CONFORMALLY RELATED KAHLER METRICS AND THE HOLONOMY
OF LCK MANIFOLDS

FARID MADANI, ANDREI MOROIANU, MIHAELA PILCA

ABSTRACT. A locally conformally Kéahler (IcK) manifold is a complex manifold (M, J) to-
gether with a Hermitian metric ¢ which is conformal to a Kahler metric in the neighbourhood
of each point. In this paper we obtain three classification results in locally conformally Kéhler
geometry. The first one is the classification of conformal classes on compact manifolds con-
taining two non-homothetic Kahler metrics. The second one is the classification of compact
Einstein locally conformally K&hler manifolds. The third result is the classification of the
possible (restricted) Riemannian holonomy groups of compact locally conformally Kéhler
manifolds. We show that every locally (but not globally) conformally Kéhler compact mani-
fold of dimension 2n has holonomy SO(2n), unless it is Vaisman, in which case it has restricted
holonomy SO(2n — 1). We also show that the restricted holonomy of a proper globally con-
formally Kéhler compact manifold of dimension 2n is either SO(2n), or SO(2n —1), or U(n),
and we give the complete description of the possible solutions in the last two cases.

1. INTRODUCTION

It is well-known that on a compact complex manifold, any conformal class admits at most
one Kahler metric compatible with the complex structure, up to a positive constant. The
situation might change if the complex structure is not fixed. One may thus naturally ask
the following question: are there any compact manifolds which admit two non-homothetic
metrics in the same conformal class, which are both Kéhler (then necessarily with respect
to non-conjugate complex structures)? One of the aims of the present paper is to answer
this question by describing all such manifolds. This problem can be interpreted in terms of
conformally Kahler metrics in real dimension 2n with Riemannian holonomy contained in the
unitary group U(n). More generally, we want to classify locally conformally K&hler metrics
on compact manifolds which are Einstein or have non-generic holonomy.

Recall that a Hermitian manifold (M, g, J) of complex dimension n > 2 is called locally
conformally Kéhler (1cK) if around every point in M the metric g can be conformally rescaled
to a Kéhler metric. If 2 := g(J-,-) denotes the fundamental 2-form, the above condition is
equivalent to the existence of a closed 1-form 6, called the Lee form (which is up to a constant
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equal to the logarithmic differential of the local conformal factors), such that

dQ2 =260 A Q.

If the Lee form 6 vanishes, the structure (g, J) is simply Kéhler. If the Lee form does not
vanish identically, the IcK structure is called proper. When 6 is exact, there exists a Kéahler
metric in the conformal class of g, and the manifold is called globally conformally Kdhler
(gcK). If 6 is not exact, then (M, g, J) is called strictly lcK. A particular class of proper lcK
manifolds is the the class of Vaisman manifolds, whose Lee form is parallel with respect to
the Levi-Civita connexion of the metric. A Vaisman manifold is always strictly IcK since the
Lee form, being harmonic, cannot be exact.

In this paper we study three apparently independent — but actually interrelated — classifi-
cation problems:

P1. The classification of compact conformal manifolds (M?",c) whose conformal class c
contains two non-homothetic Kahler metrics.

P2. The classification of compact proper IcK manifolds (M?", g, J,0) with g Einstein.

P3. The classification of compact proper lcK manifolds (M?", g, J,0) with reduced (i.e.
non-generic) holonomy: Hol(M, g) C SO(2n).

It turns out that P1 and P2 are important steps (but also interesting for their own sake)
towards the solution of P3.

We are able to solve each of these problems completely. Their solutions are provided by
Theorem 1.1, Theorem 1.2 and Theorem 1.3 below. We now explain briefly these results and
describe the methods used to prove them.

The solution of Problem P1 is given by the following:

Theorem 1.1. Assume that a conformal class on a compact manifold M of real dimension
2n > 4 contains two non-homothetic Kahler metrics g, and g_, that is, there exist complex
structures J, and J_ and a non-constant function ¢ such that (g, J;) and (g_ = e *¢g,, J_)
are Kdhler structures. Then J, and J_ commute, so that M is ambikdhler for n = 2.
Moreover, forn > 3, there exists a compact Kihler manifold (N, h, Jx), a positive real number
b, and a function £ : (0,b) — R>C such that (M, gy, J,) and (M,g_,J_) are obtained from
the construction described in Proposition 4.1.

The proof, whose details are given in Sections 3 and 4, relies on a commutation result for
complex structures compatible with two conformally related non-homothetic Kahler metrics.
More precisely, if (g, Jy) and (g_ := e"*?g,, J_) are Kéhler structures on a compact manifold
M of real dimension 2n > 4 and ¢ is non-constant, then (g, J_) is a proper gcK structure
on M, whose metric is Kahler with respect to J,. In Theorem 3.1 below we show, more
generally, that if a Riemannian metric g, is lcK with respect to some complex structure
J_ and Kahler with respect to another complex structure J,, then the initial IcK structure
(9—, J1) is in fact gcK and the two complex structures commute. The argument is based on
the fact that for n > 3 a certain non-negative function, depending on J,, J_, and on the
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Lee form of (g4,.J-), is the co-differential of a 1-form on M, and thus vanishes by Stokes’
theorem.

In dimension 2n = 4 the commutation of J, and J_ was already known. Indeed, they define
different orientations since otherwise the associated Kahler metrics would be homothetic, see
e.g. [24, Proposition 3.2] or Case 1 in the proof of Theorem 3.1 for a short argument.
In particular, Problem P1 reduces in dimension 4 to the study of ambikahler structures,
according to the terminology introduced by V. Apostolov, D. Calderbank and P. Gauduchon
in [2], where the local classification in the toric case is obtained. In full generality, the local
classification of ambikéhler structures was announced recently by R. Bryant [7].

Once the commutation of J, and J_ is established, it turns out that for n > 3, J, + J_
defines a Hamiltonian 2-form of rank 1 (in the sense of [1]) with respect to both Ké&hler
metrics gy and g_. One can then either use the classification of compact manifolds with
Hamiltonian forms obtained in [1] (which however is rather involved) or show directly, by
a geometric argument given in Proposition 4.2, that the solutions are obtained on the total
spaces of some S?-bundles over compact Hodge manifolds, by an Ansatz which is reminiscent
of Calabi’s construction [9], described in Proposition 4.1 below.

As a striking consequence of Theorem 1.1, we obtain that for n > 3, if (M?", g,J) is a
non-ruled compact Kéhler manifold, then every conformal diffeomorphism of (M, [g]) is an
isometry of g (Corollary 4.4).

Problem P2 has been already solved in complex dimension two, as well as when the scalar
curvature is positive. Indeed, C. LeBrun [18] showed, more generally, that if a compact
complex surface (M, g) admits an Einstein metric compatible with the complex structure,

then (M, g) is either Kihler-Einstein, or homothetic to CP*#CP? with the Page metric, or

to CP?#2CP? with the metric constructed in [10]. Moreover, in the case of positive scalar
curvature, Problem P2 reduces, by Myers’ theorem, to the study of Einstein gcK metrics,
rather than IcK. By changing the point of view, this can be interpreted as the classification of
compact conformally-Einstein Kéhler manifolds, which has been obtained by A. Derdzinski
and G. Maschler, [12].

Our main contribution towards the solution of Problem P2 is Theorem 5.2 below, where
we show, using Weitzenbock-type arguments, that every compact Einstein lcK manifold with
non-positive scalar curvature has vanishing Lee form.

Altogether, this completes the solution of Problem P2:
Theorem 1.2. If (g,J,0) is an Einstein proper IcK structure on a compact manifold M?",

then the Lee form is exact (0 = dg), and the scalar curvature of g is positive. For n = 2,

(M, g) is homothetic to either CP?#CP? with the Page metric, or CP*#2CP? with the metric
constructed in [10]. For n > 3, the Kahler manifold (M, e %?g, J) is one of the conformally-
FEinstein Kdahler manifolds constructed by Bérard-Bergery in [5].

We now discuss the holonomy problem for compact proper 1cK manifolds, that is, Problem
P3, whose original motivation stems from [21]. By the Berger-Simons holonomy theorem, an
IcK manifold (M?", g, J) either has reducible restricted holonomy representation, or is locally
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symmetric irreducible, or its restricted holonomy group Holy(M, g) is one of the following:
SO(2n), U(n), SU(n), Sp(2), Sp(2)Sp(1), Spin(7).

In the reducible case, our crucial result is Theorem 6.2, where we show that a compact
proper 1cK manifold (M?", g, J) cannot carry a parallel distribution whose rank d satisfies
2 < d < 2n — 2. On the other hand, the cases d = 1 and d = 2n — 1 were recently classified
for n > 3 by the second named author in [21]. In Theorem 6.6 below we give an alternate
proof of this classification, which is not only simpler, but also covers the missing case n = 2.

The remaining possible cases given by the Berger-Simons theorem are either Einstein or
Kahler (and gcK by Theorem 3.1), and thus fall into the previous classification results. Sum-
marizing, we have the following classification result for the possible (restricted) holonomy
groups of compact proper lcK manifolds:

Theorem 1.3. Let (M?",g,J,0), n > 2, be a compact proper lcK manifold with non-generic
holonomy group Hol(M, g) € SO(2n). Then the following exclusive possibilities occur:

1. (M, g, J,0) is strictly lcK, Hol(M, g) ~ SO(2n — 1) and (M, g, J,0) is Vaisman (that
is, 0 is parallel).
2. (M,g,J,0) is gcK (that is, 0 is exact) and either:
a) n > 3, Holp(M, g) ~ U(n), and a finite covering of (M, g, J,0) is obtained by the
Calabi Ansatz described in Proposition 4.1, or
b) n =2, Holo(M, g) ~ U(2) and M is ambikéhler, or
c) Holg(M, g) ~ SO(2n — 1) and a finite covering of (M, g, J,0) is obtained by the
construction described in Theorem 6.6.

2. PRELIMINARIES ON LCK MANIFOLDS

A locally conformally Kéhler (IcK) manifold is a connected Hermitian manifold (M, g, J)
of real dimension 2n > 4 such that around each point, g is conformal to a metric which
is Kahler with respect to J. The covariant derivative of J with respect to the Levi-Civita
connection V of g is determined by a closed 1-form € (called the Lee form) via the formula
(see e.g. [21]):

(1) VxJ=XAJO+JX A0, VXeTM.

Recall that if 7 is any 1-form on M, J7 is the 1-form defined by (J7)(X) := —7(JX) for
every X € TM, and X A 7 denotes the endomorphism of TM defined by (X A 7)(Y) =
g(X,Y)r* — 7(Y)X. We will often identify 1-forms and vector fields via the metric g, which
will also be denoted by (-, -) when there is no ambiguity.

Let ©Q := g(J-,-) denote the associated 2-form of J. By (1), its exterior derivative and
co-differential are given by

(2) dQ =20 A€,
and

(3) 5 = (2 — 2n)J0.
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If § = 0, the structure (g,.J) is simply Kéhler. If 6 is not identically zero, then the IcK
structure (g, J, 0) is called proper. If § = dyp is exact, then d(e™2#Q) = 0, so the conformally
modified structure (e=2?g, J) is Kéhler, and the structure (g, J, 0) is called globally conformally
Kahler (gcK). The 1cK structure is called strictly 1cK if the Lee form 6 is not exact and
Vaisman if 6 is parallel with respect to the Levi-Civita connexion of g.

A typical example of strictly lcK manifold, which is actually Vaisman, is S xS?**~!, endowed
with the complex structure induced by the diffeomorphism

((Cn \ {0})/Z — Sl % SZn—l’ [Z] — (627rilnz|’ﬁ) ’
z
where [2] := {eF2 € C"\ {0} | k € Z}. The Lee form of this 1cK structure is the length element
of St, which is parallel.

Remark 2.1. For each 1cK manifold (M, g, J,0) there exists a group homomorphism from
m (M) to (R, +) which is trivial if and only if the structure is gcK. Indeed, m (M) acts on the
universal covering M of M, and preserves the induced 1cK structure (g, J, é) Since 0 = dep
is exact on M, for every v € m,(M) we have d(y*p) = v*(dg) = v*(§) = § = dy, so there
exists some real number ¢, such that v*¢ = ¢ + ¢,. The map v — ¢, is clearly a group
morphism from 7 (M) to (R, +), which is trivial if and only if 6 is exact on M. This shows,
in particular, that if 71 (M) is finite, then every lcK structure on M is gcK.

For later use, we express, for every IcK structure (g, J,0), the action on the Hermitian
structure J of the Riemannian curvature tensor of g, defined by

RX,Y =VxVy = VyVy — V[X,Y]-
Lemma 2.2. The following formula holds for every vector fields X,Y on a lcK manifold
(M,g,J,0):
(4) RxyJ=0X)YNJO—-O0(Y)XNJO—-0(Y)JXNO+0(X)JY N6
—0PY AJX +|0PXAJTY +Y AJVxO+JY AVx0 — X AJVy0 — JX AVyb.

Proof. Taking X, Y parallel at the point where the computation is done and applying (1), we
obtain:

RxyJ = Vx(Y AJO+JY AO) — Vy(X AJO+ JX A0
= YA (VD) O) + (VD) Y)AO = X A (Vyd)(0) — (Vy J)(X) A0
FY A JVO+ JY AV — X A JVy0 — JX A Vyb,

which gives (4) after a straightforward calculation using (1) again. O
Let {e;}i=1,.2n be a local orthonormal basis of TM. Substituting ¥ = e; in (4), taking
the interior product with e; and summing over j = 1,...,2n yields:
2n

(5) 3 (R, J)(es) = (20— 3) (0(X)J0 — |0PTX + JVx0) — 0(JX)0 — V150 — JX50,

Jj=1
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since the sum Ele 9(JV,0,e;) vanishes, as V6 is symmetric.

Corollary 2.3. If the metric g of a compact lcK manifold (M, g, J,0) is flat, then § = 0.

Proof. If the Riemannian curvature of g vanishes, (5) yields
0=(2n—3) (0(X)JO — |8]°JX + JVx0) — O(JX)0 — V ;x0 — JX56.

We make the scalar product with JX in this equation for X = e;, where {e;};=1
local orthonormal basis of TM, and sum over j = 1,...,2n to obtain:

0 = (2n—3) (|0]> —2n|0]* — 60) — |0 + 60 — 2nd0
= —(2n —2)%0]* — 2(2n — 2)d0.

Since n > 2, this last equation yields 66 = (1 — n)|#]?, which by Stokes’ Theorem after
integration over M gives 6 = 0. OJ

-----

The following example shows that the corollary does not hold without the compactness
assumption.

Example 2.4. Consider the standard flat Kéhler structure (go, Jo) on M := C"\ {0}. If r
denotes the map x +— r(x) := ||, the conformal metric g := r~*gy on M is gcK with respect
to Jy, with Lee form 8 = —2dInr. Moreover g is flat, being the pull-back of gy through the
inversion x — /7.

3. KAHLER STRUCTURES ON LCK MANIFOLDS

The results of this section constitute an intermediary step towards the solutions of Problem
P1 (conformally related Kéhler metrics) and P3 (lIcK metrics with reduced holonomy). More
precisely, we study compact complex manifolds (M, J) admitting a proper lcK metric g which
is Kahler with respect to another complex structure /. The striking result here is that [ and
J must commute. We will see that there are examples of such structures, but they are
necessarily gcK. In particular, the Riemannian metric g of a compact strictly 1cK manifold
(M, g, J,0) cannot be Kéhler with respect to any complex structure on M.

Theorem 3.1. Let (M, g, J,0) be a compact proper lcK manifold of complex dimension n > 2
carrying a complex structure I, such that (M,g,I) is a Kdhler manifold. Then I commutes
with J and (M, g, J,0) is globally conformally Kdihler.

Proof. The Riemannian curvature tensor of (M, g) satisfies Rxy = Rrx v, so in particular
we have RxyJ = Rrx v J, for all vector fields X and Y. Using (4), this identity implies that
(X, Y NJO—{Y, XNJO— (Y, 0V JXANO+(X,0)JY NO—|0*Y NTX +|0°X NJY
+YANJIVx0+JY ANVx0—XANJVy0—JX ANVy0
=(IX,0)IY NJO—(IY, 0\ [X NJO—(IY,0)JIXNO+ (IX,0)JIY N0
—|OPIY ANTIX +|0PIXAJIY 1Y NIV 1504+ JIY AV 1x0 —IX NIV 1y0 — JIX AV 1y 0,
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for all vector fields X, Y. Let {e;};=1._2, be alocal orthonormal basis of T, which is parallel
at the point where the computation is done. Taking the interior product with X in the above
identity and summing over X = e;, we obtain:

(6) (4—2n){(Y,0)J0+ (JY, 0)0+ (2n —4)|0]°JY + (4 — 2n)JVy 0 + V y0 + 60JY
= (1Y, 0)1J0 — (1.J0, 0)IY — (IY, 0)tx(JI)0 + (IY, 0)JI0 + (0, IJIY )0
2n
HOP (L)Y —|0PIITY = (e, JV 1,0 IY + 1TV 1y0+V 151y 0—tx(JI)V 1y 0+ JIV 1y 6.
i=1
Substituting Y = e; in (6), taking the scalar product with Je; and summing over j = 1,...,2n
yields:

(7) (4n* — 100+ 6)|0)> + (4n — 6)60 = —2tr(I.J)( 10, JO) — 2(1.JO, JIA)
2n 2n
— (te(I)*[0 + te(LTLT)|O] + 2tx (1) Y (I1JVe,0, €;) —2Y (IJLIV,0, e;).

=1 =1

On the other hand, a straightforward computation of §(tr(I.J)JI6) and 6(JIJI10), using
(1) and the fact that [ is parallel and V6 is a symmetric endomorphism, yields the following
identities:

2n
tr(1.J) Z<6i’ I1JV.0) = —6(tr(1J)JI0) + (2n — 2)tx(IJ){ 160, JO) — 2(1J0, JI0) + 2|0},
i=1
2n
Z<€i’ IJIJV,,0) = —6(JI1JI) — (2n — 3){1JO, JIO) + tr(IJ){ 16, JO) + |0>.
i=1
Substituting these in (7), we obtain

(8) (4n% —10n +4)|0)* — (4n — &)tr(IJ) (10, JO) — (4n — 12)(1.J6, JIO)
—tr(IJI)|0)* + (tr(1J))?|0]* = —(4n — 6)66 — 25(tr(1J)JI6) + 26(JIJI6).

In order to exploit this formula we need to distinguish two cases.
Case 1: If n =2, (8) becomes:
(9) 4 1J0, JI0) — tr(IJII)|0)* + (tr(1))?|0]* = —25(0 + tx(1J)JI6 — JIJIH).

We claim that I and J define opposite orientations on TM. Assume for a contradic-
tion that they define the same orientation. Recall that complex structures compatible with
the orientation on an oriented 4-dimensional Euclidean vector space may be identified with
imaginary quaternions of norm 1 acting on H by left multiplication. For any ¢,v € H, we
have: (qu, v) = 1tr(g)|v|?, where tr(q) denotes the trace of ¢ acting by left multiplication
on H. For every x € M we can identify T, M with H and view I,.J as unit quaternions
acting by left multiplication. The previous relation gives the following pointwise equal-
ity: 4(IJIJO,0) = tr(IJIJ)|A|?. Substituting in (9) and integrating over M, implies that
tr(IJ) =0, so I and J anti-commute.
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Equation (9) then further implies that 60 = 0. Replacing these two last equalities in (7)
yields |#|*> = 0. This contradicts the assumption that the lcK structure (g, J,0) is proper.
Hence, I and J define opposite orientations and thus they commute, proving our claim.

Note that, alternatively, the claim also follows from a result by M. Pontecorvo [24, Propo-
sition 3.2].

Now, since (M, g, I) is a compact Kéhler manifold, it follows that its first Betti number is
even. Y.-T. Siu [25] proved that each compact complex surface with even first Betti number
carries a Kéhler metric (see also [8] and [16]). On the other hand, I. Vaisman proved that if
a complex manifold (M, J) admits a J-compatible Ké&hler metric, then every lcK metric on
(M, J) is gcK [27, Theorem 2.1]. This shows that 6 is exact.

Case 2. We assume from now on that n > 3. The integral over the compact manifold M
of the left hand side of (8) is zero, since the right hand side is the co-differential of a 1-form.
On the other hand, the following inequalities hold:

(10)  —(4n —&)tr(1J)(16, JO) > —(4n — 8)[tx(1J)||0]> > — ((tx(1.]))* + (2n — 4)?) |0]?,

(11) —(4n —12)(1J0, JI) > —(4n — 12)|0/?,
(it is here that the assumption n > 3 is needed), and

(12) —tr(IJIJ)|0]* > —2n|6]*.

Summing up the inequalities (10)—(12) shows that the left hand side of (8) is non-negative.
As the right hand side of (8) is a divergence, we deduce that both terms vanish identically,
and thus equality holds in (10)—(12).

Let M’ denote the set of points where 6 is not zero and let M"” denote the interior of M\ M.
The open set M’ U M" is clearly dense in M. At each point of M’, the fact that equality
holds in (12) shows that (I.J)* = Id. Moreover, the endomorphism (I.J)? is V-parallel along
M" (since §# = 0 along M”, so (M",g,J) is Kahler). We deduce that (I.J)? is V-parallel
along M’ U M"” thus along the whole of M by density. Moreover M’ is not empty (since
by assumption the 1cK structure (g, J,0) is proper). As (IJ)*> = Id on M’, we finally get
(IJ)?* =1d on M, which amounts saying that I and J commute at each point of M.

Moreover, the fact that equality holds in (10) shows that for each point x € M’ there
exists €, € {—1,1} with 16 = ¢,J0 and tr({J) = £,(2n — 4). The function tr(/J) is thus
locally constant on M’ and on M” (since as before I.J is parallel along M"), so by density,
it is constant on M. After replacing I with —I if necessary we may thus assume that
tr(IJ) =2n — 4, and 160 = JO on M (this last relation holds tautologically on M \ M’).

This shows that the orthogonal involution IJ has two eigenvalues: 1 with multiplicity
2n — 2 and —1 with multiplicity 2. At each point of M’, since 6 and 16 are eigenvectors of I.J
for the eigenvalue —1, it follows that IJX = X, for every X orthogonal on # and .J#, which
can also be expressed by the formula

(13) JX:—IX+%((X, 0)10 — (X, 10)0), VX € TM'.
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We thus have Q7 = —Qf + ﬁ@ A 16 on M’'. In particular, we have

(14) ONQ = —0NQ,

at every point of M (as this relation holds tautologically on M \ M’, where by definition
6 = 0). From (2) and (14) we get

(15) dQ =20 A Q7 = 20 A QF = 211 (0),

where LY : A*M — A*M, LI(a) := QY A a is the Lefschetz operator of the Kihler manifold
(M,g,1).

Using the Hodge decomposition on M, we decompose the closed 1-form 6 as 0 = 0y + do,
where 0y is the harmonic part of § and ¢ is a smooth real-valued function on M. From (15)
and the fact that L’ commutes with the exterior differential, we obtain

(16) L (0y1) = —d <%QJ + L1g0> |

Moreover, since L/ commutes on any Kihler manifold with the Laplace operator (see e.g.
[20]), the left-hand side of (16) is a harmonic form and the right-hand side is exact. This
implies that L/0p vanishes, so 8 = 0 since L! is injective on 1-forms for n > 2. Thus § = dy
is exact, so (M, g, J,0) is globally conformally Kéhler. O

Example 3.2. As in Example 2.4, we consider on M := C"\ {0} the standard flat structure
(go, Jo). Let J be a constant complex structure on M, compatible with gy and which does
not commute with Jy. Then, (M, g := r~%gy,J) is gcK and (M, g,I) is Kihler, where I is
the pull-back of Jy through the inversion, but J and I do not commute. This example shows
that the compactness assumption in Theorem 3.1 is necessary.

4. CONFORMAL CLASSES WITH NON-HOMOTHETIC KAHLER METRICS

As an application of Theorem 3.1, we will describe in this section all compact conformal
manifolds (M?", ¢) with n > 2, such that the conformal class ¢ contains two non-homothetic
Kahler metrics, thus solving Problem P1.

We start by constructing a class of examples, which will be referred to as the Calabi Ansatz.

Proposition 4.1. Let (N, h, Jy,Qy) be a Hodge manifold, i.e. a compact Kdhler manifold
with [Qn] € H*(N,27Z). Letw: S — N be the principal S*-bundle with the connection (given
by Chern-Weil theory) whose curvature form is the pull-back to S of iQy. For any positive
real number £, let hy be the unique Riemannian metric on S such that © is a Riemannian
submersion with fibers of length 2m(. For every b > 0 and smooth function ¢ : (0,b) — R>°
consider the metric g; := hyy + dr? on M’ := S x (0,b). Then the metric g; is globally
conformally Kdhler with respect to two non-conjugate complex structures J,, J_ on M’.
Moreover, if (2(r) = r*(1+ A(r?)) nearr = 0 and (*(r) = (b—7)*(1+ B((b—71)?)) nearr =b
for smooth functions A, B defined near 0 with A(0) = B(0) = 0, then the metric completion
M of (M, g,) is a smooth manifold diffeomorphic to the total space of an S*-bundle over N,
and gg, Jy, and J_ extend smoothly to M.
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Proof. Let iw € Q'(S,iR) denote the connection form on S satisfying

(17) dw = 7" (Qn).

The metric hy is defined by hy := 7*h + (?w @ w. Let € denote the vector field on S induced
by the S'-action. By definition £ verifies 7,6 = 0 and w(¢) = 1. Let X* denote the horizontal
lift of a vector field X on N (defined by w(X*) = 0 and m.(X*) = X). By the equivariance
of the connection we have [{, X*| = 0 for every vector field X, and from (17) we readily

obtain [X*, Y*] = [X, Y] — Qn(X,Y)&. The Koszul formula immediately gives the covariant
derivative V* of the metric gy := hy(r) + dr? on M := S x (0,b):

gl

vgar = vaé': ZS:

Ve = o,
V4, O, Vi 0, = V5 X* =0,
Vil = VeXr = g(JNX)*,
Vi.Y* = (VhY) — %QN(Xa Y)§,

where ¢ is the derivative of /.
We now define for e = £1 the Hermitian structures J. on (M’, g¢) by
J.(X*) = e(JnX)*, J.(&) := 10, J.(0,) == =€

A straightforward calculation using the previous formulas yields VéJE =ZNJO.+ J.Z N6,
for every vector field Z on M, where 6. := %eﬂdr. Thus (ge, J:) are globally conformally
Kéahler structures on M’ with Lee forms

0. = edep, where

The last statement of the proposition follows from a coordinate change (from polar to
Euclidean coordinates) in the fibers S' x (0,0) of the Riemannian submersion M’ — N.
Indeed, in a neighbourhood of » = 0, with Euclidean coodinates x; := r cost and x5 := rsint,

we have:
o\ cost sint\ [0,
1) \—sint cost) \&,, )’

where £ = 0. In these coordinates, we have the following formulas for the complex structures

and the metric:
([ —A(r? A(r?

62
A(r? A(r?
(%xlxzam + (1 — 2’2” )g;g) am) :

A(r? A(r? A(r?
g=7m"h+ (1 + 7(; )x%) da? + (1 + %xf) dzj — 2 (r )xlxgdxldarg.

72




CONFORMALLY RELATED KAHLER METRICS AND THE HOLONOMY OF LCK MANIFOLDS 11

From the assumption on A, the functions f and %22) extend smoothly at r = 0, therefore, the

complex structures J_, J, and the metric g extend smoothly at » = 0. The same argument
applies to the other extremal point » = b. Hence, the metric g, on M’ extends to a smooth
metric go on M, and there exist two distinct Kéahler structures on M in the conformal class [go],
whose restrictions to M’ are equal to (g4 := €¥gy, J, ) and (g_ := e~ ?gy, J_) respectively. O

Conversely, the Calabi Ansatz can be characterized geometrically by the following data:

Proposition 4.2. Let (M, go, I) be a compact globally conformally Kdhler manifold with non-
trivial Lee form 0y = dpy and denote by V° the Levi-Civita connection of go. We assume that
on M', the set where 0y is not vanishing, its derivative is given by:

(18) V0o = f (0o(X)0o + 100(X)16,), VYX € TM',

for some function f € C*°(M'). We denote by & the metric dual of 10y with respect to go and
further assume that there exists a distribution V on M, such that V, is spanned by & and 1€,
for every x € M'. Then (M, go) is obtained from the Calabi Ansatz.

Proof. We first notice that M’ # M. Indeed, 6y vanishes at the extrema of the function ¢,
defined on the compact manifold M.

From (18) and (1) we deduce the following formulas on M":
(19) V(1€ = —f({(X, I)IE+ (X, £)¢), VX € TM,

(20) V€= 1+ X, I~ (X, I€)¢) — [€PIX, VX e TM,
which imply that the distribution V is totally geodesic along M’.

Equation (20) also shows that V¢ is a skew-symmetric endomorphism, hence ¢ is a Killing
vector field on (M’ go). Since £ is tautologically Killing on the interior of M\ M’, it is Killing
on the whole of M by density. We denote by N one of the connected components of the
zero set of &, which is thus a compact totally geodesic submanifold of M. Applying (20) at
a sequence of points of M’ converging to some point of N, we see that d¢® has rank at most
2 at each point of N. Moreover £ is not identically 0, thus showing that N has co-dimension
2, and its normal bundle equals V|y.

Let @, denote the 1-parameter group of isometries of (M, gg) induced by & and let us fix
some p € N. For every s € R, the differential of ®; at p is an isometry of T, M which fixes
T,N, so it is determined by a rotation of angle k(s) in V,. From &40 &y = &, we obtain
k(s) = ks, for some k € R*. For sy = 27/k, the isometry @, fixes p and its differential at p
is the identity. We obtain that ®,, = Ids, so £ has closed orbits. Note that any p € N is
a fixed point of ®,, for all s € R, and that %0 is an orientation preserving isometry whose

differential at p squares to the identity, and is the identity on T,N = V,-. Hence, (d® s )olv,
is either plus or minus the identity of V,. The first possibility would contradict the definition
of sy, so we have

(21) (AP sn)yly, = ~1dy,.
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Let v be a geodesic of (M, gy) starting from p, such that V' := 4(0) € V, and [§(0)| = 1.
Since V is totally geodesic, §(t) € V for all t. The function go(&,*) clearly vanishes at ¢t = 0
and its derivative along v equals go(V9€,%) = 0, so go(§,7) = 0 along 7. We thus have

(22) If’y(t) = Cpv (t)’7<t>7

for some function ¢,y : R — R. Clearly ¢ (t) = |&,)|%, 50 ¢p,v is smooth at all points ¢ with
v(t) € M'. By (19)—(20) we easily check that [, I€] = 0 on M’, and thus on M by density.
Hence, each isometry ®; preserves 1. Moreover, ®4(y(t)) is the geodesic starting at p with
tangent vector (®y).(7(0)). This shows that the function ¢, := ¢, does not depend on the
unit vector V' in V, defining ~.

We claim that in fact, for all p,q € N, ¢,(t) = ¢,(t), for all ¢. In other words, the norm of
&) only depends on ¢ and not on the initial data of v starting in N. For a fixed ¢t € R, we
consider the map F': SN — M, F(V) := exp(tV), where SN denotes the unit normal bundle
of N. By the Gauss’ Lemma, we know that dFy (TySN) C (5, (t))*, where 7,1 denotes the
geodesic starting at p with unit speed vector V. Since ¢ is Killing, the function go(p,v,€) is
constant along v,y and thus identically zero, because £ vanishes on N. As 4, € V, it follows
that 4,y is proportional to I£, which is the metric dual of —f,. On the other hand, (18)
immediately gives d|6y|* = 2f|60|?6p. Therefore, d|6y|* vanishes on dFy (TySN), showing
that the norm of &, does not depend on the starting point either. Hence, we further denote
the function ¢, = ¢,y simply by c: R — R.

Differentiating the relation 7, v (t) = 7, —v(—t) which holds for all geodesics and for all ¢,
yields 4, v (t) = =%, _v(—t). Therefore, from (22) we conclude that ¢(—t) = —c(t), for all
t. Moreover, ¢(t) is non-vanishing for |t| # 0 and sufficiently small. By replacing I with —I
if necessary, we thus can assume that ¢ is negative on some interval (0, ) and positive on
(—¢,0). Since (po(y(t))) = 0o(7(t)) = —c(t), we conclude that N is a connected component
of the level set of a local minimum of .

By compactness of NV, the exponential map defined on the normal bundle of N is surjective,
so its image contains points where g attains its absolute maximum. At such a point, the
vector field ¢ vanishes, so (22) shows that to := inf{t > 0|c(t) = 0} is well-defined and
positive. Let N’ be a connected component of the inverse image through g of po(exp,(toV)),
for some p € N and some unit vector V' in V,. The above argument, applied to N’ instead
of N, shows that N’ is a connected component of the level set of a local maximum of y.
It also shows that exp,(toW) € N’ for any ¢ € N and any unit vector W € V,. From (21)
it follows that 4, _v (o) = —Ypv(to), for any p € N and any unit vector V' € V,. In other
words, if a geodesic starting at a point p of N with unit speed vector V' € V), arrives after
time ¢y in a point p’ € N’ with speed vector V' € V,,, then the geodesic starting at p with
speed vector —V arrives after time ¢y in p’ with speed vector —V’, showing that these two
geodesics close up to one geodesic. Hence, M equals the image through the exponential map
of the compact subset of the normal bundle of N consisting of vectors of norm < t,, thus
showing that M\ M' = NUN".

Consequently, the function ¢ attains its minimum on N and its maximum on N’ and
has no other critical point. Let S be some level set corresponding to a regular value of .
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Consider the unit vector field ¢ := % on M’ (see Figure 1 for a visualization of the vector

fields £ and ¢ and of the level sets of ).

FIGURE 1

From (19) and (20) we readily compute on M":

(23) Vg(C = _é<X7 £>£7 vX € TM/a
and
(24) VeI¢ = 0.

In particular, we have VgC = 0, so if ¥ denotes the (local) flow of ¢, the curve ¢ — W,(x)

is a geodesic for every x € M’, that is, ¥,(x) = exp,(t¢). Note that by (23), we have d¢” = 0
so the Cartan formula implies £:¢* = d(¢1¢") + ¢ud¢” = 0, which can also be written as

(25) (Lego)(C, X) =0, VX eTM.

We claim that for fixed ¢, po(V:(x)) does not depend on x € S. To see this, let X € T,S.
By definition dgy(X) = 0, whence go(X, () = 0. We need to show that dgy((V;).(X)) = 0.
This is equivalent to 0 = go(C, (¥¢)«(X)) = (V7go)((, X), which clearly holds at ¢ = 0.
Moreover, from (25) we see that the derivative of the function (¥} gy)(¢, X) vanishes:

d

3 (T90)(C, X)) = (Vi Lego) (€, X) = (Lego) (€, (Pe)«(X)) = 0.
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This shows that for every z € S, exp, () belongs to the same level set of ¢y. Moreover,
wo(exp,(t()) is decreasing in t since its derivative equals dyo(¢) = 00(¢) = —|¢|. Take the
smallest ¢; > 0 such that m(x) := exp,(t;¢) € N for every x € S.

Claim. The map 7 is a Riemannian submersion from (5, go|s) to (N, go|n) with totally
geodesic 1-dimensional fibers tangent to &.

Proof of the Claim. First, the Killing vector field £ commutes with ¢, so (V,).£ = & for all
t < t1. Making ¢ tend to ¢, implies m,(§;) = &x(z) = 0 for every x € S, since w(x) € N. Thus
€ is tangent to the fibers of 7. From (20) we get V- I( = f|¢|C, so I( is a geodesic vector
field on S. Since I is proportional to &, it is also tangent to the fibres of 7.

Take now any tangent vector X € T,S orthogonal to I¢( and denote by X; := (¥,).(X),
which makes sense for all ¢ < ¢;. By construction we have m.(X) = limX;. Since 0 =

t—t1
¢, Xi] = VX, — V&, ¢, we get by (23) and (24):

CU X IC)) = (VeXy, IC) + (Xe, V2IC) = (VX,( IC) = —fIE( Xy, 1C).

The function ( Xy, I¢) vanishes at ¢ = 0 and satisfies a first order linear ODE along the
geodesic y(t) := exp,(t(), so it vanishes identically. Thus, X; is orthogonal to I¢ for all
t < t;. Moreover, the vector field X; along v has constant norm:

(26)  CUXP) = 2VOX, X)) = 2V ¢ X ® 2, 6 = apiel( X, 1¢) =,

el
This shows that |7,.(X)|* = | X|?, thus proving the claim.

Let us now consider the smallest t5 > 0 such that 7(x) := exp,(—t2() € N’ for every z € S
and let b := t; + t5. The flow of the geodesic vector field ¢ defines a diffeomorphism between
(0,b) xS and M’, which maps (r, x) onto exp, ((r—t2)¢). With respect to this diffeomorphism,
the vector field ¢ is identified to d,, the metric reads gy = dr? + k,, where k, is a family of
Riemannian metrics on S, and the function |fy| only depends on r, say |6y| = «(r). It follows
that 0y = adr and since dgy = 6y, we see that ¢y = o(r) and ¢f, = a.

The previous claim actually shows that for every r € (0,0), k. = 7*(h) + 7. ® 7., where
7, 1= 1¢" and h := go|y. From (23) and (24) we readily obtain

= L(IC) = —fall = —far,.

This shows that 7, = £(r)w with £(r) := e~ Jo 7O where w denotes the connection 1-form
on the S'-bundle S — N induced by the Riemannian submersion 7. Finally, the metric on
M’ reads gy = dr? + 7n*(h) + f*w ® w, showing that g has the form of the metric described
in Proposition 4.1. Il

4.1. Proof of Theorem 1.1. We can now finish the classification of compact manifolds
carrying two conformally related non-homothetic Kdhler metrics. Assume that (g, .Jy) and
(g—, J_) are Kahler structures on a compact manifold M of real dimension 2n > 4 with
g+ = e*?g_ for some non-constant function . Note that J, is not conjugate to J_. Indeed,
if J, were equal to &J_, then Q, = £+e?Q_, so 0 = dQ, = +2e?*dp A Q_ would imply
dyp = 0, so ¢ would be constant.
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We introduce the following notation, in order to use the results from Section 3:
gi=gy, I:=J., J=J, Q8 :=0Q, =9, Q:=g(J, ) =e*0_.
Then (M, g, I) is Kéhler, and (M, g, J) is 1cK (in fact globally conformally Kéhler), with Lee
form @ := dip. This last statement follows from (2), since dQ/ = 2e2?dp A Q_ = 2dp A Q7.

The first part of Theorem 3.1 shows that [ and J commute, which proves the statement of
Theorem 1.1 for n = 2.

Assume from now on that n > 3. The proof of the Theorem 3.1 shows that after replacing
I by —1I if necessary, one has 160 = J6 and tr(/J) = 2n — 4.

Let us consider the 2-form o := %QI + %QJ , corresponding to the endomorphism 7 + J of
TM via the metric g. We denote again by M’ the open set where 6 is non-vanishing. By
(13), on M’ we have

1

27 =—0ONI0.
(27) °= TP
Since [ is V-parallel (where V is the Levi-Civita connection of g), we obtain by (1) that
Vxo = 3(X AJO+ JX A0). Substituting Q7 = 20 — Q! and using the fact that o(f) = 10
we obtain the following formula for the covariant derivative of o:

1 1

Vxo = QVXQJ = §(X/\ JO+ JX N0O)
1

= §<X/\(20'—])6+(2U—I)X/\9)

= %(X/\IG—[X/\(Q)—{—O’(X)/\Q.

Since (27) gives 0 Ao =0, we get 0 = X 4(0N0o)=(X,0)0 —0 ANo(X) for every X € TM.
The previous computation thus yields

(28) vxa:%(xme_zxw)—()(,ma, VX € TM.

We consider now the 2-form ¢ := e¥o. By (28), its covariant differential reads:
[
VG = %(X ATO—IX AG), VX €TM.
Equivalently, this equation can be written as

IR DU _
(29) Vxd = 5(d(trd) ALX —d(trd) AX), VX € TM,

where tro := (7, Q) = e” is the trace with respect to the Kéhler form Qf and d¢ denotes
the twisted exterior differential defined by d°a := ). Ie; A V., «, for any form .

A real (1,1)-form on a Kihler manifold (M, g, I, Q) satisfying (29) is called a Hamiltonian
2-form (see [1]). Compact Kéhler manifolds carrying such forms are completely described in
[3, Theorem 5. In the case where the Hamiltonian form has rank 2, these are exactly the
manifolds obtained from the Calabi Ansatz described in Proposition 4.1.
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However, the statement and the proof of [3, Theorem 5| are rather involved, and it is not
completely clear that the construction described in that theorem is equivalent to the Calabi
Ansatz. We will thus provide here a more direct proof.

All we need is to show that the globally conformally Kéahler structure on M determined by
go := e¥g_ = e ¥g, and I := J, satisfies the hypotheses of Proposition 4.2. We start with
the following:

Lemma 4.3. On the open set M’ where 0 is not vanishing, the covariant derivative of 6 with
respect to g is given by

1 (66 1/ 56
(30) VXQ——|«9|X——(|0|2+n+1>(X,9)6—§<W+n—1)(X,IQ)I@.

Proof. Using the fact that I and J commute, 16 = J6 and tr(/J) = 2n — 4, (7) simplifies to

2n
(31) D (1JV.0, e;) =2(n—1)|0]° + 56.

i=1
Substituting this into (6), we obtain
(32) 2(2—n){Y, 0)J0 —2n(Y, JOYO + (2n — 5)|0)*TY + |0|*TY + 60(JY + 1Y)

+ 2(2 — n)Jer + 2V ;v 0 + Z(n — 2)V[y(9 —21JV 0 =0.
Differentiating (27) on M’ yields

2 0,0
%0/\]9—1— |0|2(VX9/\]6’+9/\]VXQ)

Comparing with (28), we obtain

(33) VXo' = —

1 2
(39) S(XATO—IX A6~ (X, 0)0 = —%i’”mfﬁ (VX0 A 1040 119 56).
Taking the interior product with 76 in the last equality, we get
1 15 1 ~ (Vx0,0) 1
(35) §(X, 19)19—§|9| X+§(X,9>9— e 0+ |9’2<VX9 10)10 — V x0.

We deduce that the following equality holds:

1
(36) Vxt = §|€|2X—|—oz(X)6’+ﬁ(X)]8
where a and S are the following 1-forms:
1 /d(|o]) 1
37 == —0 = —V b — 9

Since 6 is closed, (36) yields 0 = a A @ + 3 A I6. Therefore, there exist a, b, c € C*°(M’), such
that

a=al+bl0 and [ =100+ clh.
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Moreover, (37) shows that « is closed, so da A 8 + db A I8 + bd(16) = 0. On the other hand,
by (36), we have d(16) = |0]2Qf + a A 10 — BAO = |0*Q! + (a + ¢)f A 16. Hence,

da A0 +db A 16 +b|0]* Q" 4 bla+ )0 A 10 = 0.

Applying the last equality to X and /X, for a non-zero vector field X orthogonal to 6 and
10 yields b = 0. By (36) again we have

(38) —60 = zn:(ei, V..0)=(n+a+c)d)?*

i=1
Substituting Y by 6 in (32) and using (36), we obtain
(39) (66 + (1 + (2 — n)a+nc)|0]?) 16 = 0.
From (38) and (39), it follows that
1 /46 1 (/96
- (2 1 - (Zin_1).
a 2(|9|2+n+ ) and ¢ 2( +n )

This proves the lemma. O
We write (30) as

(40) Vxl = %g(Q, 0)X° — %(f +2)0(X)0 — %f]@(X)]@,

where f := (‘g% +n— 1). Note that we no longer identify vectors and 1-forms in this

relation, since we will now perform a conformal change of the metric.

Namely, we consider the “average metric” gy := e¥g_ = e ¥g, and denote by V° its
Levi-Civita covariant derivative, by 6, the Lee form of I := J, with respect to gy and by
Qo == go(I+,-). Since dQy = d(e¥Qy) = —e ?dpAQy = —dpAQy, we get ) = —1dp = —36.

From (40) we immediately get
(41) Vxbo = —g(60.0) X" + (f +2)80(X)8 + f160(X)16y.

The classical formula relating the covariant derivatives of g and go = ¢7¥¢ on 1-forms reads
V%0 = Vxn+g(6o,n) X" —n(X)0y — 6o(X)n, VX € TM, Vn € Q'(M),
where b is the index lowering with respect to g. For n = 6, (41) becomes exactly (18).

From the proof of Theorem 3.1 it is clear that the distribution V := ker(I — J) is spanned
along M’ by £ and I€, where £ denotes the vector field on M corresponding to 16, via the
metric go. This shows that the hypotheses of Proposition 4.2 are verified, thus concluding
the proof of Theorem 1.1.

Corollary 4.4. Ifn > 3 and (M*", g, J) is a non-ruled compact Kihler manifold, then every
conformal diffeomorphism of (M, [g]) is an isometry of g.
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Proof. Let f : M — M be a conformal diffeomorphism of (M, [g]). Since compact Riemannian
manifolds do not admit strict homotheties, f is either an isometry of g, or f*g = e 2¢g for
some smooth non-constant function ¢. In the latter case, (g, J) and (f*g, f*.J) are conformally
related non-homothetic Kéhler structures on M, so by Theorem 1.1, (M, g, J) is obtained
from the Calabi Ansatz of Proposition 4.1, thus contradicting the hypothesis that it is non-
ruled. O

The novelty of this result comes from the fact that it gives information about every single
conformal transformation. Indeed, at the infinitesimal level, it is a classical fact that confor-
mal Killing vector fields on compact Kahler manifolds are automatically Killing. On the other
hand, this does not imply that every conformal transformation of a compact Kéhler manifold
is isometric, and this is actually not true on some ruled manifolds: the transformation defined
by the antipodal map of the fibers in the Calabi Ansatz is conformal but not isometric, since
it maps the Kéahler metric g, to a scalar multiple of g_ = e ?¢g,.

5. COMPACT EINSTEIN LCK MANIFOLDS

The purpose of this section is to classify compact Einstein proper IcK manifolds (Problem
P2). Note that this problem is open only in dimension n > 3, since C. LeBrun has recently
shown in [18, Theorem A] that an Einstein and Hermitian metric on a compact surface is

either Kihler-Einstein, or homothetic to the Page metric [23] on CP*#CP?, or to the metric
constructed by X. Chen, C. LeBrun and B. Weber in [10] on CP?#2CP>.

Assume that (M?", g, J,0) is a compact proper lcK manifold and g is Einstein, with positive
scalar curvature. By Myers’ Theorem and Remark 2.1, (M, g, J) is gcK, so there exists
a function ¢ such that (M, e ?%g,J) is Kahler (and of course conformally Einstein). The
classification of conformally Einstein compact Kahler manifolds in complex dimension n > 3
has been obtained by A. Derdzinski and G. Maschler in a series of three papers [12, 13, 14].
They showed that the only examples are given by the construction of L. Bérard-Bergery, [5].

According to the above, Problem P2 is still open only when the scalar curvature is non-
positive and n > 3. Using the Bochner formula and a compactness argument, we will show
in Theorem 5.2 below that in this case the Lee form of the lcK structure must vanish, hence
the manifold is already Kahler. Note that our proof works for n = 2 as well. We start with
the following:

Lemma 5.1. On an lcK manifold (M,g,J,0) with g FEinstein, the symmetric 2-tensor S
defined by

(42) S:=Vi+60®0,
is of type (1,1) with respect to J, i.e. it satisfies S(J-,J-) = S(-, ).
Proof. Since the statement is local, we may assume without loss of generality that the Lee

form is exact, @ = dip, which means that gx := e 2?g is Kihler with respect to .J. We denote
the Einstein constant of g by .
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The formula relating the Ricci tensors of conformally equivalent metrics [6, Theorem 1.159]
reads:

Ric" = Ric? + 2(n — 1) (V9dp + dp @ dp) — (A% + 2(n — 1)g(dp, dp)) g.

Since g% is Kihler, Ric™(J-, J-) = Ric(-,-). Using this fact, together with g(J-, J-) = g(-,-)
and Ric? = \g in the above formula, we infer:

(43) (Vidp +dp @ de) (J-,J-) = (Ve +dp @ dp) (),
which is equivalent to SJ = JS (when identifying S with a symmetric endomorphism via the
metric g). O

The main result of this section is the following:

Theorem 5.2. If (M?", g, J,0) is a compact lcK manifold and g is Einstein with non-positive
scalar curvature, then 6 =0, so (M, g, J) is a Kdhler-Finstein manifold.

Proof. Let {e;}i=1.. 2n be a local orthonormal basis which is parallel at the point where the
computation is done. We denote by A < 0 the Einstein constant of the metric g, so Ric = Ag.
The strategy of the proof is to apply the Bochner formula to the 1-forms 6 and J6 in order
to obtain a formula relating the Einstein constant, the co-differential of the Lee form and its
square norm, which leads to a contradiction (if 6 is not identically zero) at a point where
660 + |0|* attains its maximum.

Let S denote as above the endomorphism S = V# + 6 ® 6. In particular, we have
1
(44) SO = Va0 + |0]°0 = idyeﬁ + 1016
and the trace of S is computed as follows
(45) tr(S) = |6]* — 86.

In the sequel, we use Lemma 5.1, ensuring that S commutes with J. We start by computing
the covariant derivative of J6:

VO = (VxJ)(0) + J(Vx0) 2 (X A JO+ JX ABO)(0) + J(SX — 0(X)0)
= JSX — JO(X)0 — |9]*TX.
The exterior differential of J@ is then given by the following formula:

(46)

2n
(47) dJO = e; AV, J0 =2]S + 60 A J0 — 2|6
i=1
We further compute the Lie bracket between 6 and J6 (viewed as vector fields):
(48) 10,.70] = VoJ0 — V50 P2 150 — 191270 — ST0 = —|0]2J0.
By (3), we have §.J0 = 0. Using the following identities:

(49) 50 A JO) = (0).70 — 6(J0Y0 — [0, .70] =) (50 + |0]2).70,
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(50) 5(101°Q) = —J(d|8]?) + |8]*6Q © —J(d|8]?) + (2 — 2n)|0|* ],
we compute the Laplacian of J6:
AJO = 5470 ‘2 5278 + 0 A JO — 20]2Q)
(51) WLED 95(IS) + (50 + |0]2)70 + 2J(d|6]?) + 2(2n — 2)|6]2T0
= 25(JS) + 6070 +2.J(d|0]?) + (4n — 3)|0|*J6.
We next compute the rough Laplacian of J@:

2n 2n
VI =~ V. V.70 3"V, (IS¢, - T0(e)0 — |02 Te;)

i=1 =1

(52) = §(JS) + Vo8 + JA(|6?) + |6)? Z (Ve,J)(e:)

D 5(18) + 570+ JA(02) + (2n — 2)|0]2T0
W 5(JS) + |0]270 + ng(|9|2) + (2n — 2)|0)*J6.

Using the Bochner formula AJ = V*V.J0 + Ric(J0) together with (51) and (52) yields:

5(JS) = —(50).70 — %J(dyeﬁ) — 9(n — 1)[02J0 + AT,

which, after applying J on both sides, reads:
(53) Jo(JS) = (60)60 + %d|9|2 +2(n — 1)]0)%0 — ).
The rough Laplacian of 8 is computed as follows:
el el 1
(54) V*Vo = — ; Ve, Ve, = — Z:: V.. (Se; — 0(e;)0) = 65 — (80)0 + §d\9\2.
The Bochner formula Af = V*V6 + Ric(), together with (54) yields
(55) 55 = (56)0 — %d\G\Q A0+ 6.

On the other hand, we have:
2n

2n
5(JS) = = (Ve JS) () = =Y (Ve J)(Se;) — ZJ V..9)(e:)
=1 =1
2n
= = (e NJO+ Je; AO)(Se;) + J(5S)

=1

= —tx(8)J0 + 2780 + J(58) LV (56).70 + T(A|02) + 0]2T6 + J(8S).

—
N
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Applying J to this equality yields
(56) J&6(JS) 488 = —(00)0 — d|6]* — |9]26.

Summing up (53) and (55), and comparing with (56), we obtain:
(57) 3(60)0 — 200 + dé6 + d|A|> + (2n — 1)|0]%0 = 0.
After introducing the function f := 6 + |0|?, (57) reads:

(58) df = (2A = 3f + (4 — 2n)|0]*)0.

We argue by contradiction and assume that 6 is not identically zero. In this case, the
integral of f over M is positive. As M is compact, there exists pg € M at which f attains its
maximum, f(py) > 0. In particular, we have (df),, = 0 and (Af)(po) > 0. Applying (58) at
the point py yields that 6,, = 0, because 2\ — 3f(po) + (4 — 2n)[6,,|*> < 0. From the definition
of f, it follows that 66(py) > 0.

On the other hand, taking the co-differential of (58), we obtain:
Af =2\ = 3f + (4 —2n)|0]*)60 + 30(f) + (2n — 4)0(]0)?).

Evaluating at py leads to a contradiction, since the left-hand side is non-negative and the
right-hand side is negative, as 6,, = 0 and (2A\ — 3f(po))d6(po) < 0. Thus, 6 = 0. O

Theorem 5.2 and the results mentioned at the beginning of this section complete the proof
of Theorem 1.2.

6. THE HOLONOMY PROBLEM FOR COMPACT LCK MANIFOLDS

In this last section, we will classify compact proper 1cK manifolds (M, g, J,0) of complex
dimension n > 2 with non-generic holonomy group: Holy(M, g) € SO(2n). We will use the
previous main results (Theorems 1.1 and 1.2), as well as an irreducibility result (Theorem 6.2
below) stating that a parallel distribution on a compact proper lcK manifold can only have
dimension (or co-dimension) equal to 1.

By the Berger-Simons holonomy theorem, the following exclusive possibilities may occur:

e The restricted holonomy group Holy(M, g) is reducible;
e Holy(M, g) is irreducible and (M, g) is locally symmetric;
e M is not locally symmetric, and Holg (M, g) belongs to the following list: U(n), SU(n),

Sp(n/2), Sp(n/2)Sp(1), Spin(7) (for n = 4).

6.1. The reducible case. We start by recalling the following general fact (for a proof see
for instance the first part of the proof of [4, Theorem 4.1]):

Lemma 6.1. If (M, g) is a compact Riemannian manifold with Holo(M, g) reducible, then
there exists a finite covering M of M, such that Hol(M, g) is reducible, where g denotes the
pull-back of g to M.
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Let (M,g,J,0) be a compact proper lcK manifold of complex dimension n > 2 with
Holy(M, g) reducible. Lemma 6.1 shows that by replacing M with some (compact) finite
covering M, and by pulling back the 1cK structure to M, one may assume that the tangent
bundle can be decomposed as TM = D; @& Dy, where D; and D, are two parallel orthogonal
oriented distributions of rank ni, respectively no, with 2n = n; + no. By taking a further
double covering if necessary, we may assume that the distributions are oriented. The main
result of this section is the following:

Theorem 6.2. Let (M, g, J,0) be a compact lcK manifold of complex dimension n > 2. If
there exist two orthogonal parallel oriented distributions Dy and Do, of respective ranks ny > 2
and ny > 2, such that TM = Dy ® D», then 0 = 0.

Proof. Since the arguments for n = 2 and n > 3 are of different nature, we treat the two cases
separately. Consider first the case of complex dimension n = 2. Then both distributions D,
and Dy have rank 2, and their volume forms €2; and €2, define two Kéahler structures on M
compatible with g by the formula g(I.-,-) = Q; £ Q. Using the case n = 2 in Theorem 3.1
above, we deduce that J commutes with I, and with /_. In particular, J preserves the
+1 eigenspaces of I, I, which are exactly the distributions D; and D,. Since J is also
orthogonal, its restriction to Dy and Dy coincides up to sign with the restriction of I, to Dy
and Dy. Thus J = £1, or J = 4+1_. In each case, the structure (g, J) is Kéhler, so § = 0.

We consider now the case n > 3. Let 6 = 6, 4+ 05 be the corresponding splitting of the Lee
form. We fix a local orthonormal basis {e;}i—1.. 2., which is parallel at the point where the
computation is done and denote by e the projection of e; onto D,, for a € {1,2}.

The exterior differential and €2 split with respect to the decomposition of the tangent bundle
as follows: d = d; + dy and Q = Q3 + 2Qy5 + Qg9, where for a,b € {1,2} we define:
2n 1 2n 1 2n
dy = CAVea, Qup == A (Je)’ == @A (Je)b.
;ez 5 Qap 212161 (Jes) Q;Gz (Jef)
The last equality follows for instance by considering a local orthonormal basis of TM, whose
first n; vectors are tangent to D;.

Lemma 6.3. With the above notation, for any vector fields X; € Dy and Xo € Do, the
following relations hold:

(59) VX192 = —01(X1)02, VX261 = —QQ(XQ)el.

Proof. Note that df = 0 implies d,0, + dpf, = 0, for all a,b € {1,2}. For ¢ € {1,2} we
compute:
2n
1
5 O A A (€5 e)T0 = (0, ) + (5 ei)0 — (6, ¢, ) Jes)’

ij=1

chab (2

2n
1
= 3 Z (e5 A€t A Jby — (Je;)  Aed Ay — €5 A by A (Jef))
i=1

= Qu N0+ Qo N\ Oy,
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so for all a,b,c € {1,2} we have

(60) deQap = Qae N Oy + Qo N,
Using the fact that d? = 0 for ¢ € {1,2}, we obtain
(61) 0=d2Qp = Quc A (e + 0. A Oy) + Qep A (Ao + 0 A 0,).

For ¢ = a # bin (61), we get Q. A (dey+0.N0,) = 0 and for a = b: QA (O, +0.N6,) = 0.
Summing up, we obtain that Q A (d.0, + 6. A 6,) = 0, which by the injectivity of Q A - on
manifolds of complex dimension greater than 2, implies that d.6, = —0. A 0,. Applying this
identity for b # ¢ to X. € D, and X, € Dy, yields (59). O

The symmetries of the Riemannian curvature tensor imply that Rx, x, = 0, and thus
RXl,XQJ = [RXl,X27 J] =0, for every X, € Dy and X5 € Ds.

Using (4) for X := X; and Y := X, and applying Lemma 6.3, we obtain:

(62) 0= (X1, 01)XoANJO — (Xs, 02) X1 A JO3— (Xo, 02)TJ X1 ANOs+ ( Xy, 01)J X A by
— 0P X ANTX 1L+ |0PX AT Xo+ Xo A IV x, 01 + T Xo AV x, 00 — X1 A JV x,05 — J X1 AV x, 05,
for every X; € Dy and X5 € D,.

Lemma 6.4. The following formula holds:

1
(63) Vx,bh = — (X1, 6,)6; + — (161> = 061) X1, VX; € Dy.
1

Proof. Let U denote the open set U = {z € M| (JDs), ¢ (D1).}. By continuity, it is
enough to prove the result on the open sets M \ U/ and U.

Let O be some open subset of M\U, i.e. at every point x of O the inclusion (JDs), C (D1),
holds. On O, let X be some vector field and Y5, Z5 vector fields tangent to D,. By assumption,
we have JY; € Dy, hence VxJYs € Dy and VY, € Dy, thus JVxY; € Dy. Applying (1),
we obtain

0 = (VxJY, Zo) — (JVxYs, Zo) = ((VxJ)Ya, Z3)
= (X, Y2)(J0)(Z2) = (X, Z5)(JO)(Ya) — (X, JY2)0(Zs) + (X, JZ5)0(Y2).
Since ny > 2, for any Y, € D, there exists a non-zero Zs € D, orthogonal to Y;. Taking

X = JZ2_€ Dy in the above formula yields 6(Y3) = 0. This shows that 0y = 0, so 0 = 6.
Taking X = Zy € Dy in the above formula yields 6;(JY32) = 0, for all Y3 € D,. Substituting

into (62), we obtain for all X; € D; and Y5 € Ds:

(64) (X1, 01)Yo A JO + (X1, 1) IYo NGy — 012 Yo A JX1 + |01° X1 A JY,
+ Yy A JVx, 0 + JYo AV, 0, = 0.

Let us now consider the decomposition Dy = JDy & D}, where D/ denotes the orthogonal
complement of JD, in D;. Note that D] is J-invariant, since it is also the orthogonal
complement in TM of the J-invariant distribution Dy & JD,. Let X7 = JV5 4+ Vi and
Vx, 01 = JW5 + Wi be the decomposition of X7, respectively of Vx, 6, with respect to this
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splitting, i.e. V5, Wy € Dy and Vi, W) € Dj. As shown above, #; vanishes on JDs, meaning
that 61 € Dll

Taking the trace with respect to Y, in (64) yields
(65) TLQ<X1, 01 >J01 + |01|2[(n2 - 1)‘/2 - nQJ‘/l] + ngJW1 — (n2 - ].)WQ == O,

which further implies, by projecting onto Dy and Dj, that W, = —( X, 61 )60, + |61|*V; and
Wy = 101)*Va. Hence, Vx,0; = ]ﬁl\QXl — ( Xy, 01 )6,, which in particular implies §6; =
(1 —ny)|6:|?, proving (63) on M \ U.

We further show that the formula (63) holds on U. At every point x of U there exist vectors
X3, Ys € (Dy), such that Xy 1 Y, and (Ys, JX5) # 0. Indeed, by definition there exists
Ys € (D), such that JY5 ¢ Dy, and we can take X, to be the Dy-projection of JY5.

For any vector X; € (D), we take the scalar product with X; A Y5 in (62) and obtain:
(66) (JX5, Ya) ((Vx, 01, X1)+ [( X3, 01)) =
— | X1 (( X2, 02)( 0, Yo ) — [0 (T X2, Ya) + (JVx, 02, Ya)) .

We thus get (Vy, 01, X1) + [( X1, 01(2))]? = fi(z)|X1]?, for every X; € (D)., where the
real number f;(x) does not depend on X;. By polarization, we obtain:

(67) VX161 = —<X1, 91(.73) >t91(l’) + fl(ZL’)Xl, VXl € (Dl)x

Taking the trace with respect to X; in this formula and using (59) we obtain (06;), =
01(2)]* — ny fi(x), whence:

(68) ﬁ@z%

From (67) and (68) we obtain (63) on Y. This proves the lemma. O

(|91|2 — (591) (l’), Ve elU.

A similar argument yields

1
(69) Vix,02 = —( X, 05)05 + — (162> = 062) Xa, VX5 € Ds.
2

Substituting (63) and (69) into (62), we obtain
1 1

(n— (161> — 661) + — (162> — 665) — |0|2> (XoNJX1 — X1 AJXy) =0, VX, € Dy, X5 € Dy,
1 2

Note that for every X; € Dy, X5 € D, the two-forms X, A JX; and X; A JX5 are mutually

orthogonal. So, choosing X non-collinear to J X, (which is possible as n; > 2), the 2-form
appearing in the previous formula is non-zero. Hence, we necessarily have

1 1
(100 = 061) + - (6] = 362) = |6 =0,

Integrating this relation over M, we get

1 1
[ 0Py = [ 1P+ [ (6P,
M n Jm N2 Jm
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Since [0 = [61]* + |02]?, we obtain (1 — n%) Loy 10117 dpg + <1 - n%) [og 102Pdpy = 0. As
ni, ng > 2, it follows that & = 0. This concludes the proof of the theorem.

Remark 6.5. For every n > 2, the tangent bundle T(C™\{0}) endowed with the flat metric g
defined in Example 2.4 can be written as an orthogonal direct sum of two parallel distributions
of ranks at least 2 in infinitely many ways, but the gcK structure (g, Jy) on C*\ {0} has
non-vanishing Lee form § = —2Inr. The compactness assumption in Theorem 6.2 is thus
necessary.

It remains to consider the case when one of the two oriented parallel distributions has rank
1, and is thus spanned by a globally defined parallel unit vector field. This case was studied
by the second named author in [21, Theorem 3.5 for n > 3. We will give here a simpler proof
of his result, which also extends it to the missing case n = 2.

Theorem 6.6 (cf. [21, Theorem 3.5]). Let (M, g, J,0) be a compact proper lcK manifold of
complex dimension n > 2 admitting a non-trivial parallel vector field V. Then, the following
exclusive possibilities occur:

(i) The Lee form 0 is a non-zero constant multiple of V°, so M is a Vaisman manifold.

(ii) The Lee form 0 is exact, so (M, g,$2,0) is gcK, and there exists a complete simply con-
nected Kdahler manifold (N, gn,S2n) of real dimension 2n — 2, a smooth non-constant
real function ¢ : R — R and a discrete co-compact group I' acting freely and totally
discontinuously on R? x N, preserving the metric ds*> + dt? + e gy, the Hermitian
2-form ds Adt + e2*DQy and the vector fields O, and 0y, such that M is diffeomorphic
to T\(R? x N), and the structure (g,€2,0) corresponds to (ds? + dt? + e*Mgy, ds A
dt + e>*MQy, de) through this diffeomorphism.

Proof. Let V' be a parallel vector field of unit length on M. We identify as usual 1-forms
with vectors using the metric g and decompose the Lee form as # = aV + bJV + 0y, where
=(0,V),b:= (0, JV) and 0 is orthogonal onto V' and JV. We compute:

(70) 00 = =V (a) — JV(b) + bdJV + §6,.
On the other hand, we have:

5IV = Z (Ve J)V. ”Z ((e; AJO+ Je; ANOV), e;)

= (2—- 2n)<9, JV)=(2- Qn)b,
which together with (70) yields
(71) 60 = —V(a) — JV(b) + (2 — 2n)b* + 66,.
Replacing X by V in (5) and using that V' is parallel, we obtain:
(2n — 3) (aJl — |0]?JV + JVy0) — b0 — V 0 — JV 6 = 0.

Taking the scalar product with JV yields
(72) (2n —3) (a®> = 6 + (Vy0, V) = b* = (Vvb, JV ) — 66 = 0.
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Further, we compute
<VV9, V) = V(<97 V>) = V(a)7
(Vyvl, JVYy=JV(b)— (0, (V,vJ)V) 0 JV(b) — (0, bJV +aV —0) = JV(b) + |6o]?,
which together with (71) and (72) imply that
(2n —2)(V(a) — |6]*) = 6,.

Integrating over M, we obtain [, [0o|*duy = 0, because [,, V(a)du, = [,, adVdpu, =0, as V
is parallel. Hence, 6y = 0, showing that = aV 4 bJV.

Claim. The function a is constant and ab = 0.
Proof of the Claim. Equation (1) yields

(73) VxJV =(X, V)(=bV +aJV)+bX — (X, JV)(aV +bJV) —aJ X,
which allows us to compute the exterior differential of JV', as follows:
(74) dJV =2a(VANJV — Q).

From the fact that 6 is closed and V is parallel, we obtain
0=d0=da ANV +dbAJV +bdJV =da AV +dbA JV +2ab(V AN JV —Q),

which implies that ab = 0, for instance, by taking the scalar product with X A JX for some
vector field X orthogonal to V and JV. In particular, we have

(75) da AV +dbAJV =0,

Differentiating again (74) yields

0= daA(VAIV —Q)+a(—VAdJV —dQ) = daA(VAIV —Q)—2abJV AQ = daA(V ATV —Q),
which together with (75) shows that da = 0, thus proving the claim.

If a is non-zero, the second part of the claim shows that b = 0, so 6§ = aV is parallel and
(M,g,J,0) is Vaisman.

If a = 0, Equation (73) becomes:
VxJV=b(X—(X, V)V —(X, JV)JV).
We conclude that in this case the metric structure on M is given as in (ii) by applying

Lemma 3.3 and Lemma 3.4 in [21]. O

Corollary 6.7. Let (M, g, J,0) be a compact proper lcK manifold of complex dimensionn > 2.
If (M, g) has reducible holonomy, then its restricted holonomy group Holg(M, g) is conjugate
to SO(2n —1).

Proof. By Lemma 6.1, Theorem 6.2 and Theorem 6.6, we need to distinguish two cases:

Case 1. If (M, g, J,0) is Vaisman. Then the Lee form 6 is parallel (and non-vanishing), so
(M, g) is locally isometric to R x S for some Riemannian manifold (5, gs). It is well known
that S is a Sasakian manifold, but since we want to avoid introducing this class of manifolds,
we will derive the necessary formulas directly.
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As 0 is parallel, we can rescale the metric of M such that |0| = 1. Equation (4) applied to
vector fields X, Y tangent to S (i.e. orthogonal to #) then yields:

RxyJ=XAJY =Y ANJX, VXY € ker(f).

In particular, applying this formula to 6 (seen as vector field) and using the fact that Ry y6 =
0 gives

nyy(JH) = (R)Qyj)(@) = <}/, J0>X — <X, J0>Y, VX,Y € ker(Q)

The metric dual £ of J@ is parallel in the direction of 6, so it is actually a vector field on .S,
and the previous relation reads

(76) R yv€=9s(Y, )X —gs(X, €)Y, VXY € TS,

where R® is the Riemannian curvature tensor of (S, gs).

Assume, for a contradiction, that Holg(M, g) is strictly contained in SO(2n — 1). Then the
same holds for Holy(S, gs), so by the Berger-Simons theorem, we have three possibilities:

e (S, gs) has reducible holonomy; this would contradict Theorem 6.2 since then (M, g)
would have a holonomy reduction with both factors of dimension at least 2.

e Holy(S, gs) belongs to the Berger list; the unique group in this list corresponding to an
odd-dimensional manifold is Go (for 2n —1 = 7). However, a manifold with holonomy
Gy is Ricci-flat, whereas Ric®(€) = (2n — 2)¢ by taking a trace in (76). This case is
thus impossible too.

e (S, gs) is locally symmetric. Then R® is parallel, so by taking a further covariant
derivative in (76) we get

(77) RS (V7€) = gs(Y, V)X — gs(X,VZ)Y, VXY, Z€TS.

On the other hand, from (1) we see that V2§ = —JZ when Z is orthogonal to # and J6,
so the set {Vz£ | Z € TS} is equal to the orthogonal of £ in T'S. From (76) and (77)
we thus obtain that S has constant sectional curvature 1, i.e. it is locally isometric to
the round sphere, and has maximal holonomy group Holy(.S, gs) = SO(2n — 1), which
contradicts our assumption.

Case 2. The universal covering of (M, g) is isometric to a Riemannian product Rx S, where
S =R x N has a warped product metric gg = dt® + 2*® gy with periodic, but non-constant,

warping function c¢. Denoting for convenience f(t) := e®, one of the O’Neill formulas for
the curvature of warped products (cf. [22, p. 210]) reads:
(78) R 5,0, = —§X, VX € C(TN).

Assume now that Holy(M, g) = Hol(S, gg) is strictly contained in SO(2n — 1). Like before,
Theorem 6.2 shows that (5, gg) has irreducible holonomy.

Next, if Hol(S, gs) belongs to the Berger list, then S is a Gg-manifold since it has odd
dimension, and therefore is Ricci-flat. On the other hand, taking the trace in (78) immediately



28 FARID MADANI, ANDREI MOROIANU, MIHAELA PILCA

shows that
!
f

Thus Ric® = 0 implies f = 0, which is impossible since f is a non-constant periodic function.

(79) Ric®(0;, ;) = (1 — 2n)

It remains to treat the case where (.5, gg) is an irreducible symmetric space. In particular
S is Einstein with Einstein constant A and from (79) we get f = ﬁ f. As f is non-constant
and periodic, we necessarily have A > 0 and

(80) f(t) = sin(ut + v)
for some real constants p and v with p? = QH{ ;- This is a contradiction, since the periodic

function f = e does not vanish at any point of R. This shows that Holy(M, g) is conjugate
to SO(2n — 1), and thus finishes the proof. O

Summarizing, if Holy(M, g) is reducible, Theorem 6.2 shows that Holy(M, g) is (up to
conjugation) a subgroup of SO(2n — 1) acting irreducibly on R**~! and Theorem 6.6 implies
that (M?", g, J, 0) satisfies either case 1. or case 2.c) in Theorem 1.3. Moreover, Corollary 6.7
shows that the restricted holonomy group Holy(M, g) is conjugate to SO(2n — 1) in both
cases.

6.2. The irreducible locally symmetric case. In this section we show the following result:

Proposition 6.8. Fvery compact irreducible locally symmetric lcK manifold (M**, g, J,0)
has vanishing Lee form.

Proof. An irreducible locally symmetric space is Einstein. If the scalar curvature of M is
non-positive, the result follows directly from Theorem 5.2.

Assume now that M has positive scalar curvature. By Myers’ Theorem and Remark 2.1,
(M,g,J) is gcK, so 6 = dip for some function ¢, and gx := e %?g is a Kahler metric. Let X
be a Killing vector field of g. Then X is a conformal Killing vector field of the metric gg.
By a result of Lichnerowicz [19] and Tashiro [26], every conformal Killing vector field with
respect to a Kahler metric on a compact manifold is Killing. This shows that X is a Killing
vector field for both conformal metrics g and gx, hence X preserves the conformal factor, i.e.
X(¢) =0. As (M, g) is homogeneous and X (¢) = 0 for each Killing vector field X of g, it
follows that the function ¢ is constant. Thus 6§ = dp = 0. 0J

In conclusion, there exist no compact irreducible locally symmetric proper lcK manifolds.

6.3. Compact irreducible 1cK manifolds with special holonomy. We finally consider
compact 1cK manifolds (M, g, J,0) of complex dimension n > 2, whose restricted holonomy
group Holy(M, g) is in the Berger list.

If Holo(M,g) = U(n), the universal covering (]Tj, g) has holonomy Hol(]T/[/, g) = U(n),
so g is Kahler with respect to some complex structure I. Every deck transformation v
of M is an isometry of g, so v*I is parallel with respect to the Levi-Civita connection of
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g. As Hol(M,§) = U(n), we necessarily have v*I = I for every v € m (M) C Iso(M).
The group of I-holomorphic deck transformations is thus a subgroup of index at most 2 of
w1 (M), showing that after replacing M with some double covering if necessary, there exists
an integrable complex structure I, such that (M, g, I) is a Kdhler manifold. By Theorem 3.1,
I and J commute and (M, g, J,0) is gcK, hence the conformal class of g contains two non-
homothetic Kéhler metrics. We conclude then by Theorem 1.1 that (M, g, J,0) falls in one
of the cases 2.a) or 2.b) in Theorem 1.3.

If Holy(M, g) is one of SU(n), Sp(n/2), or Spin(7) (for n = 4), the metric g is Ricci-flat
and # = 0 by Theorem 5.2.

If Holo(M, g) = Sp(n/2)Sp(1), the metric g is quaternion-Kéhler, hence Einstein with either
positive or negative scalar curvature. In the negative case one has # = 0 by Theorem 5.2. On
the other hand, P. Gauduchon, A. Moroianu and U. Semmelmann, have shown in [15], that
the only compact quaternion-Kéahler manifolds of positive scalar curvature which carry an
almost complex structure are the complex Grassmanians of 2-planes, which are symmetric,
thus again § = 0 by Proposition 6.8.

This completes the classification of compact proper lcK manifolds (M?", g, J,0) with non-
generic holonomy stated in Theorem 1.3.
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