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Abstract. DeTurck and Yang have shown that in the neighbourhood of every point of a
3-dimensional Riemannian manifold, there exists a system of orthogonal coordinates (that
is, with respect to which the metric has diagonal form). We show that this property does
not generalize to higher dimensions. In particular, the complex projective spaces CPm

and the quaternionic projective spaces HPq, endowed with their canonical metrics, do not
have local systems of orthogonal coordinates for m, q ≥ 2.

1. Introduction

A Riemannian manifold is said to admit orthogonal coordinates if in the neighbourhood
of each point there exists a system of coordinates in which the metric has diagonal form,
cf. Definition 2.1.

Metrics admitting orthogonal coordinates naturally arise in the theory of orthogonal
separable dynamical systems, related to the Hamilton-Jacobi equation, and have been
considered by many authors starting with Paul Stäckel [9] and Luther Pfahler Eisenhart [5],
Charles Boyer, Ernie Kalnins and Pavel Winternitz [3], Paul Tod [10], and more recently,
James Grant and James Vickers [7], Sergio Benenti [1], [2], Konrad Schöbel [8], and others.

Flat, or, more generally, locally conformally flat Riemannian manifolds (in particular
every Riemannian surface) clearly admit orthogonal coordinates. In a beautiful paper
published in 1984, Dennis M. DeTurck and Deane Yang [4] showed that every Riemannian
metric of dimension 3 has orthogonal coordinates. In the same paper, they also observe that
the existence issue of orthogonal coordinates on Riemannian manifolds of dimension greater
than 3 becomes an overdetermined problem, and therefore one can hardly expect orthogonal
coordinates on a generic Riemannian manifold. On the other hand, the existence/non-
existence issue of orthogonal coordinates on a given family of Riemannian manifolds has
remained a quite interesting question, albeit largely unexplored.

The aim of this paper is to establish the non-existence of orthogonal coordinates on two
classical families of Riemannian manifolds, namely the standard complex projective spaces
CPm for m ≥ 2 and the standard quaternionic projective spaces HPq for q ≥ 2. The overall
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argument relies on some remarkable feature — already noticed by DeTurck and Yang —
of the curvature of Riemannian manifolds admitting orthogonal coordinates, together with
some additional specific arguments in dimension 4, for the complex projective plane CP2.

A list of open questions is proposed at the end of the paper.

Acknowledgments. We are grateful to François Golse for having brought this ques-
tion to our attention and to Charles Boyer and Paul Tod for communicating to us their
previous works and further related references. We warmly thank David Johnson for having
pointed out an error in the expression (12) of the curvature in a previous version of this
paper.

2. Riemannian metrics with orthogonal coordinates

Let (M, g) be any Riemannian manifold of dimension n. Let x1, . . . , xn be any system of
local coordinates defined on some open set U and denote by ∂

∂x1
, . . . , ∂

∂xn
the corresponding

frame on U ; the restriction to U of the metric g is then of the form:

(1) g =
n∑

i,j=1

gijdxi ⊗ dxj,

by setting gij := g( ∂
∂xi
, ∂
∂xj

).

Definition 2.1. The system of coordinates x1, . . . , xn is called orthogonal, if gij = 0
whenever i 6= j, hence if g is of the form

(2) g =
n∑
j=1

a2j dxj ⊗ dxj,

for some positive functions a1, . . . , an. We say that a Riemannian manifold (M, g) has
orthogonal coordinates if every point of M has a neighbourhood on which there exists a
system of orthogonal coordinates.

Remark 2.2. If a system of orthogonal coordinates x1, . . . , xn exists, any system of coor-
dinates y1, . . . , yn of the form yi = ϕi(xi), where ϕi is a real function whose derivative ϕ′i
has no zero, is orthogonal as well, since

(3) g =
n∑
i=1

b2i dyi ⊗ dyi,

with

(4) bi =
ai

|ϕ′i(xi)|
,

for i = 1, . . . , n.
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Example 2.3. The standard flat metric g0 on M = Rn is of the form

(5) g0 =
n∑
i=1

dxi ⊗ dxi,

where the xi’s denote the natural coordinates of Rn. Conversely, a Riemannian metric g
is flat whenever, in the neighbourhood of any point, there exists a system of coordinates
such that g is of this form.

Example 2.4. Denote by Sn the n-dimensional standard unit sphere

Sn = {u = (u0, . . . , un) |
n∑
i=0

u2i = 1},

and by gS the standard Riemannian metric of sectional curvature 1, induced by the stan-
dard flat metric of Rn+1. Denote by N the point (1, 0, . . . , 0) of Sn and by U the open set
Sn \ {N}. Then, on U , the metric gS is of the form:

(6) gS =
4
∑n

j=1 dxj ⊗ dxj
(1 +

∑n
j=1 x

2
j)

2
,

by setting

(7) xj =
uj

1− u0
, j = 1, . . . , n.

More generally, any locally conformally flat metric, in particular, any Riemannian metric
in dimension 2, can be locally written on the form

(8) g = a2
n∑
j=1

dxj ⊗ dxj,

i.e. on the form (2), with aj = a, for every j = 1, . . . , n.

Assume from now on that (M, g) is a Riemannian manifold of dimension n, with n ≥ 4.
We assume that x1, . . . , xn is an orthogonal system of coordinates, as defined above, and
we denote by {e1, . . . , en} the associated orthonormal frame, with

(9) ej := a−1j
∂

∂xj
, j = 1, . . . , n.

Notice that this frame remains unchanged if the orthogonal system x1, . . . , xn is replaced
by y1, . . . , yn as in Remark 2.2. We denote by ∇ the Levi-Civita connection of g and by R
its curvature, defined by

(10) RX,YZ = ∇[X,Y ]Z −∇X(∇YZ) +∇Y (∇XZ),

for any vector fields X, Y, Z on M .
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Proposition 2.5. Let (M, g) be a Riemannian manifold of dimension n ≥ 4, equipped with
orthogonal coordinates on some open set U , where the metric is of the form (2). Denote
by {e1, . . . , en} the associated orthonormal frame as defined above. Then,

(11) ∇eiej = a−1i dai(ej) ei − δij a−1j (daj)
], i, j = 1, . . . , n,

where (daj)
] denotes the vector field dual to daj with respect to g and δij the usual Kronecker

symbol. Moreover,

g(Rei,ejek, e`) = δi` a
−1
i (∇ejdai)(ek)− δj` a−1j (∇eidaj)(ek)

− δik a−1k (∇ejdak)(e`) + δjk a
−1
k (∇eidak)(e`)

+ (δikδj` − δjkδi`) a−1i a−1j g(dai, daj),

(12)

for any quadruple i, j, k, ` = 1, . . . , n. In particular, for any triple i, j, k with i 6= j 6= k 6= i,
we have:

(13) Rei,ejek = a−1i (∇ejdai)(ek) ei − a−1j (∇eidaj)(ek) ej,

and, as observed in [4], for quadruple i, j, k, ` with i, j, k, ` mutually distinct:

(14) g(Rei,ejek, e`) = 0.

Proof. For any i, j, we have [ei, ej] = [a−1i
∂
∂xi
, a−1j

∂
∂xj

], hence

(15) [ei, ej] = a−1i dai(ej) ei − a−1j daj(ei) ej,

whereas the usual Koszul formula for the Levi-Civita connection is here reduced to

(16) 2g(∇eiej, ek) = g([ei, ej], ek) + g([ek, ei], ej) + g(ei, [ek, ej]).

We easily infer:

∇eiej = a−1i dai(ej) ei, i 6= j,

∇ejej = −
∑
i 6=j

a−1j daj(ei) ei,
(17)

hence (11). A straightforward computation then gives (12), and (13)–(14) follow readily.
�

Remark 2.6. Equation (11) can equivalently be written as

(18) ∇eie
[
j = ejy(αi ∧ e[i), i, j = 1, . . . , n,

where αi := a−1i dai. Conversely, a (local) orthonormal frame satisfying (18) for some 1-
forms αi is necessarily induced by a system of orthogonal coordinates. Indeed, using (18)
we can write

de[j =
n∑
i=1

e[i ∧∇eie
[
j =

n∑
i=1

e[i ∧ (αi(ej)e
[
i − δijαi) = αi ∧ e[i,

whence e[j ∧ de[j = 0 for every j = 1, . . . , n. The Frobenius theorem shows that there

exist functions xi and bi (defined on some smaller neighbourhood) such that e[j = bjdxj for
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every j = 1, . . . , n. Changing the sign of xj if necessary, one can assume that each bj is a
positive function. Then x1, . . . , xn is a system of orthogonal coordinates with associated
orthonormal frame e1, . . . , en.

3. The complex projective spaces

We now consider the complex projective space M = CPm, m ≥ 2, equipped with the
Fubini-Study metric, gFS, of constant holomorphic sectional curvature c, whose curvature,
R, is given by:

(19) RFS
X,YZ =

c

4

(
gFS(X,Z)Y −gFS(Y, Z)X+ω(X,Z) JY −ω(Y, Z) JX+2ω(X, Y ) JZ

)
for any vector fields X, Y, Z, where J denotes the complex structure of CPm and ω =
gFS(J ·, ·) its Kähler form. For convenience and without loss of generality, we assume that
c = 4. Our aim is to show that CPm, equipped with the Fubini-Study metric, admits no
orthogonal system of coordinates. Since the case when m = 2 requires a specific argument,
see below Proposition 3.2, we first show:

Proposition 3.1. For m ≥ 3, the complex projective space CPm, equipped with the stan-
dard Fubini-Study metric, admits no orthogonal system of coordinates.

Proof. Suppose, for a contradiction, that CPm admits local orthogonal coordinates, i.e.
that gFS is of the form (2) for some local coordinates x1, . . . , xn, n = 2m, on some open set
U , and consider the corresponding orthonormal frame {e1, . . . , en} as in Proposition 2.5.

Choose any pair ei, ej such that ω(ei, ej) 6= 0, and any ek orthogonal to ei and ej. In
view of (19), with c = 4, we have

(20) RFS
ei,ej

ek = ω(ei, ek) Jej − ω(ej, ek) Jei + 2ω(ei, ej) Jek,

whereas, by (13), we should have:

(21) RFS
ei,ej

ek = fi ei − fj ej,

with fi := a−1i (∇ejdai)(ek), fj := a−1j (∇eidaj)(ek), so that:

(22) 2ω(ei, ej) ek = −ω(ei, ek) ej + ω(ej, ek) ei − fi Jei + fj Jej.

Since ek is orthogonal to ei, ej, the functions fi, fj are necessarily given by fi = −ω(ei,ek)
ω(ei,ej)

and fj =
ω(ej ,ek)

ω(ei,ej)
, whence

ek =
ω(ei, ek)

2(ω(ei, ej))2
(−ω(ei, ej) ej + Jei) +

ω(ej, ek)

2(ω(ei, ej))2
(ω(ei, ej) ei + Jej).

Since ek may be any element in the orthonormal frame e1, . . . , en distinct from ei, ej, this
means that the (2m−2)-dimensional space orthogonal to the 2-dimensional space generated
by ei, ej would be contained in the 2-dimensional space generated by −ω(ei, ej) ej + Jei
and ω(ei, ej) ei + Jej. This clearly cannot hold unless m = 2. �
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We now show:

Proposition 3.2. The complex projective plane CP2, equipped with the standard Fubini-
Study metric, admits no orthogonal system of coordinates.

Proof. Again, assume for a contradiction, that CP2 admits local orthogonal coordinates
x1, x2, x3, x4 on some open set U and denote by e1, e2, e4, e4 the corresponding orthonormal
frame. As for any direct orthonormal frame relative to the orientation induced by the
natural complex structure J of CP2, we have

(23) ω(e1, e2)ω(e3, e4)− ω(e1, e3)ω(e2, e4) + ω(e1, e4)ω(e2, e3) = 1,

since the volume form of gFS for the chosen orientation is ω∧ω
2

. By (19), with c = 4, it
follows that

gFS(RFS
e1,e2

e3, e4) = ω(e1, e3)ω(e2, e4)− ω(e1, e4)ω(e2, e3)

+ 2ω(e1, e2)ω(e3, e4)

= −1 + 3ω(e1, e2)ω(e3, e4)

= −1 + 3
(
ω(e1, e2)

)2
,

(24)

as ω is self-dual. In view of (14) in Proposition 2.5 and of (24), we have

(25)
(
ω(ei, ej)

)2
=

1

3
,

for any i, j, i 6= j. Up to possibly changing J into −J , we may then arrange that

ω(e1, e2) = ω(e3, e4) = ω(e1, e3)

= −ω(e2, e4) = ω(e1, e4) = ω(e2, e3) =
1√
3
,

(26)

i.e. that

Je1 =
e2 + e3 + e4√

3
, Je2 =

−e1 + e3 − e4√
3

,

Je3 =
−e1 − e2 + e4√

3
, Je4 =

−e1 + e2 − e3√
3

.
(27)

By making explicit the identities ∇eiJe1 = J∇eie1, i = 1, 2, 3, 4, via (11) and (27) we easily
get:

(28) da1(e2) = da1(e3) = da1(e4),

(29) da2(e1) = −da2(e3) = da2(e4),

(30) da3(e1) = da3(e2) = −da3(e4),

(31) da4(e1) = −da4(e2) = da4(e3).

From (28) we infer that the vector fields e2 − e3, and e2 − e4 both belong to the kernel
of da1; it follows that their bracket −[e2, e4] + [e2, e3] + [e3, e4], which, by (11) is equal
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to 2a−12 da2(e3) e2 + 2a−13 da3(e4) e3 + 2a−14 da4(e2) e4, also belongs to the kernel of da1, so
that: a−12 da2(e3)da1(e2) + a−13 da3(e4)da1(e3) + a−14 da4(e2)da1(e4) = 0. By introducing the
notation

c1 := a−11 da1(e2) = a−11 da1(e3) = a−11 da1(e4),

c2 := a−12 da2(e1) = −a−12 da2(e3) = a−12 da2(e4),

c3 := a−13 da3(e1) = a−13 da3(e2) = −a−13 da3(e4),

c4 := a−14 da4(e1) = −a−14 da4(e2) = a−14 da4(e3),

(32)

and by using (28) again, this can be rewritten as (c2 + c3 + c4) c1 = 0. We thus get the
following alternative:

(33) either c2 + c3 + c4 = 0 or c1 = 0.

By considering (29), (30) and (31), we similarly obtain the following three alternatives:

(34) either c1 + c3 − c4 = 0 or c2 = 0,

(35) either c1 − c2 + c4 = 0 or c3 = 0,

(36) either c1 + c2 − c3 = 0 or c4 = 0.

Since the matrix


0 1 1 1
1 0 1 −1
1 −1 0 1
1 1 −1 0

 is invertible, the left hand sides of (33), (34), (35),

(36) cannot be all equal to zero, unless all ci are zero, which would imply that each aj is
a function of xj only, hence that the Fubini-Study metric gFS is flat. It then follows that
ci = 0, for some i. As just observed, this implies that ai is a function of xi only, and we can
then consider that ai is constant. By (13), this implies that RFS

ei,ej
ek = −a−1j (∇eidaj)(ek)ej

for any j 6= k, both distinct from i; in particular, we then have:

(37) gFS(RFS
ei,ej

ek, ei) = 0.

On the other hand, by (19), with c = 4, we have that

(38) RFS
ei,ej

ek = ω(ei, ek) Jej − ω(ej, ek) Jei + 2ω(ei, ej) Jek,

hence gFS(RFS
ei,ej

ek, ei) = −3ω(ei, ej)ω(ei, ek); from (25), we then infer:

(39) gFS(RFS
ei,ej

ek, ei) = ±1,

which evidently contradicts (37). �

Remark 3.3. Since every Riemannian metric in dimension 2 is Kähler and conformally flat,
any product of two Riemannian surfaces is Kähler and admits local orthogonal coordinates.
D. Johnson has raised the question whether, conversely, any 4-dimensional Kähler manifold
admitting local orthogonal coordinates is locally a product of two Riemannian surfaces. It
turns out that the answer is negative, as the following example shows.
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Example 3.4. Let (Σ, g) be a 3-dimensional compact Sasakian manifold with non-constant
sectional curvature. The Riemannian cone (Σ̄ := R × Σ, ḡ := e2t(dt2 + g)) is Kähler, and
locally irreducible as Riemannian manifold, according to a result of S. Gallot [6]. In
particular (Σ̄, ḡ) is not locally a product of Riemannian surfaces.

On the other hand, since the 3-dimensional Riemannian manifold (Σ, g) admits local
orthogonal coordinates by DeTurck and Yang’s result [4], (Σ̄, ḡ), which is conformal to the
Riemannian product (Σ, g)× R, also admits local orthogonal coordinates.

4. The quaternionic projective space

In this section, we consider the quaternionic projective space HPq, q ≥ 2, equipped with
its standard quaternionic Kähler structure, determined by the Riemannian metric g and a
rank 3 subbundle, Q, of the bundle of skew-symmetric endomorphisms of THPq, preserved
by the Levi-Civita of g and locally generated by triplets of almost complex structures,
J1, J2, J3, such that J1J2J3 = −Id. For any such triplet, we set ωα := g(Jα·, ·), α = 1, 2, 3.

If q = 1, HP1 is isometric, up to scaling, to the standard round sphere S4 and therefore
does admit orthogonal coordinates, cf. Example 2.4. We have however:

Proposition 4.1. For q ≥ 2, the quaternionic projective space HPq admits no local or-
thogonal coordinates.

Proof. Up to scaling, the curvature, R, of HPq, viewed as a symmetric endomorphism of
Λ2THPq, is locally given by:

(40) R(X ∧ Y ) = X ∧ Y +
3∑

α=1

JαX ∧ JαY + 2
3∑

α=1

ωα(X, Y )ω]gα ,

for any vector fields X, Y , where ω
]g
α denotes the section of Λ2THPq determined by ωα by

Riemannian duality.

Assume for a contradiction, that HPq admits an orthogonal system of coordinates,
{x1, . . . , x4q}, on some connected open set U where Q is trivialized by a triplet J1, J2, J3
as above, where R is then given by (40), and denote by {e1, . . . , e4q} the corresponding
orthonormal frame, as defined by (9). For convenience, we introduce the notation:

(41) aijk` :=
3∑

α=1

ωα(ei, ej)ωα(ek, e`).

From (14) and (40), we should have

(42) 0 = g(R(ei ∧ ej), ek ∧ e`) = aikj` + akji` + 2aijk`,

for any pairwise distinct 4-uplets i, j, k, `. For any such 4-uplet, we then infer aikj`+akji`+
ajik` = 3ajik`. Since the left hand side of this identity is invariant by circular permutation
of i, k, j, we thus obtain:

(43) aikj` = akji` = ajik`,
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for any pairwise distinct 4-uplets i, j, k, `. From the first equality in (44), we infer that∑3
α=1 ωα(ei, ek)Jαej +

∑3
α=1 ωα(ej, ek)Jαei is orthogonal to `, for any ` distinct from i, j, k,

so that

(44)
3∑

α=1

ωα(ei, ek)Jαej +
3∑

α=1

ωα(ej, ek)Jαei ∈ span(ei, ej, ek),

for any pairwise distinct triplets i, j, k.

We now fix i, k such that ω1(ei, ek) 6= 0 (for any fixed i, we can obviously chose such a
k). Denote bα := ωα(ei, ek). Then b1 6= 0 and the endomorphism

J :=
b1J1 + b2J2 + b3J3√

b21 + b22 + b23

is a well-defined section of Q on U . From (44), we get:

(45) Jej ∈ span(ei, ej, ek, J1ei, J2ei, J3ei),

for any j distinct from i, k.

At this point of the argument, we use the following easy general fact:

Lemma 4.2. Let (E, J) be a complex vector space of any dimension, V a real subspace of
E and v an element of E such that Jv belongs to R v + V . Then, v belongs to V + JV .

Proof. By hypothesis, Jv = a v + w, for some real number a and some element w of V .
If a = 0, then v = −Jw belongs to JV . If a 6= 0, then v = a−1Jv − a−1w, hence Jv =
−a−1v−a−1Jw. Since we also have Jv = a v+w, it follows that (a+a−1)v = −w−a−1Jw.
As (a + a−1) 6= 0, we infer that v = −(a + a−1)−1 (w + a−1w) belongs to V + JV . This
concludes the proof of the lemma. �

By using Lemma 4.2 for V := span(ei, ek, J1ei, J2ei, J3ei), we readily infer from (45) that
ej belongs to V +JV , for any j distinct from i, k, so actually for any j, as ei and ek already
belong to V . We would then eventually get:

(46) V + JV = THPq.
On the other hand, V +JV is generated by ei, ek, J1ei, J2ei, J3ei, Jek, hence is of dimension
at most equal to 6, whereas the dimension of THPq, is equal to 4q ≥ 8. This contradiction
completes the proof of Proposition 4.1. �

5. Open questions

While writing these notes, we have encountered several natural questions about metrics
admitting orthogonal coordinates whose answers are unknown to us. We list some of them
below:

– Is there any topological obstruction for the existence of metrics with orthogonal coor-
dinates, or does every smooth manifold carry such metrics?
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– A Riemannian product of Riemannian manifolds with orthogonal coordinates also has
orthogonal coordinates. Conversely, if a Riemannian product has orthogonal coordinates,
does this hold for the two factors?

– In view of Remark 3.3 and Example 3.4, one can ask whether there exist any 4-
dimensional Kähler metrics with orthogonal coordinates which are not locally conformal
to a Riemannian product.

– For a given Riemannian metric, can one find obstructions (in terms of the curvature
tensor) to the existence of orthogonal coordinates, other than those given by (14)? Note
that the Fubini-Study metric on CP2 carries local orthonormal frames satisfying (14), but
no orthogonal coordinates (by Proposition 3.2).

– Is every locally symmetric space carrying orthogonal coordinates locally conformally
flat? The results in this paper constitute some evidence in favor of a positive answer to
this question.
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