ON WEYL-REDUCIBLE CONFORMAL MANIFOLDS AND LCK STRUCTURES

FARID MADANI, ANDREI MOROIANU, MIHAELA PILCA

ABSTRACT. A recent result of M. Kourganoff states that if D is a closed, reducible, non-flat Weyl connection on a compact conformal manifold M, then the universal cover of M, endowed with the metric whose Levi-Civita covariant derivative is the pull-back of D, is isometric to $\mathbb{R}^q \times N$ for some irreducible, incomplete Riemannian manifold N. Moreover, he characterized the case where the dimension of N is 2 by showing that M is then a mapping torus of some Anosov diffeomorphism of the torus \mathbb{T}^{q+1} . We show that in this case one necessarily has q=1 or q=2.

1. Weyl-reducible manifolds

Let (M, c) be a compact conformal manifold. A Weyl structure on M is a torsion-free linear connection D preserving the conformal structure c, in the sense that for every Riemannian metric $g \in c$, $D_X g = \theta_g(X) g$ for some 1-form θ_g on M called the Lee form of D with respect to g. If $g' := e^f g$ is another metric in the conformal class, then

$$\theta_{q'} = \theta_q + \mathrm{d}f.$$

The Weyl structure D is called closed if θ_g is closed for one (and thus all) metrics $g \in c$ and exact if θ_g is exact for all $g \in c$. From the above formula we see that if D is exact, so that $\theta_g = \mathrm{d}f$ for some $g \in c$, then $\theta_{e^{-f}g} = 0$, thus D is the Levi-Civita connection of the metric $e^{-f}g \in c$.

The manifold (M,c,D) is called Weyl-reducible if the Weyl structure D is reducible and non-flat.

Based on some evidence given by the Gallot theorem on Riemannian cones [4], it was conjectured in [2] that every closed, non-exact Weyl structure on a compact conformal manifold is either irreducible or flat. Matveev and Nikolayevsky [7] constructed a counterexample to the general conjecture, but later on Kourganoff proved that a weaker form of this conjecture holds:

Theorem 1. (cf. [6, Thm. 1.5]). A closed non-exact Weyl structure D on a compact conformal manifold M, is either flat or irreducible, or the universal cover \widetilde{M} of M together with the Riemannian metric g_D whose Levi-Civita connection is D, is the Riemannian product of a complete flat space \mathbb{R}^q and an incomplete Riemannian manifold (N, g_N) with irreducible holonomy:

$$(\widetilde{M}, g_D) = \mathbb{R}^q \times (N, g_N).$$

In [6, Example 1.6] (see also [7]), examples of closed reducible Weyl structures on compact manifolds are constructed using a linear map $A \in SL_{q+1}(\mathbb{Z})$, such that:

- (1) there exists an A-invariant decomposition $\mathbb{R}^{q+1} = E^s \oplus E^u$ with $\dim(E^u) = 1$ and $A|_{E^u} = \lambda^q \operatorname{Id}_{E^u}$ for some real number $\lambda > 1$;
- (2) there exists a positive definite symmetric bilinear form b on E^s , such that $\lambda A|_{E^s}$ is orthogonal with respect to b.

Then A induces a diffeomorphism (also denoted by A) of the torus \mathbb{T}^{q+1} , whose mapping torus $M_A := \mathbb{T}^{q+1} \times (0,\infty)/(x,t) \sim (Ax,\frac{1}{\lambda}t)$, carries a reducible non-flat closed Weyl structure D_{φ} obtained by projecting to M_A the Levi-Civita connection of the metric on $\mathbb{T}^{q+1} \times (0,\infty)$ given by:

$$g_{\varphi} := \mathrm{d}x_1^2 + \dots + \mathrm{d}x_q^2 + \varphi(t)\mathrm{d}x_{q+1}^2 + \mathrm{d}t^2,$$

where x_1, \ldots, x_{q+1} are the local coordinates with respect to an orthonormal basis (e_1, \ldots, e_{q+1}) with $e_1, \ldots, e_q \in E^s$, $e_{q+1} \in E^u$, and $\varphi \colon (0, +\infty) \to (0, +\infty)$ is any smooth function satisfying $\varphi(\lambda t) = \lambda^{2q+2}\varphi(t)$ for every $t \in (0, +\infty)$.

Moreover, Kourganoff proved that these are, up to diffeomorphism, the only examples of Weyl-reducible manifolds when the incomplete factor N is 2-dimensional:

Theorem 2. [6, Theorem 1.7] Assume that D is a closed non-exact Weyl structure D on a compact conformal manifold M which is neither flat nor irreducible. If the irreducible manifold N given by Theorem 1 is 2-dimensional, then (M, D) is isomorphic to one of the Riemannian manifolds (M_A, D_{φ}) .

It turns out, however, that matrices $A \in \mathrm{SL}_{q+1}(\mathbb{Z})$ satisfying the conditions (1) and (2) above, only exist for q = 1 or q = 2. This is the object of the next section.

2. A number-theoretical result

Proposition 3. Let $q \in \mathbb{N}^*$ and $A \in \operatorname{SL}_{q+1}(\mathbb{Z})$, such that there is a direct sum decomposition $\mathbb{R}^{q+1} = E^s \oplus E^u$ invariant by A, with $\dim(E^u) = 1$. If there exists a positive definite symmetric bilinear form b on E^s and a real number $\lambda > 1$, such that $\lambda A|_{E^s}$ is orthogonal with respect to b, then $q \in \{1, 2\}$.

Proof. Let C be a symmetric positive definite matrix, such that $b = \langle C^2 \cdot, \cdot \rangle$, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean scalar product. Then the following equivalence holds:

$$\lambda A|_{E^s} \in \mathcal{O}(E^s, b) \iff C \cdot (\lambda A|_{E^s}) \cdot C^{-1} \in \mathcal{O}(q).$$

In particular, each eigenvalue of $\operatorname{Spec}(\lambda A|_{E^s})$ has modulus 1 and the characteristic polynomial of A denoted by μ_A is given by:

$$\mu_A(X) = (X - \lambda^q) \prod_{j=1}^q \left(X - \frac{z_j}{\lambda} \right),$$

where z_j are complex numbers with $|z_j| = 1$ for all $j \in \{1, \ldots, q\}$, and $\prod_{j=1}^q z_j = 1$. Note that μ_A is irreducible in $\mathbb{Z}[X]$, since if it were a product of two non-constant polynomials with integer coefficients, one of them would have all roots of modulus less than 1, which is impossible. We distinguish the following two cases:

Case 1. If q=2p is even, denoting $\mu_A(X)=\sum_{j=0}^{2p+1}a_jX^j$ with $a_j\in\mathbb{Z}$ and $a_{2p+1}=1,\ a_0=-1,$ we get

$$\lambda^{2p} + \frac{1}{\lambda} \sum_{j=1}^{2p} z_j = -a_{2p}, \qquad \lambda^{-2p} + \lambda \sum_{j=1}^{2p} \frac{1}{z_j} = a_1.$$

This shows that the sum $s:=\sum_{j=1}^{2p}z_j$ is real, and since $|z_j|=1$ for all $j\in\{1,\ldots,2p\}$, s is also equal to $\sum_{j=1}^{2p}\frac{1}{z_j}$. Eliminating s from the two equations above, yields

$$\lambda^{4p+2} + a_{2p}\lambda^{2p+2} + a_1\lambda^{2p} - 1 = 0.$$

Consequently, λ^2 is root of the polynomial

$$Q(X) := X^{2p+1} + a_{2p}X^{p+1} + a_1X^p - 1.$$

Denote by r_1, \ldots, r_{2p} the other complex roots of Q. Newton's relations show that there exists a monic polynomial $\widetilde{Q} \in \mathbb{Z}[X]$ whose roots are $\lambda^{2p}, r_1^p, \ldots, r_{2p}^p$. The monic polynomials μ_A and $\widetilde{Q} \in \mathbb{Z}[X]$ have both degree 2p+1 and λ^{2p} is a common root. Since μ_A is irreducible, they

must coincide, so up to a permutation, one can assume that $r_j^p = \frac{z_j}{\lambda}$ for all $j \in \{1, \ldots, 2p\}$. This shows that $\lambda^{\frac{1}{p}} r_j$ are complex numbers of modulus one for all $j \in \{1, \ldots, 2p\}$.

If $p \geq 2$, the coefficients of X^{2p} and X in the polynomial Q vanish, so

$$\lambda^2 + \sum_{j=1}^{2p} r_j = 0 = \frac{1}{\lambda^2} + \sum_{j=1}^{2p} \frac{1}{r_j}.$$

Thus $\sum_{j=1}^{2p} r_j = -\lambda^2$ and as $|\lambda^{\frac{1}{p}} r_j| = 1$ for all j,

$$-\lambda^{-2} = \sum_{j=1}^{2p} \frac{1}{r_j} = \lambda^{\frac{2}{p}} \sum_{j=1}^{2p} r_j = -\lambda^{\frac{2}{p}} \lambda^2.$$

This contradicts the fact that $\lambda > 1$, showing that p = 1 and therefore q = 2 (see also [1, Lemma 3.5]).

Case 2. If q is odd, then μ_A has at least one further real root, so either $\frac{1}{\lambda}$ or $-\frac{1}{\lambda}$ is a root of μ_A . Up to reordering the subscripts one thus has $z_1 = \pm 1$. Assume that $z_1 = 1$ (the argument for $z_1 = -1$ is the same). The monic polynomial $P \in \mathbb{Z}[X]$ defined by $P(X) := X^{q+1}\mu_A(\frac{1}{X})$ satisfies P(0) = 1, and its roots are $\{\lambda^{-q}, \lambda, \frac{\lambda}{z_2}, \dots, \frac{\lambda}{z_q}\}$.

By Newton's identities again, there exists a monic polynomial $\widetilde{P} \in \mathbb{Z}[X]$ with $\widetilde{P}(0) = 1$, whose roots are $\{\lambda^{-q^2}, \lambda^q, (\frac{\lambda}{z_2})^q, \dots, (\frac{\lambda}{z_q})^q\}$.

Since the monic polynomials μ_A and $\widetilde{P} \in \mathbb{Z}[X]$ (of same degree) have λ^q as common root, and μ_A is irreducible, they must coincide. In particular λ^{-q^2} is a root of μ_A . On the other hand every root of μ_A has complex modulus equal to either λ^q or $\frac{1}{\lambda}$. Since $\lambda > 1$, we obtain q = 1.

Remark 4. As pointed out by V. Vuletescu, for odd q, Proposition 3 also follows from a more general result of Ferguson [3], whose proof, however, is rather involved.

3. Applications

Our main application concerns locally conformally Kähler manifolds. Recall that a Hermitian manifold (M, g, J) of complex dimension $n \geq 2$ is called *locally conformally Kähler* (in short, lcK) if around every point in M the metric g can be conformally rescaled to a Kähler metric. This condition is equivalent to the existence of a closed 1-form θ , such that

$$d\Omega = \theta \wedge \Omega$$
,

where $\Omega := g(J \cdot, \cdot)$ denotes the fundamental 2-form. Let now \widetilde{M} be the universal cover of an lcK manifold (M, J, g, θ) , endowed with the pullback lcK structure $(\widetilde{J}, \widetilde{g}, \widetilde{\theta})$. Since \widetilde{M} is simply connected, $\widetilde{\theta}$ is exact, i.e. $\widetilde{\theta} = \mathrm{d}\varphi$, and by the above considerations, the metric $g^K := e^{-\varphi}\widetilde{g}$ is Kähler.

The group $\pi_1(M)$ acts on $(\widetilde{M}, \widetilde{J}, g^K)$ by holomorphic homotheties. Furthermore, we assume that the lcK structure is strict, in the sense that $\pi_1(M)$ is not a subgroup of the isometry group of (\widetilde{M}, g^K) . In particular, the Levi-Civita connection of the Kähler metric g^K projects to a closed, non-exact Weyl structure on M, called the *standard Weyl* structure. Its Lee form with respect to g is exactly θ .

Due to the fact that the real dimension of an lcK manifold is even, applying Proposition 3 to the special case of a compact strict lcK manifold whose standard Weyl structure is reducible, we obtain the following:

Proposition 5. Let M be a compact Weyl-reducible strict lcK manifold. If the irreducible factor N in the splitting of the universal cover (\widetilde{M}, g^K) as a Riemannian product $\mathbb{R}^q \times N$ given by Theorem 1 is 2-dimensional, then q = 2 and thus M is an Inoue surface S^0 , cf. [5].

Let us remark that if in Proposition 5 we drop the assumption on the dimension of the irreducible factor, then there are many more examples of Weyl-reducible lcK structures. They are obtained on lcK manifolds constructed by Oeljeklaus and Toma [9], for every integer $s \geq 1$, on certain compact quotients M_{Γ} of $\mathbb{C} \times \mathbb{H}^s$, where \mathbb{H} denotes the upper complex half-plane, Γ are certain groups whose action on $\mathbb{C} \times \mathbb{H}^s$ is cocompact and properly discontinuous (for the precise definition of Γ and its action see [9]). We will briefly review them here.

In order to define the lcK structure on the quotient M_{Γ} , Oeljeklaus and Toma consider the function

$$F: \mathbb{C} \times \mathbb{H}^s \to \mathbb{R}, \qquad F(z, z_1, \dots, z_s) := |z|^2 + \frac{1}{y_1 \dots y_s},$$

with $z_k = x_k + iy_k$ and claim that it is a global Kähler potential on $\mathbb{C} \times \mathbb{H}^s$ (note a small sign error in [9]). To check this, we introduce

$$u: \mathbb{H}^s \to \mathbb{R}, \qquad u(z_1, \dots, z_s) := \frac{1}{y_1 \dots y_s} = \frac{(2i)^s}{\prod_{j=1}^s (z_j - \bar{z}_j)},$$

and compute

(1)
$$\bar{\partial}u = u \sum_{j=1}^{s} \frac{\mathrm{d}\bar{z}_{j}}{z_{j} - \bar{z}_{j}}, \qquad \partial u = -u \sum_{j=1}^{s} \frac{\mathrm{d}z_{j}}{z_{j} - \bar{z}_{j}},$$

$$\partial \bar{\partial} u = \partial u \wedge \sum_{j=1}^{s} \frac{\mathrm{d}\bar{z}_{j}}{z_{j} - \bar{z}_{j}} - u \sum_{j=1}^{s} \frac{\mathrm{d}z_{j} \wedge \mathrm{d}\bar{z}_{j}}{(z_{j} - \bar{z}_{j})^{2}}$$
$$= -u \sum_{j,k=1}^{s} \frac{1 + \delta_{jk}}{(z_{j} - \bar{z}_{j})(z_{k} - \bar{z}_{k})} \mathrm{d}z_{j} \wedge \mathrm{d}\bar{z}_{k},$$

whence

(2)
$$\partial \bar{\partial} u = \frac{u}{4} \sum_{j,k=1}^{s} \frac{1 + \delta_{jk}}{y_j y_k} dz_j \wedge d\bar{z}_k.$$

This shows that $i\partial\bar\partial u$ is the fundamental 2-form of a Kähler metric h on \mathbb{H}^s whose coefficients are $h_{j\bar k}=\frac{u}{4}\frac{1+\delta_{jk}}{y_jy_k}$.

Proposition 6. The Kähler metric on \mathbb{H}^s with Kähler potential u is irreducible.

Proof. The matrix $(h_{i\bar{k}})$ can be written as the product of 3 matrices

$$(h_{j\bar{k}}) = \frac{u}{4} \begin{pmatrix} \frac{1}{y_1} & 0 & \dots & 0 \\ 0 & \frac{1}{y_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{y_s} \end{pmatrix} \begin{pmatrix} 2 & 1 & \dots & 1 \\ 1 & 2 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{y_1} & 0 & \dots & 0 \\ 0 & \frac{1}{y_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{y_s} \end{pmatrix},$$

so its determinant equals

$$\det(h_{j\bar{k}}) = \left(\frac{u}{4}\right)^s (s+1) \frac{1}{(y_1 \dots y_s)^2} = \frac{(s+1)u^{s+2}}{4^s}.$$

The usual formula for the Ricci form ρ of h (cf. e.g. [8, Eq. (12.6)]) together with (1) and (2) gives

$$\rho = -i\partial\bar{\partial}\ln(\det(h_{j\bar{k}})) = -i(s+2)\partial\bar{\partial}\ln(u) = -i(s+2)\partial(\frac{1}{u}\bar{\partial}u)$$

$$= -i(s+2)\left(\frac{1}{u}\partial\bar{\partial}u - \frac{1}{u^2}\partial u \wedge \bar{\partial}u\right)$$

$$= -\frac{i(s+2)}{4}\sum_{j,k=1}^{s} \frac{2+\delta_{jk}}{y_j y_k} dz_j \wedge d\bar{z}_k.$$

This shows that the Ricci tensor of h is negative definite on \mathbb{H}^s , so h is irreducible.

As a consequence of Proposition 6, the Kähler metric on $\mathbb{C} \times \mathbb{H}^s$ with fundamental 2-form $\Omega = i\partial \bar{\partial} F = i\mathrm{d}z \wedge \mathrm{d}\bar{z} + i\partial \bar{\partial}u$ is the product of the flat metric on \mathbb{C} with an irreducible Kähler metric on \mathbb{H}^s . Therefore, the

induced lcK structure on the compact quotient M_{Γ} is Weyl-reducible, and the irreducible factor of the universal cover given by Theorem 1 is exactly $N = \mathbb{H}^s$, so it has dimension 2s.

ACKNOWLEDGMENTS. This work has been partially supported by the Procope Project No. 42513ZJ (France)/ 57445459 (Germany). We would like to thank Victor Vuletescu for having pointed out a small gap in the original proof of Proposition 3.

References

- A. Andrada, M. Origlia, Lattices in almost abelian Lie groups with locally conformally Kähler or symplectic structures, manuscripta math. 155 (2018), 389–417.
- [2] F. Belgun, A. Moroianu, On the irreducibility of locally metric connections, J. reine angew. Math. **714** (2016), 123–150.
- [3] R. Ferguson, Irreducible polynomials with many roots of equal modulus, Acta Arithmetica 78, 221–225 (1996-1997).
- [4] S. Gallot, Équations différentielles caractéristiques de la sphère, Ann. Sci. Ec. Norm. Sup. Paris 12 (1979), 235–267.
- [5] M. Inoue, On surfaces of class VII₀, Invent. Math., **24**, 269–310 (1974).
- [6] M. Kourganoff, Similarity structures and de Rham decomposition, Math. Ann. (2018). https://doi.org/10.1007/s00208-018-1748-y.
- [7] V. Matveev, Y. Nikolayevsky, A counterexample to Belgun-Moroianu conjecture, C. R. Math. Acad. Sci. Paris **353**, 455–457 (2015).
- [8] A. Moroianu, Lectures on Kähler geometry, London Mathematical Society Student Texts, vol. 69, Cambridge University Press, Cambridge, 2007.
- [9] K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier (Grenoble), **55** (1), 161–171 (2005).

FARID MADANI, FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, UNIVERSITÄTSSTR. 31 D-93040 REGENSBURG, GERMANY

Email address: farid.madani@mathematik.uni-regensburg.de

Andrei Moroianu, Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France

Email address: andrei.moroianu@math.cnrs.fr

Mihaela Pilca, Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31 D-93040 Regensburg, Germany

Email address: mihaela.pilca@mathematik.uni-regensburg.de