, gλ), independently of the orientation of (n3,2, gλ). Moreover, since η is of
even v-degree, we actually get that ∗η belongs to CK3

odd(n3,2, gλ), so this space is non-trivial.
It is easy to see that (n3,2, gλ) is the only 2-step nilpotent metric Lie algebra of dimension

6 where this construction provides non-trivial conformal Killing 3-forms of odd v-degree.
Indeed, from [8, Theorem 5.14], non-zero Killing 3-forms only exist on R3 ⊕ h3, h3 ⊕ h3,
R⊕ h5 and n3,2, and they have even v-degree by [8, Theorem 5.1]. For the Hodge dual to
have odd v-degree, one thus needs v to be odd-dimensional, which only happens on n3,2.

We shall now prove that (n3,2, gλ) are, up to isomorphism, the only 2-step nilpotent metric
Lie algebras with dim z = 3, admitting strict conformal Killing 3-forms of odd v-degree and
also that CK3

odd(n3,2, gλ) is spanned by ∗η.

Proposition 5.5. On a 2-step nilpotent metric Lie algebra (n, g) with dim z = 3, every
conformal Killing 3-form of odd v-degree vanishes, except when (n, g) = (n3,2, gλ) for some
λ ∈ R+ where CK3

odd(n3,2, gλ) is 1-dimensional.

Proof. Let (n, g) be a 2-step nilpotent metric Lie algebra with center of dimension m = 3.
Let α be a non-zero conformal Killing 3-form α on (n, g) of odd v-degree. We write as

before α = α3 + α1 with α3 ∈ Λ3v∗ and

(5.38) α1 =
3∑

s,r=1

ξsr ∧ zs ∧ zr,

where z1, z2, z3 is an orthonormal basis of z and ξsr = −ξrs ∈ v. We keep using the notation
Ai := j(zi) and βi := − 1

n−2
Aiy α3.

For each i, j = 1, 2, 3 with i 6= j, βi and βj cannot vanish simultaneously by Lemma 5.2.
Since βj = Aiξij and βi = −Ajξij by (5.18), this shows that the vectors ξij are non-zero for
every i 6= j in {1, 2, 3}.

Moreover, since (5.23) is symmetric in i 6= j, and either βi or βj are non-zero, we obtain

(5.39) g(ξjk, ξik) = 0, for all i 6= j 6= k 6= i.

In particular, the vectors ξ12, ξ23 and ξ31 span a 3-dimensional vector subspace, which we
will call E, of v.

Let us fix a permutation (i, j, k) of {1, 2, 3}. We will show that βk is collinear to ξij. To
this purpose, suppose that βk 6= 0 (since otherwise the result is trivial), and let us take
x = ξij in (5.19). By (5.18) and (5.39), we obtain

(5.40) 0 =
3∑

s=1,s 6=k

(Asξij ∧ ξsk − g(ξij, ξsk)As)− 2ξij ∧ βk = βj ∧ ξik − βi ∧ ξjk − 2ξij ∧ βk.
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Taking the interior product with βk in (5.40), and using that g(βk, ξik) = g(Aiξik, ξik) = 0
and g(βi, βj) = 0 by (5.22), we get

(5.41) g(ξij, βk)βk = ||βk||2ξij.
Since βk 6= 0, this equation and the fact that ξij 6= 0 imply g(ξij, βk) 6= 0. Hence βk is a
multiple of ξij by (5.41) as claimed.

In particular, we obtain that β1, β2, β3 belong to the 3-dimensional subspace E ⊂ v
spanned by the vectors ξij, so by (5.18) we see that E, and hence also its orthogonal E⊥,
are invariant under the skew-symmetric endomorphisms Ai, i = 1, 2, 3.

From now on, we will assume that (i, j, k) is an even permutation of {1, 2, 3}. Consider
an orthonormal basis f1, f2, f3 of E such that ξij = akfk, for some ak ∈ R∗. Since βk is a
multiple of ξij we then have

(5.42) βk = bkfk, for some bk ∈ R.
For each i = 1, 2, 3, we have aiAifi = Aiξjk = 0 by (5.18), so

(5.43) Ai|E = λifj ∧ fk, for some λi ∈ R.
Note that λi 6= 0 since otherwise βj = Aiξij and βk = Aiξik would both vanish, which we
have seen that it was impossible. By changing the sign of the elements in the basis z1, z2, z3

of z if necessary, we may thus assume that λi > 0 for all i = 1, 2, 3.
Now using (5.18), (5.42) and (5.43) we obtain, for every even permutation (i, j, k) of

{1, 2, 3}:
bjfj = βj = Aiξij = λiak fky (fj ∧ fk) = −λiakfj.

bifi = βi = −Ajξij = −λjak fky (fk ∧ fi) = −λjakfi.
This implies

(5.44) ak = −bj/λi = −bi/λj,
for every even permutation (i, j, k) of {1, 2, 3}. Therefore there exists c ∈ R such that

(5.45) λibi = λjbj = λkbk = c.

Since Ajfj = 0 by (5.43) and g(fj, ξjk) = aig(fj, fi) = 0, (5.19) for x = fj gives

Akfjy α3 + Aifj ∧ ξik − g(fj, ξik)Ai − 2fj ∧ βk = 0.

From this equation and using (5.43) again we obtain

(5.46) −λkfiy α3 + Aifj ∧ ξik − g(fj, ξik)Ai − 2fj ∧ βk = 0.

Since Aifj ∧ ξik − 2fj ∧ βk and Ai are elements of Λ2E∗ ⊕ Λ2(E⊥)∗ ⊂ Λ2v∗, the above
relation shows that xy α3 ∈ Λ2E∗ ⊕ Λ2(E⊥)∗ for every x ∈ E, thus implying that α3 ∈
Λ3E∗ ⊕ (E∗ ⊗ Λ2(E⊥)∗). Furthermore, since dimE = 3, one can write

(5.47) α3 = µf1 ∧ f2 ∧ f3 + γ, for some µ ∈ R and γ ∈ E∗ ⊗ Λ2(E⊥)∗.

Projecting the equality in (5.46) onto Λ3E∗, and using (5.43) together with ξik = −ajfj,
we obtain

−µλkfj ∧ fk − ajλifk ∧ fj + ajλifj ∧ fk − 2bkfj ∧ fk = 0.
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In view of (5.44), this is equivalent to

(5.48) µλk + 4bk = 0, for all k ∈ {1, 2, 3}.

Equations (5.48) and (5.45) imply µλ2
k = −4bkλk = −4c so from this, together with

(5.44), we get λ2
k = −4 c

µ
for k = 1, 2, 3. In particular, since λs > 0 for all s = 1, 2, 3, we

obtain λi = λj = λk =: λ. Consequently, f1, f2, f3 is an orthonormal basis of E ⊂ v whose
Lie brackets, by (5.43), verify

(5.49) [fi, fj] =
3∑
r=1

g(Arfi, fj)zr = λzk,

whenever (i, j, k) is an even permutation of {1, 2, 3}.
Before proceeding, notice that we can now express the parameters above in terms of c

and λ. Indeed, (5.48), (5.45) and (5.44), yield

(5.50) µ = −4
c

λ2
, bk =

c

λ
, ak = − c

λ2
, for all k = 1, 2, 3.

By (5.38), (5.50), (5.47) and the fact that ξij = akfk for every even permutation (i, j, k) of
{1, 2, 3}, we obtain that the component of α in Λ3(E ⊕ z)∗ is

(5.51) αΛ3(E⊕z)∗ = −2
c

λ2
(f3 ∧ z1 ∧ z2 + f2 ∧ z3 ∧ z1 + f1 ∧ z2 ∧ z3 + 2f1 ∧ f2 ∧ f3).

From (5.49) and (5.51), it is easy to check that (n, g) has a Lie subalgebra isometrically
isomorphic to (n3,2, gλ). Indeed, ϕ : n3,2 −→ n defined by ϕ(vi) = fi, ϕ(ui) = λzi is an
injective Lie algebra morphism, which is an isometry on its image E ⊕ z.

We will show below that E⊥ = 0 and once this is proven, the result will follow. Indeed,
on the one hand E⊥ = 0 implies that ϕ is actually onto, so (n, g) is isometrically isomorphic
to (n3,2, gλ). On the other hand, E⊥ = 0 also implies that α = αΛ3(E⊕z)∗ and it is given by
the right hand side of (5.51). By using (3.6) and (5.43) one can check that dα = 0 so, for
any possible orientation of (n, g), ∗α is a coclosed conformal Killing 3-form (i.e. Killing).
This shows that CK3

odd(n, g) = ∗K3
ev(n, g) which is 1-dimensional by [8, Proposition 5.8].

The rest of the proof aims to show that E⊥ = 0. Let x ∈ E and y ∈ E⊥ and k 6= j in
{1, 2, 3}. Taking the interior product in (5.19) with Ajy we obtain

AjyyAkxyα3 +
3∑

s=1,s 6=k

(g(Asx,Ajy)ξsk − g(ξsk, Ajy)Asx− g(x, ξsk)AsAjy) = 2Ajyy(x ∧ βk).

Since Ajy ∈ E⊥, this reduces to

(5.52) AjyyAkxyα3 −
3∑

s=1,s 6=k

g(x, ξsk)AsAjy = 0.

Similarly, by interchanging x with y and j with k when using (5.19), we get

(5.53) Akxy Ajyy α3 −
3∑

s=1,s 6=j

g(ξsj, Akx)Asy − 2Akxy(y ∧ βj) = 0.
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Adding up (5.52) and (5.53) we get that for every x ∈ E, y ∈ E⊥,

−
3∑

s=1,s 6=k

g(x, ξsk)AsAjy −
3∑

s=1,s 6=j

g(ξsj, Akx)Asy + 2g(Akx, βj)y = 0.

This equation holds for every distinct j, k ∈ {1, 2, 3}. Denoting by i the remaining subscript
and developing the terms in each sum, we get

(5.54) −g(x, ξik)AiAjy − g(x, ξjk)A
2
jy − g(ξkj, Akx)Aky − 2g(Akβj, x)y = 0.

Assume first that (i, j, k) is an even permutation of {1, 2, 3}. Then ξik = −ajfj and
ξjk = −ξkj = aifi, so (5.54) becomes

(5.55) ajg(x, fj)AiAjy − aig(x, fi)A
2
jy + bjg(fj, x)Aky + 2λkbjg(x, fi)y = 0.

For x = fi this expression reads aiA
2
jy = 2λkbjy, and taking x = fj in the same equation,

we obtain ajAiAjy + bjAky = 0. These formulas, together with (5.50), imply

(5.56) A2
i |E⊥ = −2λ2IdE⊥ , for i = 1, 2, 3 and AiAj|E⊥ = λAk|E⊥ for (i, j, k) even.

Now, if (i, j, k) is an odd permutation of {1, 2, 3}, we have ξik = ajfj, so taking x = fj
in (5.54) yields ajAiAjy + bjAky = 0 for every y ∈ E⊥, which reads

(5.57) AiAj|E⊥ = −λAk|E⊥ for (i, j, k) odd.

We can thus conclude, from (5.56) and (5.57), that AiAj|E⊥ = −AjAi|E⊥ for all i 6= j.
Finally, for (i, j, k) an even permutation of {1, 2, 3} we have, on the one hand

A2
iAj|E⊥ = −2λ2Aj|E⊥

by (5.56), and on the other hand,

A2
iAj|E⊥ = AiAiAj|E⊥ = −AiAjAi|E⊥ = −λAiAk|E⊥ = λ2Aj|E⊥ .

Since λ 6= 0, this implies that Aj|E⊥ = 0 for every j, so E⊥ = 0 by (2.4). �

Finally, we are in the position to state the main result of the section, which follows
immediately from the decompositions in (3.13), (3.14) and Propositions 5.1, 5.3, 5.4 and 5.5.

Theorem 5.6. For any metric 2-step nilpotent Lie algebra (n, g), CK3(n, g) = K3(n, g),
except when n = h2q+1 ⊕ R and g is any metric on h2q+1 ⊕ R, and when (n, g) = (n3,2, gλ)
for some λ ∈ R+ where, in both cases, CK3(n, g) is 2-dimensional and K3(n, g) is 1-
dimensional.

Remark 5.7. Revisiting (the proofs of) Propositions 5.1 and 5.5, one can see that when
the space of conformal Killing 3-forms on a 2-step nilpotent metric Lie algebra does not
coincide with the space of Killing 3-forms, it can be described more precisely as follows:

CK3(R⊕ h2q+1, g) = CK3
ev(R⊕ h2q+1, g) = K3

ev(R⊕ h2q+1, g)⊕ ∗K2q−1
ev (R⊕ h2q+1, g),

CK3(n3,2, gλ) = CK3
ev(n3,2, gλ)⊕ CK3

odd(n3,2, gλ) = K3
ev(n3,2, gλ)⊕ ∗K3

ev(n3,2, gλ).
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