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Abstract. A locally conformally Kähler (lcK) manifold is a complex manifold (M,J) to-
gether with a Hermitian metric g which is conformal to a Kähler metric in the neighbourhood
of each point. In this paper we obtain three classification results in locally conformally Kähler
geometry. The first one is the classification of conformal classes on compact manifolds con-
taining two non-homothetic Kähler metrics. The second one is the classification of compact
Einstein locally conformally Kähler manifolds. The third result is the classification of the
possible (restricted) Riemannian holonomy groups of compact locally conformally Kähler
manifolds. We show that every locally (but not globally) conformally Kähler compact mani-
fold of dimension 2n has holonomy SO(2n), unless it is Vaisman, in which case it has restricted
holonomy SO(2n− 1). We also show that the restricted holonomy of a proper globally con-
formally Kähler compact manifold of dimension 2n is either SO(2n), or SO(2n− 1), or U(n),
and we give the complete description of the possible solutions in the last two cases.

1. Introduction

It is well-known that on a compact complex manifold, any conformal class admits at most
one Kähler metric compatible with the complex structure, up to a positive constant. The
situation might change if the complex structure is not fixed. One may thus naturally ask
the following question: are there any compact manifolds which admit two non-homothetic
metrics in the same conformal class, which are both Kähler (then necessarily with respect
to non-conjugate complex structures)? One of the aims of the present paper is to answer
this question by describing all such manifolds. This problem can be interpreted in terms of
conformally Kähler metrics in real dimension 2n with Riemannian holonomy contained in the
unitary group U(n). More generally, we want to classify locally conformally Kähler metrics
on compact manifolds which are Einstein or have non-generic holonomy.

Recall that a Hermitian manifold (M, g, J) of complex dimension n ≥ 2 is called locally
conformally Kähler (lcK) if around every point in M the metric g can be conformally rescaled
to a Kähler metric. If Ω := g(J ·, ·) denotes the fundamental 2-form, the above condition is
equivalent to the existence of a closed 1-form θ, called the Lee form (which is up to a constant
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equal to the logarithmic differential of the local conformal factors), such that

dΩ = 2θ ∧ Ω.

If the Lee form θ vanishes, the structure (g, J) is simply Kähler. If the Lee form does not
vanish identically, the lcK structure is called proper. When θ is exact, there exists a Kähler
metric in the conformal class of g, and the manifold is called globally conformally Kähler
(gcK). If θ is not exact, then (M, g, J) is called strictly lcK. A particular class of proper lcK
manifolds is the the class of Vaisman manifolds, whose Lee form is parallel with respect to
the Levi-Civita connexion of the metric. A Vaisman manifold is always strictly lcK since the
Lee form, being harmonic, cannot be exact.

In this paper we study three apparently independent – but actually interrelated – classifi-
cation problems:

P1. The classification of compact conformal manifolds (M2n, c) whose conformal class c
contains two non-homothetic Kähler metrics.

P2. The classification of compact proper lcK manifolds (M2n, g, J, θ) with g Einstein.

P3. The classification of compact proper lcK manifolds (M2n, g, J, θ) with reduced (i.e.
non-generic) holonomy: Hol(M, g) ( SO(2n).

It turns out that P1 and P2 are important steps (but also interesting for their own sake)
towards the solution of P3.

We are able to solve each of these problems completely. Their solutions are provided by
Theorem 1.1, Theorem 1.2 and Theorem 1.3 below. We now explain briefly these results and
describe the methods used to prove them.

The solution of Problem P1 is given by the following:

Theorem 1.1. Assume that a conformal class on a compact manifold M of real dimension
2n ≥ 4 contains two non-homothetic Kähler metrics g+ and g−, that is, there exist complex
structures J+ and J− and a non-constant function ϕ such that (g+, J+) and (g− := e−2ϕg+, J−)
are Kähler structures. Then J+ and J− commute, so that M is ambikähler for n = 2.
Moreover, for n ≥ 3, there exists a compact Kähler manifold (N, h, JN), a positive real number
b, and a function ` : (0, b) → R>0 such that (M, g+, J+) and (M, g−, J−) are obtained from
the construction described in Proposition 4.1.

The proof, whose details are given in Sections 3 and 4, relies on a commutation result for
complex structures compatible with two conformally related non-homothetic Kähler metrics.
More precisely, if (g+, J+) and (g− := e−2ϕg+, J−) are Kähler structures on a compact manifold
M of real dimension 2n ≥ 4 and ϕ is non-constant, then (g+, J−) is a proper gcK structure
on M , whose metric is Kähler with respect to J+. In Theorem 3.1 below we show, more
generally, that if a Riemannian metric g+ is lcK with respect to some complex structure
J− and Kähler with respect to another complex structure J+, then the initial lcK structure
(g−, J+) is in fact gcK and the two complex structures commute. The argument is based on
the fact that for n ≥ 3 a certain non-negative function, depending on J+, J−, and on the
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Lee form of (g+, J−), is the co-differential of a 1-form on M , and thus vanishes by Stokes’
theorem.

In dimension 2n = 4 the commutation of J+ and J− was already known. Indeed, they define
different orientations since otherwise the associated Kähler metrics would be homothetic, see
e.g. [24, Proposition 3.2] or Case 1 in the proof of Theorem 3.1 for a short argument.
In particular, Problem P1 reduces in dimension 4 to the study of ambikähler structures,
according to the terminology introduced by V. Apostolov, D. Calderbank and P. Gauduchon
in [2], where the local classification in the toric case is obtained. In full generality, the local
classification of ambikähler structures was announced recently by R. Bryant [7].

Once the commutation of J+ and J− is established, it turns out that for n ≥ 3, J+ + J−
defines a Hamiltonian 2-form of rank 1 (in the sense of [1]) with respect to both Kähler
metrics g+ and g−. One can then either use the classification of compact manifolds with
Hamiltonian forms obtained in [1] (which however is rather involved) or show directly, by
a geometric argument given in Proposition 4.2, that the solutions are obtained on the total
spaces of some S2-bundles over compact Hodge manifolds, by an Ansatz which is reminiscent
of Calabi’s construction [9], described in Proposition 4.1 below.

As a striking consequence of Theorem 1.1, we obtain that for n ≥ 3, if (M2n, g, J) is a
non-ruled compact Kähler manifold, then every conformal diffeomorphism of (M, [g]) is an
isometry of g (Corollary 4.4).

Problem P2 has been already solved in complex dimension two, as well as when the scalar
curvature is positive. Indeed, C. LeBrun [18] showed, more generally, that if a compact
complex surface (M, g) admits an Einstein metric compatible with the complex structure,

then (M, g) is either Kähler-Einstein, or homothetic to CP2#CP2 with the Page metric, or

to CP2#2CP2 with the metric constructed in [10]. Moreover, in the case of positive scalar
curvature, Problem P2 reduces, by Myers’ theorem, to the study of Einstein gcK metrics,
rather than lcK. By changing the point of view, this can be interpreted as the classification of
compact conformally-Einstein Kähler manifolds, which has been obtained by A. Derdzinski
and G. Maschler, [12].

Our main contribution towards the solution of Problem P2 is Theorem 5.2 below, where
we show, using Weitzenböck-type arguments, that every compact Einstein lcK manifold with
non-positive scalar curvature has vanishing Lee form.

Altogether, this completes the solution of Problem P2:

Theorem 1.2. If (g, J, θ) is an Einstein proper lcK structure on a compact manifold M2n,
then the Lee form is exact (θ = dϕ), and the scalar curvature of g is positive. For n = 2,

(M, g) is homothetic to either CP2#CP2 with the Page metric, or CP2#2CP2 with the metric
constructed in [10]. For n ≥ 3, the Kähler manifold (M, e−2ϕg, J) is one of the conformally-
Einstein Kähler manifolds constructed by Bérard-Bergery in [5].

We now discuss the holonomy problem for compact proper lcK manifolds, that is, Problem
P3, whose original motivation stems from [21]. By the Berger-Simons holonomy theorem, an
lcK manifold (M2n, g, J) either has reducible restricted holonomy representation, or is locally
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symmetric irreducible, or its restricted holonomy group Hol0(M, g) is one of the following:
SO(2n), U(n), SU(n), Sp(n

2
), Sp(n

2
)Sp(1), Spin(7).

In the reducible case, our crucial result is Theorem 6.2, where we show that a compact
proper lcK manifold (M2n, g, J) cannot carry a parallel distribution whose rank d satisfies
2 ≤ d ≤ 2n− 2. On the other hand, the cases d = 1 and d = 2n− 1 were recently classified
for n ≥ 3 by the second named author in [21]. In Theorem 6.6 below we give an alternate
proof of this classification, which is not only simpler, but also covers the missing case n = 2.

The remaining possible cases given by the Berger-Simons theorem are either Einstein or
Kähler (and gcK by Theorem 3.1), and thus fall into the previous classification results. Sum-
marizing, we have the following classification result for the possible (restricted) holonomy
groups of compact proper lcK manifolds:

Theorem 1.3. Let (M2n, g, J, θ), n ≥ 2, be a compact proper lcK manifold with non-generic
holonomy group Hol(M, g) ( SO(2n). Then the following exclusive possibilities occur:

1. (M, g, J, θ) is strictly lcK, Hol(M, g) ' SO(2n − 1) and (M, g, J, θ) is Vaisman (that
is, θ is parallel).

2. (M, g, J, θ) is gcK (that is, θ is exact) and either:
a) n ≥ 3, Hol0(M, g) ' U(n), and a finite covering of (M, g, J, θ) is obtained by the

Calabi Ansatz described in Proposition 4.1, or
b) n = 2, Hol0(M, g) ' U(2) and M is ambikähler, or
c) Hol0(M, g) ' SO(2n − 1) and a finite covering of (M, g, J, θ) is obtained by the

construction described in Theorem 6.6.

2. Preliminaries on lcK manifolds

A locally conformally Kähler (lcK) manifold is a connected Hermitian manifold (M, g, J)
of real dimension 2n ≥ 4 such that around each point, g is conformal to a metric which
is Kähler with respect to J . The covariant derivative of J with respect to the Levi-Civita
connection ∇ of g is determined by a closed 1-form θ (called the Lee form) via the formula
(see e.g. [21]):

(1) ∇XJ = X ∧ Jθ + JX ∧ θ, ∀ X ∈ TM.

Recall that if τ is any 1-form on M , Jτ is the 1-form defined by (Jτ)(X) := −τ(JX) for
every X ∈ TM , and X ∧ τ denotes the endomorphism of TM defined by (X ∧ τ)(Y ) :=
g(X, Y )τ ] − τ(Y )X. We will often identify 1-forms and vector fields via the metric g, which
will also be denoted by 〈·, ·〉 when there is no ambiguity.

Let Ω := g(J ·, ·) denote the associated 2-form of J . By (1), its exterior derivative and
co-differential are given by

(2) dΩ = 2θ ∧ Ω,

and

(3) δΩ = (2− 2n)Jθ.



CONFORMALLY RELATED KÄHLER METRICS AND THE HOLONOMY OF LCK MANIFOLDS 5

If θ ≡ 0, the structure (g, J) is simply Kähler. If θ is not identically zero, then the lcK
structure (g, J, θ) is called proper. If θ = dϕ is exact, then d(e−2ϕΩ) = 0, so the conformally
modified structure (e−2ϕg, J) is Kähler, and the structure (g, J, θ) is called globally conformally
Kähler (gcK). The lcK structure is called strictly lcK if the Lee form θ is not exact and
Vaisman if θ is parallel with respect to the Levi-Civita connexion of g.

A typical example of strictly lcK manifold, which is actually Vaisman, is S1×S2n−1, endowed
with the complex structure induced by the diffeomorphism

(Cn \ {0})/Z −→ S1 × S2n−1, [z] 7−→
(
e2πi ln |z|,

z

|z|

)
,

where [z] := {ekz ∈ Cn\{0} | k ∈ Z}. The Lee form of this lcK structure is the length element
of S1, which is parallel.

Remark 2.1. For each lcK manifold (M, g, J, θ) there exists a group homomorphism from
π1(M) to (R,+) which is trivial if and only if the structure is gcK. Indeed, π1(M) acts on the

universal covering M̃ of M , and preserves the induced lcK structure (g̃, J̃ , θ̃). Since θ̃ = dϕ

is exact on M̃ , for every γ ∈ π1(M) we have d(γ∗ϕ) = γ∗(dϕ) = γ∗(θ̃) = θ̃ = dϕ, so there
exists some real number cγ such that γ∗ϕ = ϕ + cγ. The map γ 7→ cγ is clearly a group
morphism from π1(M) to (R,+), which is trivial if and only if θ is exact on M . This shows,
in particular, that if π1(M) is finite, then every lcK structure on M is gcK.

For later use, we express, for every lcK structure (g, J, θ), the action on the Hermitian
structure J of the Riemannian curvature tensor of g, defined by

RX,Y := ∇X∇Y −∇Y∇X −∇[X,Y ].

Lemma 2.2. The following formula holds for every vector fields X, Y on a lcK manifold
(M, g, J, θ):

(4) RX,Y J = θ(X)Y ∧ Jθ − θ(Y )X ∧ Jθ − θ(Y )JX ∧ θ + θ(X)JY ∧ θ
− |θ|2Y ∧ JX + |θ|2X ∧ JY + Y ∧ J∇Xθ + JY ∧∇Xθ −X ∧ J∇Y θ − JX ∧∇Y θ.

Proof. Taking X, Y parallel at the point where the computation is done and applying (1), we
obtain:

RX,Y J = ∇X(Y ∧ Jθ + JY ∧ θ)−∇Y (X ∧ Jθ + JX ∧ θ)
= Y ∧ (∇XJ)(θ) + (∇XJ)(Y ) ∧ θ −X ∧ (∇Y J)(θ)− (∇Y J)(X) ∧ θ

+Y ∧ J∇Xθ + JY ∧∇Xθ −X ∧ J∇Y θ − JX ∧∇Y θ,

which gives (4) after a straightforward calculation using (1) again. �

Let {ei}i=1,...,2n be a local orthonormal basis of TM . Substituting Y = ej in (4), taking
the interior product with ej and summing over j = 1, . . . , 2n yields:

(5)
2n∑
j=1

(RX,ejJ)(ej) = (2n− 3)
(
θ(X)Jθ − |θ|2JX + J∇Xθ

)
− θ(JX)θ −∇JXθ − JXδθ,
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since the sum
∑2n

j=1 g(J∇ejθ, ej) vanishes, as ∇θ is symmetric.

Corollary 2.3. If the metric g of a compact lcK manifold (M, g, J, θ) is flat, then θ ≡ 0.

Proof. If the Riemannian curvature of g vanishes, (5) yields

0 = (2n− 3)
(
θ(X)Jθ − |θ|2JX + J∇Xθ

)
− θ(JX)θ −∇JXθ − JXδθ.

We make the scalar product with JX in this equation for X = ej, where {ej}j=1,...,2n is a
local orthonormal basis of TM , and sum over j = 1, . . . , 2n to obtain:

0 = (2n− 3)
(
|θ|2 − 2n|θ|2 − δθ

)
− |θ|2 + δθ − 2nδθ

= −(2n− 2)2|θ|2 − 2(2n− 2)δθ.

Since n ≥ 2, this last equation yields δθ = (1 − n)|θ|2, which by Stokes’ Theorem after
integration over M gives θ ≡ 0. �

The following example shows that the corollary does not hold without the compactness
assumption.

Example 2.4. Consider the standard flat Kähler structure (g0, J0) on M := Cn \ {0}. If r
denotes the map x 7→ r(x) := |x|, the conformal metric g := r−4g0 on M is gcK with respect
to J0, with Lee form θ = −2d ln r. Moreover g is flat, being the pull-back of g0 through the
inversion x 7→ x/r2.

3. Kähler structures on lcK manifolds

The results of this section constitute an intermediary step towards the solutions of Problem
P1 (conformally related Kähler metrics) and P3 (lcK metrics with reduced holonomy). More
precisely, we study compact complex manifolds (M,J) admitting a proper lcK metric g which
is Kähler with respect to another complex structure I. The striking result here is that I and
J must commute. We will see that there are examples of such structures, but they are
necessarily gcK. In particular, the Riemannian metric g of a compact strictly lcK manifold
(M, g, J, θ) cannot be Kähler with respect to any complex structure on M .

Theorem 3.1. Let (M, g, J, θ) be a compact proper lcK manifold of complex dimension n ≥ 2
carrying a complex structure I, such that (M, g, I) is a Kähler manifold. Then I commutes
with J and (M, g, J, θ) is globally conformally Kähler.

Proof. The Riemannian curvature tensor of (M, g) satisfies RX,Y = RIX,IY , so in particular
we have RX,Y J = RIX,IY J , for all vector fields X and Y . Using (4), this identity implies that

〈X, θ 〉Y ∧ Jθ−〈Y, θ 〉X ∧ Jθ−〈Y, θ 〉JX ∧ θ+ 〈X, θ 〉JY ∧ θ− |θ|2Y ∧ JX + |θ|2X ∧ JY
+ Y ∧ J∇Xθ + JY ∧∇Xθ −X ∧ J∇Y θ − JX ∧∇Y θ

= 〈 IX, θ 〉IY ∧ Jθ − 〈 IY, θ 〉IX ∧ Jθ − 〈 IY, θ 〉JIX ∧ θ + 〈 IX, θ 〉JIY ∧ θ
−|θ|2IY ∧JIX+ |θ|2IX ∧JIY +IY ∧J∇IXθ+JIY ∧∇IXθ−IX ∧J∇IY θ−JIX ∧∇IY θ,
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for all vector fields X, Y . Let {ei}i=1,...,2n be a local orthonormal basis of TM , which is parallel
at the point where the computation is done. Taking the interior product with X in the above
identity and summing over X = ei, we obtain:

(6) (4− 2n)〈Y, θ 〉Jθ + 〈 JY, θ 〉θ + (2n− 4)|θ|2JY + (4− 2n)J∇Y θ +∇JY θ + δθJY

= 〈 IY, θ 〉IJθ − 〈 IJθ, θ 〉IY − 〈 IY, θ 〉tr(JI)θ + 〈 IY, θ 〉JIθ + 〈 θ, IJIY 〉θ

+|θ|2tr(IJ)IY −|θ|2IJIY −
2n∑
i=1

〈 ei, J∇Ieiθ 〉IY +IJ∇IY θ+∇IJIY θ−tr(JI)∇IY θ+JI∇IY θ.

Substituting Y = ej in (6), taking the scalar product with Jej and summing over j = 1, . . . , 2n
yields:

(7) (4n2 − 10n+ 6)|θ|2 + (4n− 6)δθ = −2tr(IJ)〈 Iθ, Jθ 〉 − 2〈 IJθ, JIθ 〉

− (tr(IJ))2|θ|2 + tr(IJIJ)|θ|2 + 2tr(IJ)
2n∑
i=1

〈 IJ∇eiθ, ei 〉 − 2
2n∑
i=1

〈 IJIJ∇eiθ, ei 〉.

On the other hand, a straightforward computation of δ(tr(IJ)JIθ) and δ(JIJIθ), using
(1) and the fact that I is parallel and ∇θ is a symmetric endomorphism, yields the following
identities:

tr(IJ)
2n∑
i=1

〈 ei, IJ∇eiθ 〉 = −δ(tr(IJ)JIθ) + (2n− 2)tr(IJ)〈 Iθ, Jθ 〉 − 2〈 IJθ, JIθ 〉+ 2|θ|2,

2n∑
i=1

〈 ei, IJIJ∇eiθ 〉 = −δ(JIJIθ)− (2n− 3)〈 IJθ, JIθ 〉+ tr(IJ)〈 Iθ, Jθ 〉+ |θ|2.

Substituting these in (7), we obtain

(8) (4n2 − 10n+ 4)|θ|2 − (4n− 8)tr(IJ)〈 Iθ, Jθ 〉 − (4n− 12)〈 IJθ, JIθ 〉
− tr(IJIJ)|θ|2 + (tr(IJ))2|θ|2 = −(4n− 6)δθ − 2δ(tr(IJ)JIθ) + 2δ(JIJIθ).

In order to exploit this formula we need to distinguish two cases.

Case 1: If n = 2, (8) becomes:

(9) 4〈 IJθ, JIθ 〉 − tr(IJIJ)|θ|2 + (tr(IJ))2|θ|2 = −2δ(θ + tr(IJ)JIθ − JIJIθ).

We claim that I and J define opposite orientations on TM . Assume for a contradic-
tion that they define the same orientation. Recall that complex structures compatible with
the orientation on an oriented 4-dimensional Euclidean vector space may be identified with
imaginary quaternions of norm 1 acting on H by left multiplication. For any q, v ∈ H, we
have: 〈 qv, v 〉 = 1

4
tr(q)|v|2, where tr(q) denotes the trace of q acting by left multiplication

on H. For every x ∈ M we can identify TxM with H and view I, J as unit quaternions
acting by left multiplication. The previous relation gives the following pointwise equal-
ity: 4〈 IJIJθ, θ 〉 = tr(IJIJ)|θ|2. Substituting in (9) and integrating over M , implies that
tr(IJ) = 0, so I and J anti-commute.
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Equation (9) then further implies that δθ = 0. Replacing these two last equalities in (7)
yields |θ|2 = 0. This contradicts the assumption that the lcK structure (g, J, θ) is proper.
Hence, I and J define opposite orientations and thus they commute, proving our claim.

Note that, alternatively, the claim also follows from a result by M. Pontecorvo [24, Propo-
sition 3.2].

Now, since (M, g, I) is a compact Kähler manifold, it follows that its first Betti number is
even. Y.-T. Siu [25] proved that each compact complex surface with even first Betti number
carries a Kähler metric (see also [8] and [16]). On the other hand, I. Vaisman proved that if
a complex manifold (M,J) admits a J-compatible Kähler metric, then every lcK metric on
(M,J) is gcK [27, Theorem 2.1]. This shows that θ is exact.

Case 2. We assume from now on that n ≥ 3. The integral over the compact manifold M
of the left hand side of (8) is zero, since the right hand side is the co-differential of a 1-form.
On the other hand, the following inequalities hold:

(10) −(4n− 8)tr(IJ)〈 Iθ, Jθ 〉 ≥ −(4n− 8)|tr(IJ)||θ|2 ≥ −
(
(tr(IJ))2 + (2n− 4)2

)
|θ|2,

(11) −(4n− 12)〈 IJθ, JIθ 〉 ≥ −(4n− 12)|θ|2,

(it is here that the assumption n ≥ 3 is needed), and

(12) −tr(IJIJ)|θ|2 ≥ −2n|θ|2.

Summing up the inequalities (10)–(12) shows that the left hand side of (8) is non-negative.
As the right hand side of (8) is a divergence, we deduce that both terms vanish identically,
and thus equality holds in (10)–(12).

Let M ′ denote the set of points where θ is not zero and let M ′′ denote the interior of M \M ′.
The open set M ′ ∪M ′′ is clearly dense in M . At each point of M ′, the fact that equality
holds in (12) shows that (IJ)2 = Id. Moreover, the endomorphism (IJ)2 is ∇-parallel along
M ′′ (since θ = 0 along M ′′, so (M ′′, g, J) is Kähler). We deduce that (IJ)2 is ∇-parallel
along M ′ ∪M ′′, thus along the whole of M by density. Moreover M ′ is not empty (since
by assumption the lcK structure (g, J, θ) is proper). As (IJ)2 = Id on M ′, we finally get
(IJ)2 = Id on M , which amounts saying that I and J commute at each point of M .

Moreover, the fact that equality holds in (10) shows that for each point x ∈ M ′ there
exists εx ∈ {−1, 1} with Iθ = εxJθ and tr(IJ) = εx(2n − 4). The function tr(IJ) is thus
locally constant on M ′ and on M ′′ (since as before IJ is parallel along M ′′), so by density,
it is constant on M . After replacing I with −I if necessary we may thus assume that
tr(IJ) = 2n− 4, and Iθ = Jθ on M (this last relation holds tautologically on M \M ′).

This shows that the orthogonal involution IJ has two eigenvalues: 1 with multiplicity
2n− 2 and −1 with multiplicity 2. At each point of M ′, since θ and Iθ are eigenvectors of IJ
for the eigenvalue −1, it follows that IJX = X, for every X orthogonal on θ and Jθ, which
can also be expressed by the formula

(13) JX = −IX +
2

|θ2|
(〈X, θ 〉Iθ − 〈X, Iθ 〉θ) , ∀X ∈ TM ′.
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We thus have ΩJ = −ΩI + 2
|θ2|θ ∧ Iθ on M ′. In particular, we have

(14) θ ∧ ΩJ = −θ ∧ ΩI ,

at every point of M (as this relation holds tautologically on M \ M ′, where by definition
θ = 0). From (2) and (14) we get

(15) dΩJ = 2θ ∧ ΩJ = −2θ ∧ ΩI = −2LI(θ),

where LI : Λ∗M → Λ∗M , LI(α) := ΩI ∧ α is the Lefschetz operator of the Kähler manifold
(M, g, I).

Using the Hodge decomposition on M , we decompose the closed 1-form θ as θ = θH + dϕ,
where θH is the harmonic part of θ and ϕ is a smooth real-valued function on M . From (15)
and the fact that LI commutes with the exterior differential, we obtain

(16) LI(θH) = −d

(
1

2
ΩJ + LIϕ

)
.

Moreover, since LI commutes on any Kähler manifold with the Laplace operator (see e.g.
[20]), the left-hand side of (16) is a harmonic form and the right-hand side is exact. This
implies that LIθH vanishes, so θH = 0 since LI is injective on 1-forms for n ≥ 2. Thus θ = dϕ
is exact, so (M, g, J, θ) is globally conformally Kähler. �

Example 3.2. As in Example 2.4, we consider on M := Cn \ {0} the standard flat structure
(g0, J0). Let J be a constant complex structure on M , compatible with g0 and which does
not commute with J0. Then, (M, g := r−4g0, J) is gcK and (M, g, I) is Kähler, where I is
the pull-back of J0 through the inversion, but J and I do not commute. This example shows
that the compactness assumption in Theorem 3.1 is necessary.

4. Conformal classes with non-homothetic Kähler metrics

As an application of Theorem 3.1, we will describe in this section all compact conformal
manifolds (M2n, c) with n ≥ 2, such that the conformal class c contains two non-homothetic
Kähler metrics, thus solving Problem P1.

We start by constructing a class of examples, which will be referred to as the Calabi Ansatz.

Proposition 4.1. Let (N, h, JN ,ΩN) be a Hodge manifold, i.e. a compact Kähler manifold
with [ΩN ] ∈ H2(N, 2πZ). Let π : S → N be the principal S1-bundle with the connection (given
by Chern-Weil theory) whose curvature form is the pull-back to S of iΩN . For any positive
real number `, let h` be the unique Riemannian metric on S such that π is a Riemannian
submersion with fibers of length 2π`. For every b > 0 and smooth function ` : (0, b) → R>0,
consider the metric g` := h`(r) + dr2 on M ′ := S × (0, b). Then the metric g` is globally
conformally Kähler with respect to two non-conjugate complex structures J+, J− on M ′.
Moreover, if `2(r) = r2(1 +A(r2)) near r = 0 and `2(r) = (b− r)2(1 +B((b− r)2)) near r = b
for smooth functions A,B defined near 0 with A(0) = B(0) = 0, then the metric completion
M of (M ′, g`) is a smooth manifold diffeomorphic to the total space of an S2-bundle over N ,
and g`, J+, and J− extend smoothly to M .
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Proof. Let iω ∈ Ω1(S, iR) denote the connection form on S satisfying

(17) dω = π∗(ΩN).

The metric h` is defined by h` := π∗h + `2ω ⊗ ω. Let ξ denote the vector field on S induced
by the S1-action. By definition ξ verifies π∗ξ = 0 and ω(ξ) = 1. Let X∗ denote the horizontal
lift of a vector field X on N (defined by ω(X∗) = 0 and π∗(X

∗) = X). By the equivariance
of the connection we have [ξ,X∗] = 0 for every vector field X, and from (17) we readily
obtain [X∗, Y ∗] = [X, Y ]∗−ΩN(X, Y )ξ. The Koszul formula immediately gives the covariant
derivative ∇` of the metric g` := h`(r) + dr2 on M ′ := S × (0, b):

∇`
ξ∂r = ∇`

∂rξ =
`′

`
ξ,

∇`
ξξ = −``′∂r,

∇`
∂r∂r = ∇`

X∗∂r = ∇`
∂rX

∗ = 0,

∇`
X∗ξ = ∇`

ξX
∗ =

`2

2
(JNX)∗,

∇`
X∗Y

∗ = (∇h
XY )∗ − 1

2
ΩN(X, Y )ξ,

where `′ is the derivative of `.

We now define for ε = ±1 the Hermitian structures Jε on (M ′, g`) by

Jε(X
∗) := ε(JNX)∗, Jε(ξ) := `∂r, Jε(∂r) := −`−1ξ.

A straightforward calculation using the previous formulas yields ∇`
ZJε = Z ∧ Jεθε + JεZ ∧ θε

for every vector field Z on M , where θε := 1
2
ε`dr. Thus (g`, Jε) are globally conformally

Kähler structures on M ′ with Lee forms

θε = εdϕ, where ϕ(r) :=
1

2

∫ r

0

`(t)dt.

The last statement of the proposition follows from a coordinate change (from polar to
Euclidean coordinates) in the fibers S1 × (0, b) of the Riemannian submersion M ′ → N .
Indeed, in a neighbourhood of r = 0, with Euclidean coodinates x1 := r cos t and x2 := r sin t,
we have: (

∂r
1
r
ξ

)
=

(
cos t sin t
− sin t cos t

)(
∂x1
∂x2

)
,

where ξ = ∂t. In these coordinates, we have the following formulas for the complex structures
and the metric:

Jε(∂x1) =
`

r

(
−A(r2)

`2
x1x2∂x1 −

(
A(r2)

`2
x21 + 1

)
∂x2

)
,

Jε(∂x2) =
`

r

(
A(r2)

`2
x1x2∂x2 +

(
1− A(r2)

`2
x22

)
∂x1

)
,

g = π∗h+

(
1 +

A(r2)

r2
x22

)
dx21 +

(
1 +

A(r2)

r2
x21

)
dx22 − 2

A(r2)

r2
x1x2dx1dx2.
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From the assumption on A, the functions `
r

and A(r2)
`2

extend smoothly at r = 0, therefore, the
complex structures J−, J+ and the metric g extend smoothly at r = 0. The same argument
applies to the other extremal point r = b. Hence, the metric g` on M ′ extends to a smooth
metric g0 onM , and there exist two distinct Kähler structures onM in the conformal class [g0],
whose restrictions to M ′ are equal to (g+ := eϕg`, J+) and (g− := e−ϕg`, J−) respectively. �

Conversely, the Calabi Ansatz can be characterized geometrically by the following data:

Proposition 4.2. Let (M, g0, I) be a compact globally conformally Kähler manifold with non-
trivial Lee form θ0 = dϕ0 and denote by ∇0 the Levi-Civita connection of g0. We assume that
on M ′, the set where θ0 is not vanishing, its derivative is given by:

(18) ∇0
Xθ0 = f (θ0(X)θ0 + Iθ0(X)Iθ0) , ∀X ∈ TM ′,

for some function f ∈ C∞(M ′). We denote by ξ the metric dual of Iθ0 with respect to g0 and
further assume that there exists a distribution V on M , such that Vx is spanned by ξ and Iξ,
for every x ∈M ′. Then (M, g0) is obtained from the Calabi Ansatz.

Proof. We first notice that M ′ 6= M . Indeed, θ0 vanishes at the extrema of the function ϕ0

defined on the compact manifold M .

From (18) and (1) we deduce the following formulas on M ′:

(19) ∇0
X(Iξ) = −f(〈X, Iξ 〉Iξ + 〈X, ξ 〉ξ), ∀X ∈ TM ′,

(20) ∇0
Xξ = (1 + f)(〈X, ξ 〉Iξ − 〈X, Iξ 〉ξ)− |ξ|2IX, ∀X ∈ TM ′,

which imply that the distribution V is totally geodesic along M ′.

Equation (20) also shows that ∇0ξ is a skew-symmetric endomorphism, hence ξ is a Killing
vector field on (M ′, g0). Since ξ is tautologically Killing on the interior of M \M ′, it is Killing
on the whole of M by density. We denote by N one of the connected components of the
zero set of ξ, which is thus a compact totally geodesic submanifold of M . Applying (20) at
a sequence of points of M ′ converging to some point of N , we see that dξ[ has rank at most
2 at each point of N . Moreover ξ is not identically 0, thus showing that N has co-dimension
2, and its normal bundle equals V|N .

Let Φs denote the 1-parameter group of isometries of (M, g0) induced by ξ and let us fix
some p ∈ N . For every s ∈ R, the differential of Φs at p is an isometry of TpM which fixes
TpN , so it is determined by a rotation of angle k(s) in Vp. From Φs ◦ Φs′ = Φs+s′ we obtain
k(s) = ks, for some k ∈ R∗. For s0 = 2π/k, the isometry Φs0 fixes p and its differential at p
is the identity. We obtain that Φs0 = IdM , so ξ has closed orbits. Note that any p ∈ N is
a fixed point of Φs, for all s ∈ R, and that Φ s0

2
is an orientation preserving isometry whose

differential at p squares to the identity, and is the identity on TpN = V⊥p . Hence, (dΦ s0
2

)p|Vp
is either plus or minus the identity of Vp. The first possibility would contradict the definition
of s0, so we have

(21) (dΦ s0
2

)p|Vp = −IdVp .
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Let γ be a geodesic of (M, g0) starting from p, such that V := γ̇(0) ∈ Vp and |γ̇(0)| = 1.
Since V is totally geodesic, γ̇(t) ∈ V for all t. The function g0(ξ, γ̇) clearly vanishes at t = 0
and its derivative along γ equals g0(∇0

γ̇ξ, γ̇) = 0, so g0(ξ, γ̇) ≡ 0 along γ. We thus have

(22) Iξγ(t) = cp,V (t)γ̇(t),

for some function cp,V : R→ R. Clearly c2p,V (t) = |ξγ(t)|2, so cp,V is smooth at all points t with
γ(t) ∈ M ′. By (19)–(20) we easily check that [ξ, Iξ] = 0 on M ′, and thus on M by density.
Hence, each isometry Φs preserves Iξ. Moreover, Φs(γ(t)) is the geodesic starting at p with
tangent vector (Φs)∗(γ̇(0)). This shows that the function cp := cp,V does not depend on the
unit vector V in Vp defining γ.

We claim that in fact, for all p, q ∈ N , cp(t) = cq(t), for all t. In other words, the norm of
ξγ(t) only depends on t and not on the initial data of γ starting in N . For a fixed t ∈ R, we
consider the map F : SN →M , F (V ) := exp(tV ), where SN denotes the unit normal bundle
of N . By the Gauss’ Lemma, we know that dFV (TV SN) ⊂ (γ̇p,V (t))⊥, where γp,V denotes the
geodesic starting at p with unit speed vector V . Since ξ is Killing, the function g0(γ̇p,V , ξ) is
constant along γp,V and thus identically zero, because ξ vanishes on N . As γ̇p,V ∈ V , it follows
that γ̇p,V is proportional to Iξ, which is the metric dual of −θ0. On the other hand, (18)
immediately gives d|θ0|2 = 2f |θ0|2θ0. Therefore, d|θ0|2 vanishes on dFV (TV SN), showing
that the norm of ξγ(t) does not depend on the starting point either. Hence, we further denote
the function cp = cp,V simply by c : R→ R.

Differentiating the relation γp,V (t) = γp,−V (−t) which holds for all geodesics and for all t,
yields γ̇p,V (t) = −γ̇p,−V (−t). Therefore, from (22) we conclude that c(−t) = −c(t), for all
t. Moreover, c(t) is non-vanishing for |t| 6= 0 and sufficiently small. By replacing I with −I
if necessary, we thus can assume that c is negative on some interval (0, ε) and positive on
(−ε, 0). Since (ϕ0(γ(t)))′ = θ0(γ̇(t)) = −c(t), we conclude that N is a connected component
of the level set of a local minimum of ϕ0.

By compactness of N , the exponential map defined on the normal bundle of N is surjective,
so its image contains points where ϕ0 attains its absolute maximum. At such a point, the
vector field ξ vanishes, so (22) shows that t0 := inf{t > 0 | c(t) = 0} is well-defined and
positive. Let N ′ be a connected component of the inverse image through ϕ0 of ϕ0(expp(t0V )),
for some p ∈ N and some unit vector V in Vp. The above argument, applied to N ′ instead
of N , shows that N ′ is a connected component of the level set of a local maximum of ϕ0.
It also shows that expq(t0W ) ∈ N ′ for any q ∈ N and any unit vector W ∈ Vq. From (21)
it follows that γ̇p,−V (t0) = −γ̇p,V (t0), for any p ∈ N and any unit vector V ∈ Vp. In other
words, if a geodesic starting at a point p of N with unit speed vector V ∈ Vp arrives after
time t0 in a point p′ ∈ N ′ with speed vector V ′ ∈ Vp′ , then the geodesic starting at p with
speed vector −V arrives after time t0 in p′ with speed vector −V ′, showing that these two
geodesics close up to one geodesic. Hence, M equals the image through the exponential map
of the compact subset of the normal bundle of N consisting of vectors of norm ≤ t0, thus
showing that M \M ′ = N ∪N ′.

Consequently, the function ϕ0 attains its minimum on N and its maximum on N ′ and
has no other critical point. Let S be some level set corresponding to a regular value of ϕ0.
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Consider the unit vector field ζ := Iξ
|Iξ| on M ′ (see Figure 1 for a visualization of the vector

fields ξ and ζ and of the level sets of ϕ0).

V

p γ(t0)

γ(t) ζ

minϕ0 maxϕ0

ϕ0

ξ

N ′N

Φs

Figure 1

From (19) and (20) we readily compute on M ′:

(23) ∇0
Xζ = − f

|ξ|
〈X, ξ 〉ξ, ∀X ∈ TM ′,

and

(24) ∇0
ζIζ = 0.

In particular, we have ∇0
ζζ = 0, so if Ψ denotes the (local) flow of ζ, the curve t 7→ Ψt(x)

is a geodesic for every x ∈M ′, that is, Ψt(x) = expx(tζ). Note that by (23), we have dζ[ = 0
so the Cartan formula implies Lζζ[ = d(ζyζ[) + ζydζ[ = 0, which can also be written as

(25) (Lζg0)(ζ,X) = 0, ∀X ∈ TM ′.

We claim that for fixed t, ϕ0(Ψt(x)) does not depend on x ∈ S. To see this, let X ∈ TxS.
By definition dϕ0(X) = 0, whence g0(X, ζ) = 0. We need to show that dϕ0((Ψt)∗(X)) = 0.
This is equivalent to 0 = g0(ζ, (Ψt)∗(X)) = (Ψ∗tg0)(ζ,X), which clearly holds at t = 0.
Moreover, from (25) we see that the derivative of the function (Ψ∗tg0)(ζ,X) vanishes:

d

dt
((Ψ∗tg0)(ζ,X)) = (Ψ∗tLζg0)(ζ,X) = (Lζg0)(ζ, (Ψt)∗(X)) = 0.
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This shows that for every x ∈ S, expx(tζ) belongs to the same level set of ϕ0. Moreover,
ϕ0(expx(tζ)) is decreasing in t since its derivative equals dϕ0(ζ) = θ0(ζ) = −|ξ|. Take the
smallest t1 > 0 such that π(x) := expx(t1ζ) ∈ N for every x ∈ S.

Claim. The map π is a Riemannian submersion from (S, g0|S) to (N, g0|N) with totally
geodesic 1-dimensional fibers tangent to ξ.

Proof of the Claim. First, the Killing vector field ξ commutes with ζ, so (Ψt)∗ξ = ξ for all
t < t1. Making t tend to t1 implies π∗(ξx) = ξπ(x) = 0 for every x ∈ S, since π(x) ∈ N . Thus
ξ is tangent to the fibers of π. From (20) we get ∇IζIζ = f |ξ|ζ, so Iζ is a geodesic vector
field on S. Since Iζ is proportional to ξ, it is also tangent to the fibres of π.

Take now any tangent vector X ∈ TxS orthogonal to Iζ and denote by Xt := (Ψt)∗(X),
which makes sense for all t < t1. By construction we have π∗(X) = lim

t→t1
Xt. Since 0 =

[ζ,Xt] = ∇0
ζXt −∇0

Xt
ζ, we get by (23) and (24):

ζ(〈Xt, Iζ 〉) = 〈∇0
ζXt, Iζ 〉+ 〈Xt, ∇0

ζIζ 〉 = 〈∇0
Xt
ζ, Iζ 〉 = −f |ξ|〈Xt, Iζ 〉.

The function 〈Xt, Iζ 〉 vanishes at t = 0 and satisfies a first order linear ODE along the
geodesic γ(t) := expx(tζ), so it vanishes identically. Thus, Xt is orthogonal to Iζ for all
t < t1. Moreover, the vector field Xt along γ has constant norm:

(26) ζ(|Xt|2) = 2〈∇0
ζXt, Xt 〉 = 2〈∇0

Xt
ζ, Xt 〉

(23)
= −2f

|ξ|
〈Xt, ξ 〉2 = −2f |ξ|〈Xt, Iζ 〉2 = 0.

This shows that |π∗(X)|2 = |X|2, thus proving the claim.

Let us now consider the smallest t2 > 0 such that π(x) := expx(−t2ζ) ∈ N ′ for every x ∈ S
and let b := t1 + t2. The flow of the geodesic vector field ζ defines a diffeomorphism between
(0, b)×S and M ′, which maps (r, x) onto expx((r−t2)ζ). With respect to this diffeomorphism,
the vector field ζ is identified to ∂r, the metric reads g0 = dr2 + kr, where kr is a family of
Riemannian metrics on S, and the function |θ0| only depends on r, say |θ0| = α(r). It follows
that θ0 = αdr and since dϕ0 = θ0, we see that ϕ0 = ϕ0(r) and ϕ′0 = α.

The previous claim actually shows that for every r ∈ (0, b), kr = π∗(h) + τr ⊗ τr, where
τr := Iζ[ and h := g0|N . From (23) and (24) we readily obtain

τ̇r = Lζ(Iζ[) = −fαIζ[ = −fατr.

This shows that τr = `(r)ω with `(r) := e−
∫ r
0 f(t)α(t)dt, where ω denotes the connection 1-form

on the S1-bundle S → N induced by the Riemannian submersion π. Finally, the metric on
M ′ reads g0 = dr2 + π∗(h) + `2ω ⊗ ω, showing that g0 has the form of the metric described
in Proposition 4.1. �

4.1. Proof of Theorem 1.1. We can now finish the classification of compact manifolds
carrying two conformally related non-homothetic Kähler metrics. Assume that (g+, J+) and
(g−, J−) are Kähler structures on a compact manifold M of real dimension 2n ≥ 4 with
g+ = e2ϕg− for some non-constant function ϕ. Note that J+ is not conjugate to J−. Indeed,
if J+ were equal to ±J−, then Ω+ = ±e2ϕΩ−, so 0 = dΩ+ = ±2e2ϕdϕ ∧ Ω− would imply
dϕ = 0, so ϕ would be constant.
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We introduce the following notation, in order to use the results from Section 3:

g := g+, I := J+, J := J−, ΩI := Ω+ = g(J+·, ·), ΩJ := g(J ·, ·) = e2ϕΩ−.

Then (M, g, I) is Kähler, and (M, g, J) is lcK (in fact globally conformally Kähler), with Lee
form θ := dϕ. This last statement follows from (2), since dΩJ = 2e2ϕdϕ ∧ Ω− = 2dϕ ∧ ΩJ .

The first part of Theorem 3.1 shows that I and J commute, which proves the statement of
Theorem 1.1 for n = 2.

Assume from now on that n ≥ 3. The proof of the Theorem 3.1 shows that after replacing
I by −I if necessary, one has Iθ = Jθ and tr(IJ) = 2n− 4.

Let us consider the 2-form σ := 1
2
ΩI + 1

2
ΩJ , corresponding to the endomorphism I + J of

TM via the metric g. We denote again by M ′ the open set where θ is non-vanishing. By
(13), on M ′ we have

(27) σ =
1

|θ|2
θ ∧ Iθ.

Since I is ∇-parallel (where ∇ is the Levi-Civita connection of g), we obtain by (1) that
∇Xσ = 1

2
(X ∧ Jθ + JX ∧ θ). Substituting ΩJ = 2σ − ΩI , and using the fact that σ(θ) = Iθ

we obtain the following formula for the covariant derivative of σ:

∇Xσ =
1

2
∇XΩJ =

1

2
(X ∧ Jθ + JX ∧ θ)

=
1

2
(X ∧ (2σ − I)θ + (2σ − I)X ∧ θ)

=
1

2
(X ∧ Iθ − IX ∧ θ) + σ(X) ∧ θ.

Since (27) gives θ ∧ σ = 0, we get 0 = Xy(θ ∧ σ) = 〈X, θ 〉σ − θ ∧ σ(X) for every X ∈ TM .
The previous computation thus yields

(28) ∇Xσ =
1

2
(X ∧ Iθ − IX ∧ θ)− 〈X, θ 〉σ, ∀X ∈ TM.

We consider now the 2-form σ̃ := eϕσ. By (28), its covariant differential reads:

∇X σ̃ =
eϕ

2
(X ∧ Iθ − IX ∧ θ), ∀X ∈ TM.

Equivalently, this equation can be written as

(29) ∇X σ̃ =
1

2
(d(tr σ̃) ∧ IX − dc(tr σ̃) ∧X), ∀X ∈ TM,

where tr σ̃ := 〈 σ̃, ΩI 〉 = eϕ is the trace with respect to the Kähler form ΩI and dc denotes
the twisted exterior differential defined by dcα :=

∑
i Iei ∧∇eiα, for any form α.

A real (1, 1)-form on a Kähler manifold (M, g, I,ΩI) satisfying (29) is called a Hamiltonian
2-form (see [1]). Compact Kähler manifolds carrying such forms are completely described in
[3, Theorem 5]. In the case where the Hamiltonian form has rank 2, these are exactly the
manifolds obtained from the Calabi Ansatz described in Proposition 4.1.
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However, the statement and the proof of [3, Theorem 5] are rather involved, and it is not
completely clear that the construction described in that theorem is equivalent to the Calabi
Ansatz. We will thus provide here a more direct proof.

All we need is to show that the globally conformally Kähler structure on M determined by
g0 := eϕg− = e−ϕg+ and I := J+ satisfies the hypotheses of Proposition 4.2. We start with
the following:

Lemma 4.3. On the open set M ′ where θ is not vanishing, the covariant derivative of θ with
respect to g is given by

(30) ∇Xθ =
1

2
|θ|2X − 1

2

(
δθ

|θ|2
+ n+ 1

)
〈X, θ 〉θ − 1

2

(
δθ

|θ|2
+ n− 1

)
〈X, Iθ 〉Iθ.

Proof. Using the fact that I and J commute, Iθ = Jθ and tr(IJ) = 2n− 4, (7) simplifies to

(31)
2n∑
i=1

〈 IJ∇eiθ, ei 〉 = 2(n− 1)|θ|2 + δθ.

Substituting this into (6), we obtain

(32) 2(2− n)〈Y, θ 〉Jθ − 2n〈Y, Jθ 〉θ + (2n− 5)|θ|2JY + |θ|2IY + δθ(JY + IY )

+ 2(2− n)J∇Y θ + 2∇JY θ + 2(n− 2)∇IY θ − 2IJ∇IY θ = 0.

Differentiating (27) on M ′ yields

(33) ∇Xσ = −2〈∇Xθ, θ 〉
|θ|4

θ ∧ Iθ +
1

|θ|2
(∇Xθ ∧ Iθ + θ ∧ I∇Xθ).

Comparing with (28), we obtain

(34)
1

2
(X ∧ Iθ − IX ∧ θ)− 〈X, θ 〉σ = −2〈∇Xθ, θ 〉

|θ|4
θ ∧ Iθ +

1

|θ|2
(∇Xθ ∧ Iθ + θ ∧ I∇Xθ).

Taking the interior product with Iθ in the last equality, we get

(35)
1

2
〈X, Iθ 〉Iθ − 1

2
|θ|2X +

1

2
〈X, θ 〉θ =

〈∇Xθ, θ 〉
|θ|2

θ +
1

|θ|2
〈∇Xθ, Iθ 〉Iθ −∇Xθ.

We deduce that the following equality holds:

(36) ∇Xθ =
1

2
|θ|2X + α(X)θ + β(X)Iθ,

where α and β are the following 1-forms:

(37) α =
1

2

(
d(|θ|2)
|θ|2

− θ
)
, β =

1

|θ|2
∇Iθθ −

1

2
Iθ.

Since θ is closed, (36) yields 0 = α∧ θ+ β ∧ Iθ. Therefore, there exist a, b, c ∈ C∞(M ′), such
that

α = aθ + bIθ and β = bθ + cIθ.
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Moreover, (37) shows that α is closed, so da ∧ θ + db ∧ Iθ + bd(Iθ) = 0. On the other hand,
by (36), we have d(Iθ) = |θ|2ΩI + α ∧ Iθ − β ∧ θ = |θ|2ΩI + (a+ c)θ ∧ Iθ. Hence,

da ∧ θ + db ∧ Iθ + b|θ|2ΩI + b(a+ c)θ ∧ Iθ = 0.

Applying the last equality to X and IX, for a non-zero vector field X orthogonal to θ and
Iθ yields b = 0. By (36) again we have

(38) −δθ =
2n∑
i=1

〈 ei, ∇eiθ 〉 = (n+ a+ c)|θ|2.

Substituting Y by θ in (32) and using (36), we obtain

(39)
(
δθ + (1 + (2− n)a+ nc)|θ|2

)
Iθ = 0.

From (38) and (39), it follows that

a = −1

2

(
δθ

|θ|2
+ n+ 1

)
and c = −1

2

(
δθ

|θ|2
+ n− 1

)
.

This proves the lemma. �

We write (30) as

(40) ∇Xθ =
1

2
g(θ, θ)X[ − 1

2
(f + 2)θ(X)θ − 1

2
fIθ(X)Iθ,

where f :=
(
δθ
|θ|2 + n− 1

)
. Note that we no longer identify vectors and 1-forms in this

relation, since we will now perform a conformal change of the metric.

Namely, we consider the “average metric” g0 := eϕg− = e−ϕg+ and denote by ∇0 its
Levi-Civita covariant derivative, by θ0 the Lee form of I := J+ with respect to g0 and by
Ω0 := g0(I·, ·). Since dΩ0 = d(e−ϕΩ+) = −e−ϕdϕ∧Ω+ = −dϕ∧Ω0, we get θ0 = −1

2
dϕ = −1

2
θ.

From (40) we immediately get

(41) ∇Xθ0 = −g(θ0, θ0)X
[ + (f + 2)θ0(X)θ0 + fIθ0(X)Iθ0.

The classical formula relating the covariant derivatives of g and g0 = e−ϕg on 1-forms reads

∇0
Xη = ∇Xη + g(θ0, η)X[ − η(X)θ0 − θ0(X)η, ∀X ∈ TM, ∀η ∈ Ω1(M),

where [ is the index lowering with respect to g. For η = θ0, (41) becomes exactly (18).

From the proof of Theorem 3.1 it is clear that the distribution V := ker(I − J) is spanned
along M ′ by ξ and Iξ, where ξ denotes the vector field on M corresponding to Iθ0 via the
metric g0. This shows that the hypotheses of Proposition 4.2 are verified, thus concluding
the proof of Theorem 1.1.

Corollary 4.4. If n ≥ 3 and (M2n, g, J) is a non-ruled compact Kähler manifold, then every
conformal diffeomorphism of (M, [g]) is an isometry of g.
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Proof. Let f : M →M be a conformal diffeomorphism of (M, [g]). Since compact Riemannian
manifolds do not admit strict homotheties, f is either an isometry of g, or f ∗g = e−2ϕg for
some smooth non-constant function ϕ. In the latter case, (g, J) and (f ∗g, f ∗J) are conformally
related non-homothetic Kähler structures on M , so by Theorem 1.1, (M, g, J) is obtained
from the Calabi Ansatz of Proposition 4.1, thus contradicting the hypothesis that it is non-
ruled. �

The novelty of this result comes from the fact that it gives information about every single
conformal transformation. Indeed, at the infinitesimal level, it is a classical fact that confor-
mal Killing vector fields on compact Kähler manifolds are automatically Killing. On the other
hand, this does not imply that every conformal transformation of a compact Kähler manifold
is isometric, and this is actually not true on some ruled manifolds: the transformation defined
by the antipodal map of the fibers in the Calabi Ansatz is conformal but not isometric, since
it maps the Kähler metric g+ to a scalar multiple of g− = e−2ϕg+.

5. Compact Einstein lcK manifolds

The purpose of this section is to classify compact Einstein proper lcK manifolds (Problem
P2). Note that this problem is open only in dimension n ≥ 3, since C. LeBrun has recently
shown in [18, Theorem A] that an Einstein and Hermitian metric on a compact surface is

either Kähler-Einstein, or homothetic to the Page metric [23] on CP2#CP2, or to the metric

constructed by X. Chen, C. LeBrun and B. Weber in [10] on CP2#2CP2.

Assume that (M2n, g, J, θ) is a compact proper lcK manifold and g is Einstein, with positive
scalar curvature. By Myers’ Theorem and Remark 2.1, (M, g, J) is gcK, so there exists
a function ϕ such that (M, e−2ϕg, J) is Kähler (and of course conformally Einstein). The
classification of conformally Einstein compact Kähler manifolds in complex dimension n ≥ 3
has been obtained by A. Derdzinski and G. Maschler in a series of three papers [12, 13, 14].
They showed that the only examples are given by the construction of L. Bérard-Bergery, [5].

According to the above, Problem P2 is still open only when the scalar curvature is non-
positive and n ≥ 3. Using the Bochner formula and a compactness argument, we will show
in Theorem 5.2 below that in this case the Lee form of the lcK structure must vanish, hence
the manifold is already Kähler. Note that our proof works for n = 2 as well. We start with
the following:

Lemma 5.1. On an lcK manifold (M, g, J, θ) with g Einstein, the symmetric 2-tensor S
defined by

(42) S := ∇θ + θ ⊗ θ,

is of type (1, 1) with respect to J , i.e. it satisfies S(J ·, J ·) = S(·, ·).

Proof. Since the statement is local, we may assume without loss of generality that the Lee
form is exact, θ = dϕ, which means that gK := e−2ϕg is Kähler with respect to J . We denote
the Einstein constant of g by λ.
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The formula relating the Ricci tensors of conformally equivalent metrics [6, Theorem 1.159]
reads:

RicK = Ricg + 2(n− 1) (∇gdϕ+ dϕ⊗ dϕ)− (∆gϕ+ 2(n− 1)g(dϕ, dϕ)) g.

Since gK is Kähler, RicK(J ·, J ·) = RicK(·, ·). Using this fact, together with g(J ·, J ·) = g(·, ·)
and Ricg = λg in the above formula, we infer:

(43) (∇gdϕ+ dϕ⊗ dϕ) (J ·, J ·) = (∇gdϕ+ dϕ⊗ dϕ) (·, ·),
which is equivalent to SJ = JS (when identifying S with a symmetric endomorphism via the
metric g). �

The main result of this section is the following:

Theorem 5.2. If (M2n, g, J, θ) is a compact lcK manifold and g is Einstein with non-positive
scalar curvature, then θ ≡ 0, so (M, g, J) is a Kähler-Einstein manifold.

Proof. Let {ei}i=1,...,2n be a local orthonormal basis which is parallel at the point where the
computation is done. We denote by λ ≤ 0 the Einstein constant of the metric g, so Ric = λg.
The strategy of the proof is to apply the Bochner formula to the 1-forms θ and Jθ in order
to obtain a formula relating the Einstein constant, the co-differential of the Lee form and its
square norm, which leads to a contradiction (if θ is not identically zero) at a point where
δθ + |θ|2 attains its maximum.

Let S denote as above the endomorphism S = ∇θ + θ ⊗ θ. In particular, we have

(44) Sθ = ∇θθ + |θ|2θ =
1

2
d|θ|2 + |θ|2θ

and the trace of S is computed as follows

(45) tr(S) = |θ|2 − δθ.
In the sequel, we use Lemma 5.1, ensuring that S commutes with J . We start by computing
the covariant derivative of Jθ:

∇XJθ = (∇XJ)(θ) + J(∇Xθ)
(1)
= (X ∧ Jθ + JX ∧ θ)(θ) + J(SX − θ(X)θ)

= JSX − Jθ(X)θ − |θ|2JX.
(46)

The exterior differential of Jθ is then given by the following formula:

dJθ =
2n∑
i=1

ei ∧∇eiJθ = 2JS + θ ∧ Jθ − 2|θ|2Ω.(47)

We further compute the Lie bracket between θ and Jθ (viewed as vector fields):

(48) [θ, Jθ] = ∇θJθ −∇Jθθ
(42),(46)

= JSθ − |θ|2Jθ − SJθ = −|θ|2Jθ.

By (3), we have δJθ = 0. Using the following identities:

(49) δ(θ ∧ Jθ) = (δθ)Jθ − δ(Jθ)θ − [θ, Jθ]
(48)
= (δθ + |θ|2)Jθ,
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(50) δ(|θ|2Ω) = −J(d|θ|2) + |θ|2δΩ (3)
= −J(d|θ|2) + (2− 2n)|θ|2Jθ,

we compute the Laplacian of Jθ:

∆Jθ = δdJθ
(47)
= δ(2JS + θ ∧ Jθ − 2|θ|2Ω)

(49),(50)
= 2δ(JS) + (δθ + |θ|2)Jθ + 2J(d|θ|2) + 2(2n− 2)|θ|2Jθ

= 2δ(JS) + δθJθ + 2J(d|θ|2) + (4n− 3)|θ|2Jθ.

(51)

We next compute the rough Laplacian of Jθ:

∇∗∇Jθ = −
2n∑
i=1

∇ei∇eiJθ
(46)
= −

2n∑
i=1

∇ei(JSei − Jθ(ei)θ − |θ|2Jei)

= δ(JS) +∇Jθθ + Jd(|θ|2) + |θ|2
2n∑
i=1

(∇eiJ)(ei)

(3)
= δ(JS) + SJθ + Jd(|θ|2) + (2n− 2)|θ|2Jθ
(44)
= δ(JS) + |θ|2Jθ +

3

2
Jd(|θ|2) + (2n− 2)|θ|2Jθ.

(52)

Using the Bochner formula ∆Jθ = ∇∗∇Jθ + Ric(Jθ) together with (51) and (52) yields:

δ(JS) = −(δθ)Jθ − 1

2
J(d|θ|2)− 2(n− 1)|θ|2Jθ + λJθ,

which, after applying J on both sides, reads:

(53) Jδ(JS) = (δθ)θ +
1

2
d|θ|2 + 2(n− 1)|θ|2θ − λθ.

The rough Laplacian of θ is computed as follows:

∇∗∇θ = −
2n∑
i=1

∇ei∇eiθ = −
2n∑
i=1

∇ei(Sei − θ(ei)θ) = δS − (δθ)θ +
1

2
d|θ|2.(54)

The Bochner formula ∆θ = ∇∗∇θ + Ric(θ), together with (54) yields

(55) δS = (δθ)θ − 1

2
d|θ|2 − λθ + dδθ.

On the other hand, we have:

δ(JS) = −
2n∑
i=1

(∇eiJS)(ei) = −
2n∑
i=1

(∇eiJ)(Sei)−
2n∑
i=1

J(∇eiS)(ei)

(1)
= −

2n∑
i=1

(ei ∧ Jθ + Jei ∧ θ)(Sei) + J(δS)

= −tr(S)Jθ + 2JSθ + J(δS)
(44),(45)

= (δθ)Jθ + J(d|θ|2) + |θ|2Jθ + J(δS).
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Applying J to this equality yields

(56) Jδ(JS) + δS = −(δθ)θ − d|θ|2 − |θ|2θ.

Summing up (53) and (55), and comparing with (56), we obtain:

(57) 3(δθ)θ − 2λθ + dδθ + d|θ|2 + (2n− 1)|θ|2θ = 0.

After introducing the function f := δθ + |θ|2, (57) reads:

(58) df = (2λ− 3f + (4− 2n)|θ|2)θ.

We argue by contradiction and assume that θ is not identically zero. In this case, the
integral of f over M is positive. As M is compact, there exists p0 ∈M at which f attains its
maximum, f(p0) > 0. In particular, we have (df)p0 = 0 and (∆f)(p0) ≥ 0. Applying (58) at
the point p0 yields that θp0 = 0, because 2λ−3f(p0) + (4− 2n)|θp0|2 < 0. From the definition
of f , it follows that δθ(p0) > 0.

On the other hand, taking the co-differential of (58), we obtain:

∆f = (2λ− 3f + (4− 2n)|θ|2)δθ + 3θ(f) + (2n− 4)θ(|θ|2).
Evaluating at p0 leads to a contradiction, since the left-hand side is non-negative and the
right-hand side is negative, as θp0 = 0 and (2λ− 3f(p0))δθ(p0) < 0. Thus, θ ≡ 0. �

Theorem 5.2 and the results mentioned at the beginning of this section complete the proof
of Theorem 1.2.

6. The holonomy problem for compact lcK manifolds

In this last section, we will classify compact proper lcK manifolds (M, g, J, θ) of complex
dimension n ≥ 2 with non-generic holonomy group: Hol0(M, g) ( SO(2n). We will use the
previous main results (Theorems 1.1 and 1.2), as well as an irreducibility result (Theorem 6.2
below) stating that a parallel distribution on a compact proper lcK manifold can only have
dimension (or co-dimension) equal to 1.

By the Berger-Simons holonomy theorem, the following exclusive possibilities may occur:

• The restricted holonomy group Hol0(M, g) is reducible;
• Hol0(M, g) is irreducible and (M, g) is locally symmetric;
• M is not locally symmetric, and Hol0(M, g) belongs to the following list: U(n), SU(n),

Sp(n/2), Sp(n/2)Sp(1), Spin(7) (for n = 4).

6.1. The reducible case. We start by recalling the following general fact (for a proof see
for instance the first part of the proof of [4, Theorem 4.1]):

Lemma 6.1. If (M, g) is a compact Riemannian manifold with Hol0(M, g) reducible, then
there exists a finite covering M of M , such that Hol(M, ḡ) is reducible, where ḡ denotes the
pull-back of g to M .
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Let (M, g, J, θ) be a compact proper lcK manifold of complex dimension n ≥ 2 with
Hol0(M, g) reducible. Lemma 6.1 shows that by replacing M with some (compact) finite
covering M , and by pulling back the lcK structure to M , one may assume that the tangent
bundle can be decomposed as TM = D1 ⊕D2, where D1 and D2 are two parallel orthogonal
oriented distributions of rank n1, respectively n2, with 2n = n1 + n2. By taking a further
double covering if necessary, we may assume that the distributions are oriented. The main
result of this section is the following:

Theorem 6.2. Let (M, g, J, θ) be a compact lcK manifold of complex dimension n ≥ 2. If
there exist two orthogonal parallel oriented distributions D1 and D2, of respective ranks n1 ≥ 2
and n2 ≥ 2, such that TM = D1 ⊕D2, then θ ≡ 0.

Proof. Since the arguments for n = 2 and n ≥ 3 are of different nature, we treat the two cases
separately. Consider first the case of complex dimension n = 2. Then both distributions D1

and D2 have rank 2, and their volume forms Ω1 and Ω2 define two Kähler structures on M
compatible with g by the formula g(I±·, ·) = Ω1 ± Ω2. Using the case n = 2 in Theorem 3.1
above, we deduce that J commutes with I+ and with I−. In particular, J preserves the
±1 eigenspaces of I+I−, which are exactly the distributions D1 and D2. Since J is also
orthogonal, its restriction to D1 and D2 coincides up to sign with the restriction of I+ to D1

and D2. Thus J = ±I+ or J = ±I−. In each case, the structure (g, J) is Kähler, so θ ≡ 0.

We consider now the case n ≥ 3. Let θ = θ1 + θ2 be the corresponding splitting of the Lee
form. We fix a local orthonormal basis {ei}i=1,...,2n, which is parallel at the point where the
computation is done and denote by eai the projection of ei onto Da, for a ∈ {1, 2}.

The exterior differential and Ω split with respect to the decomposition of the tangent bundle
as follows: d = d1 + d2 and Ω = Ω11 + 2Ω12 + Ω22, where for a, b ∈ {1, 2} we define:

da :=
2n∑
i=1

eai ∧∇eai
, Ωab :=

1

2

2n∑
i=1

eai ∧ (Jei)
b =

1

2

2n∑
i=1

eai ∧ (Jeai )
b.

The last equality follows for instance by considering a local orthonormal basis of TM , whose
first n1 vectors are tangent to D1.

Lemma 6.3. With the above notation, for any vector fields X1 ∈ D1 and X2 ∈ D2, the
following relations hold:

(59) ∇X1θ2 = −θ1(X1)θ2, ∇X2θ1 = −θ2(X2)θ1.

Proof. Note that dθ = 0 implies daθb + dbθa = 0, for all a, b ∈ {1, 2}. For c ∈ {1, 2} we
compute:

dcΩab
(1)
=

1

2

2n∑
i,j=1

ecj ∧ eai ∧
(
〈 ecj, ei 〉Jθ − 〈 Jθ, ei 〉ecj + 〈 Jecj, ei 〉θ − 〈 θ, ei 〉Jecj

)b
=

1

2

2n∑
i=1

(
eci ∧ eai ∧ Jθb − (Jei)

c ∧ eai ∧ θb − eci ∧ θa ∧ (Jeci)
b
)

= Ωac ∧ θb + Ωcb ∧ θa,
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so for all a, b, c ∈ {1, 2} we have

(60) dcΩab = Ωac ∧ θb + Ωcb ∧ θa.
Using the fact that d2

c = 0 for c ∈ {1, 2}, we obtain

(61) 0 = d2
cΩab = Ωac ∧ (dcθb + θc ∧ θb) + Ωcb ∧ (dcθa + θc ∧ θa).

For c = a 6= b in (61), we get Ωcc∧ (dcθb+ θc∧ θb) = 0 and for a = b: Ωcb∧ (dcθb+ θc∧ θb) = 0.
Summing up, we obtain that Ω ∧ (dcθb + θc ∧ θb) = 0, which by the injectivity of Ω ∧ · on
manifolds of complex dimension greater than 2, implies that dcθb = −θc ∧ θb. Applying this
identity for b 6= c to Xc ∈ Dc and Xb ∈ Db yields (59). �

The symmetries of the Riemannian curvature tensor imply that RX1,X2 = 0, and thus
RX1,X2J = [RX1,X2 , J ] = 0, for every X1 ∈ D1 and X2 ∈ D2.

Using (4) for X := X1 and Y := X2 and applying Lemma 6.3, we obtain:

(62) 0 = 〈X1, θ1 〉X2 ∧ Jθ1 − 〈X2, θ2 〉X1 ∧ Jθ2 − 〈X2, θ2 〉JX1 ∧ θ2 + 〈X1, θ1 〉JX2 ∧ θ1
−|θ|2X2∧JX1 + |θ|2X1∧JX2 +X2∧J∇X1θ1 +JX2∧∇X1θ1−X1∧J∇X2θ2−JX1∧∇X2θ2,

for every X1 ∈ D1 and X2 ∈ D2.

Lemma 6.4. The following formula holds:

(63) ∇X1θ1 = −〈X1, θ1 〉θ1 +
1

n1

(
|θ1|2 − δθ1

)
X1, ∀X1 ∈ D1.

Proof. Let U denote the open set U := {x ∈ M | (JD2)x 6⊂ (D1)x}. By continuity, it is
enough to prove the result on the open sets M \ U and U .

LetO be some open subset of M\U , i.e. at every point x ofO the inclusion (JD2)x ⊂ (D1)x
holds. OnO, let X be some vector field and Y2, Z2 vector fields tangent to D2. By assumption,
we have JY2 ∈ D1, hence ∇XJY2 ∈ D1 and ∇XY2 ∈ D2, thus J∇XY2 ∈ D1. Applying (1),
we obtain

0 = 〈∇XJY2, Z2 〉 − 〈 J∇XY2, Z2 〉 = 〈 (∇XJ)Y2, Z2 〉
= 〈X, Y2 〉(Jθ)(Z2)− 〈X, Z2 〉(Jθ)(Y2)− 〈X, JY2 〉θ(Z2) + 〈X, JZ2 〉θ(Y2).

Since n2 ≥ 2, for any Y2 ∈ D2 there exists a non-zero Z2 ∈ D2 orthogonal to Y2. Taking
X = JZ2 ∈ D1 in the above formula yields θ(Y2) = 0. This shows that θ2 = 0, so θ = θ1.
Taking X = Z2 ∈ D2 in the above formula yields θ1(JY2) = 0, for all Y2 ∈ D2. Substituting
into (62), we obtain for all X1 ∈ D1 and Y2 ∈ D2:

(64) 〈X1, θ1 〉Y2 ∧ Jθ1 + 〈X1, θ1 〉JY2 ∧ θ1 − |θ1|2Y2 ∧ JX1 + |θ1|2X1 ∧ JY2
+ Y2 ∧ J∇X1θ1 + JY2 ∧∇X1θ1 = 0.

Let us now consider the decomposition D1 = JD2 ⊕D′1, where D′1 denotes the orthogonal
complement of JD2 in D1. Note that D′1 is J-invariant, since it is also the orthogonal
complement in TM of the J-invariant distribution D2 ⊕ JD2. Let X1 = JV2 + V1 and
∇X1θ1 = JW2 + W1 be the decomposition of X1, respectively of ∇X1θ1, with respect to this
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splitting, i.e. V2,W2 ∈ D2 and V1,W1 ∈ D′1. As shown above, θ1 vanishes on JD2, meaning
that θ1 ∈ D′1.

Taking the trace with respect to Y2 in (64) yields

(65) n2〈X1, θ1 〉Jθ1 + |θ1|2[(n2 − 1)V2 − n2JV1] + n2JW1 − (n2 − 1)W2 = 0,

which further implies, by projecting onto D2 and D′1, that W1 = −〈X1, θ1 〉θ1 + |θ1|2V1 and
W2 = |θ1|2V2. Hence, ∇X1θ1 = |θ1|2X1 − 〈X1, θ1 〉θ1, which in particular implies δθ1 =
(1− n1)|θ1|2, proving (63) on M \ U .

We further show that the formula (63) holds on U . At every point x of U there exist vectors
X2, Y2 ∈ (D2)x such that X2 ⊥ Y2 and 〈Y2, JX2 〉 6= 0. Indeed, by definition there exists
Y2 ∈ (D2)x such that JY2 /∈ D1, and we can take X2 to be the D2-projection of JY2.

For any vector X1 ∈ (D1)x we take the scalar product with X1 ∧ Y2 in (62) and obtain:

(66) 〈 JX2, Y2 〉
(
〈∇X1θ1, X1 〉+ |〈X1, θ1 〉|2

)
=

− |X1|2
(
〈X2, θ2 〉〈 Jθ2, Y2 〉 − |θ|2〈 JX2, Y2 〉+ 〈 J∇X2θ2, Y2 〉

)
.

We thus get 〈∇X1θ1, X1 〉 + |〈X1, θ1(x) 〉|2 = f1(x)|X1|2, for every X1 ∈ (D1)x, where the
real number f1(x) does not depend on X1. By polarization, we obtain:

(67) ∇X1θ1 = −〈X1, θ1(x) 〉θ1(x) + f1(x)X1, ∀X1 ∈ (D1)x.

Taking the trace with respect to X1 in this formula and using (59) we obtain (δθ1)x =
|θ1(x)|2 − n1f1(x), whence:

(68) f1(x) =
1

n1

(
|θ1|2 − δθ1

)
(x), ∀x ∈ U .

From (67) and (68) we obtain (63) on U . This proves the lemma. �

A similar argument yields

(69) ∇X2θ2 = −〈X2, θ2 〉θ2 +
1

n2

(
|θ2|2 − δθ2

)
X2, ∀X2 ∈ D2.

Substituting (63) and (69) into (62), we obtain(
1

n1

(
|θ1|2 − δθ1

)
+

1

n2

(
|θ2|2 − δθ2

)
− |θ|2

)
(X2 ∧ JX1 −X1 ∧ JX2) = 0, ∀X1 ∈ D1, X2 ∈ D2.

Note that for every X1 ∈ D1, X2 ∈ D2 the two-forms X2 ∧ JX1 and X1 ∧ JX2 are mutually
orthogonal. So, choosing X1 non-collinear to JX2 (which is possible as n1 ≥ 2), the 2-form
appearing in the previous formula is non-zero. Hence, we necessarily have

1

n1

(
|θ1|2 − δθ1

)
+

1

n2

(
|θ2|2 − δθ2

)
− |θ|2 = 0.

Integrating this relation over M , we get∫
M

|θ|2dµg =
1

n1

∫
M

|θ1|2dµg +
1

n2

∫
M

|θ2|2dµg.
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Since |θ|2 = |θ1|2 + |θ2|2, we obtain
(

1− 1
n1

) ∫
M
|θ1|2dµg +

(
1− 1

n2

) ∫
M
|θ2|2dµg = 0. As

n1, n2 ≥ 2, it follows that θ ≡ 0. This concludes the proof of the theorem. �

Remark 6.5. For every n ≥ 2, the tangent bundle T(Cn\{0}) endowed with the flat metric g
defined in Example 2.4 can be written as an orthogonal direct sum of two parallel distributions
of ranks at least 2 in infinitely many ways, but the gcK structure (g, J0) on Cn \ {0} has
non-vanishing Lee form θ = −2 ln r. The compactness assumption in Theorem 6.2 is thus
necessary.

It remains to consider the case when one of the two oriented parallel distributions has rank
1, and is thus spanned by a globally defined parallel unit vector field. This case was studied
by the second named author in [21, Theorem 3.5] for n ≥ 3. We will give here a simpler proof
of his result, which also extends it to the missing case n = 2.

Theorem 6.6 (cf. [21, Theorem 3.5]). Let (M, g, J, θ) be a compact proper lcK manifold of
complex dimension n ≥ 2 admitting a non-trivial parallel vector field V . Then, the following
exclusive possibilities occur:

(i) The Lee form θ is a non-zero constant multiple of V [, so M is a Vaisman manifold.
(ii) The Lee form θ is exact, so (M, g,Ω, θ) is gcK, and there exists a complete simply con-

nected Kähler manifold (N, gN ,ΩN) of real dimension 2n− 2, a smooth non-constant
real function c : R → R and a discrete co-compact group Γ acting freely and totally
discontinuously on R2 ×N , preserving the metric ds2 + dt2 + e2c(t)gN , the Hermitian
2-form ds∧dt+ e2c(t)ΩN and the vector fields ∂s and ∂t, such that M is diffeomorphic
to Γ\(R2 × N), and the structure (g,Ω, θ) corresponds to (ds2 + dt2 + e2c(t)gN , ds ∧
dt+ e2c(t)ΩN , dc) through this diffeomorphism.

Proof. Let V be a parallel vector field of unit length on M . We identify as usual 1-forms
with vectors using the metric g and decompose the Lee form as θ = aV + bJV + θ0, where
a := 〈 θ, V 〉, b := 〈 θ, JV 〉 and θ0 is orthogonal onto V and JV . We compute:

(70) δθ = −V (a)− JV (b) + bδJV + δθ0.

On the other hand, we have:

δJV = −
2n∑
i=1

〈 (∇eiJ)V, ei 〉
(1)
=

2n∑
i=1

−〈 (ei ∧ Jθ + Jei ∧ θ)(V ), ei 〉

= (2− 2n)〈 θ, JV 〉 = (2− 2n)b,

which together with (70) yields

(71) δθ = −V (a)− JV (b) + (2− 2n)b2 + δθ0.

Replacing X by V in (5) and using that V is parallel, we obtain:

(2n− 3)
(
aJθ − |θ|2JV + J∇V θ

)
− bθ −∇JV θ − JV δθ = 0.

Taking the scalar product with JV yields

(72) (2n− 3)
(
a2 − |θ|2 + 〈∇V θ, V 〉

)
− b2 − 〈∇JV θ, JV 〉 − δθ = 0.
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Further, we compute
〈∇V θ, V 〉 = V (〈 θ, V 〉) = V (a),

〈∇JV θ, JV 〉 = JV (b)− 〈 θ, (∇JV J)V 〉 (1)= JV (b)− 〈 θ, bJV + aV − θ 〉 = JV (b) + |θ0|2,
which together with (71) and (72) imply that

(2n− 2)(V (a)− |θ0|2) = δθ0.

Integrating over M , we obtain
∫
M
|θ0|2dµg = 0, because

∫
M
V (a)dµg =

∫
M
aδV dµg = 0, as V

is parallel. Hence, θ0 = 0, showing that θ = aV + bJV .

Claim. The function a is constant and ab = 0.

Proof of the Claim. Equation (1) yields

(73) ∇XJV = 〈X, V 〉(−bV + aJV ) + bX − 〈X, JV 〉(aV + bJV )− aJX,
which allows us to compute the exterior differential of JV , as follows:

(74) dJV = 2a(V ∧ JV − Ω).

From the fact that θ is closed and V is parallel, we obtain

0 = dθ = da ∧ V + db ∧ JV + b dJV = da ∧ V + db ∧ JV + 2ab(V ∧ JV − Ω),

which implies that ab = 0, for instance, by taking the scalar product with X ∧ JX for some
vector field X orthogonal to V and JV . In particular, we have

(75) da ∧ V + db ∧ JV = 0.

Differentiating again (74) yields

0 = da∧(V ∧JV −Ω)+a(−V ∧dJV −dΩ) = da∧(V ∧JV −Ω)−2abJV ∧Ω = da∧(V ∧JV −Ω),

which together with (75) shows that da = 0, thus proving the claim.

If a is non-zero, the second part of the claim shows that b ≡ 0, so θ = aV is parallel and
(M, g, J, θ) is Vaisman.

If a = 0, Equation (73) becomes:

∇XJV = b (X − 〈X, V 〉V − 〈X, JV 〉JV ) .

We conclude that in this case the metric structure on M is given as in (ii) by applying
Lemma 3.3 and Lemma 3.4 in [21]. �

Corollary 6.7. Let (M, g, J, θ) be a compact proper lcK manifold of complex dimension n ≥ 2.
If (M, g) has reducible holonomy, then its restricted holonomy group Hol0(M, g) is conjugate
to SO(2n− 1).

Proof. By Lemma 6.1, Theorem 6.2 and Theorem 6.6, we need to distinguish two cases:

Case 1. If (M, g, J, θ) is Vaisman. Then the Lee form θ is parallel (and non-vanishing), so
(M, g) is locally isometric to R × S for some Riemannian manifold (S, gS). It is well known
that S is a Sasakian manifold, but since we want to avoid introducing this class of manifolds,
we will derive the necessary formulas directly.
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As θ is parallel, we can rescale the metric of M such that |θ| = 1. Equation (4) applied to
vector fields X, Y tangent to S (i.e. orthogonal to θ) then yields:

RX,Y J = X ∧ JY − Y ∧ JX, ∀X, Y ∈ ker(θ).

In particular, applying this formula to θ (seen as vector field) and using the fact that RX,Y θ =
0 gives

RX,Y (Jθ) = (RX,Y J)(θ) = 〈Y, Jθ 〉X − 〈X, Jθ 〉Y, ∀X, Y ∈ ker(θ).

The metric dual ξ of Jθ is parallel in the direction of θ, so it is actually a vector field on S,
and the previous relation reads

(76) RS
X,Y ξ = gS(Y, ξ)X − gS(X, ξ)Y, ∀X, Y ∈ TS,

where RS is the Riemannian curvature tensor of (S, gS).

Assume, for a contradiction, that Hol0(M, g) is strictly contained in SO(2n− 1). Then the
same holds for Hol0(S, gS), so by the Berger-Simons theorem, we have three possibilities:

• (S, gS) has reducible holonomy; this would contradict Theorem 6.2 since then (M, g)
would have a holonomy reduction with both factors of dimension at least 2.
• Hol0(S, gS) belongs to the Berger list; the unique group in this list corresponding to an

odd-dimensional manifold is G2 (for 2n−1 = 7). However, a manifold with holonomy
G2 is Ricci-flat, whereas RicS(ξ) = (2n − 2)ξ by taking a trace in (76). This case is
thus impossible too.
• (S, gS) is locally symmetric. Then RS is parallel, so by taking a further covariant

derivative in (76) we get

(77) RS
X,Y (∇Zξ) = gS(Y,∇Zξ)X − gS(X,∇Zξ)Y, ∀X, Y, Z ∈ TS.

On the other hand, from (1) we see that∇Zξ = −JZ when Z is orthogonal to θ and Jθ,
so the set {∇Zξ | Z ∈ TS} is equal to the orthogonal of ξ in TS. From (76) and (77)
we thus obtain that S has constant sectional curvature 1, i.e. it is locally isometric to
the round sphere, and has maximal holonomy group Hol0(S, gS) = SO(2n− 1), which
contradicts our assumption.

Case 2. The universal covering of (M, g) is isometric to a Riemannian product R×S, where
S = R×N has a warped product metric gS = dt2 + e2c(t)gN with periodic, but non-constant,
warping function c. Denoting for convenience f(t) := ec(t), one of the O’Neill formulas for
the curvature of warped products (cf. [22, p. 210]) reads:

(78) RS
X,∂t∂t = − f̈

f
X, ∀X ∈ C∞(TN).

Assume now that Hol0(M, g) = Hol(S, gS) is strictly contained in SO(2n− 1). Like before,
Theorem 6.2 shows that (S, gS) has irreducible holonomy.

Next, if Hol(S, gS) belongs to the Berger list, then S is a G2-manifold since it has odd
dimension, and therefore is Ricci-flat. On the other hand, taking the trace in (78) immediately
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shows that

(79) RicS(∂t, ∂t) = (1− 2n)
f̈

f
.

Thus RicS = 0 implies f̈ = 0, which is impossible since f is a non-constant periodic function.

It remains to treat the case where (S, gS) is an irreducible symmetric space. In particular

S is Einstein with Einstein constant λ and from (79) we get f̈ = λ
1−2nf . As f is non-constant

and periodic, we necessarily have λ > 0 and

(80) f(t) = sin(µt+ ν)

for some real constants µ and ν with µ2 = λ
2n−1 . This is a contradiction, since the periodic

function f = ec does not vanish at any point of R. This shows that Hol0(M, g) is conjugate
to SO(2n− 1), and thus finishes the proof. �

Summarizing, if Hol0(M, g) is reducible, Theorem 6.2 shows that Hol0(M, g) is (up to
conjugation) a subgroup of SO(2n− 1) acting irreducibly on R2n−1 and Theorem 6.6 implies
that (M2n, g, J, θ) satisfies either case 1. or case 2.c) in Theorem 1.3. Moreover, Corollary 6.7
shows that the restricted holonomy group Hol0(M, g) is conjugate to SO(2n − 1) in both
cases.

6.2. The irreducible locally symmetric case. In this section we show the following result:

Proposition 6.8. Every compact irreducible locally symmetric lcK manifold (M2n, g, J, θ)
has vanishing Lee form.

Proof. An irreducible locally symmetric space is Einstein. If the scalar curvature of M is
non-positive, the result follows directly from Theorem 5.2.

Assume now that M has positive scalar curvature. By Myers’ Theorem and Remark 2.1,
(M, g, J) is gcK, so θ = dϕ for some function ϕ, and gK := e−2ϕg is a Kähler metric. Let X
be a Killing vector field of g. Then X is a conformal Killing vector field of the metric gK .
By a result of Lichnerowicz [19] and Tashiro [26], every conformal Killing vector field with
respect to a Kähler metric on a compact manifold is Killing. This shows that X is a Killing
vector field for both conformal metrics g and gK , hence X preserves the conformal factor, i.e.
X(ϕ) = 0. As (M, g) is homogeneous and X(ϕ) = 0 for each Killing vector field X of g, it
follows that the function ϕ is constant. Thus θ = dϕ = 0. �

In conclusion, there exist no compact irreducible locally symmetric proper lcK manifolds.

6.3. Compact irreducible lcK manifolds with special holonomy. We finally consider
compact lcK manifolds (M, g, J, θ) of complex dimension n ≥ 2, whose restricted holonomy
group Hol0(M, g) is in the Berger list.

If Hol0(M, g) = U(n), the universal covering (M̃, g̃) has holonomy Hol(M̃, g̃) = U(n),
so g̃ is Kähler with respect to some complex structure Ĩ. Every deck transformation γ

of M̃ is an isometry of g̃, so γ∗Ĩ is parallel with respect to the Levi-Civita connection of
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g̃. As Hol(M̃, g̃) = U(n), we necessarily have γ∗Ĩ = ±Ĩ for every γ ∈ π1(M) ⊂ Iso(M̃).
The group of Ĩ-holomorphic deck transformations is thus a subgroup of index at most 2 of
π1(M), showing that after replacing M with some double covering if necessary, there exists
an integrable complex structure I, such that (M, g, I) is a Kähler manifold. By Theorem 3.1,
I and J commute and (M, g, J, θ) is gcK, hence the conformal class of g contains two non-
homothetic Kähler metrics. We conclude then by Theorem 1.1 that (M, g, J, θ) falls in one
of the cases 2.a) or 2.b) in Theorem 1.3.

If Hol0(M, g) is one of SU(n), Sp(n/2), or Spin(7) (for n = 4), the metric g is Ricci-flat
and θ ≡ 0 by Theorem 5.2.

If Hol0(M, g) = Sp(n/2)Sp(1), the metric g is quaternion-Kähler, hence Einstein with either
positive or negative scalar curvature. In the negative case one has θ ≡ 0 by Theorem 5.2. On
the other hand, P. Gauduchon, A. Moroianu and U. Semmelmann, have shown in [15], that
the only compact quaternion-Kähler manifolds of positive scalar curvature which carry an
almost complex structure are the complex Grassmanians of 2-planes, which are symmetric,
thus again θ ≡ 0 by Proposition 6.8.

This completes the classification of compact proper lcK manifolds (M2n, g, J, θ) with non-
generic holonomy stated in Theorem 1.3.
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