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Abstract
We show that the eigenvalues of the intrinsic Dirac operator on the bound-

ary of a Euclidean domain can be obtained as the limits of eigenvalues of Eu-
clidean Dirac operators, either in the domain with a MIT-bag type boundary
condition or in the whole space, with a suitably chosen zero order mass term.
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1 Introduction

1.1 Problem setting and main results

The aim of the present paper is to make a new link between a number of recent
papers on Dirac operators in bounded Euclidean domains with the theory of Dirac
operators on manifolds, which is a classical topic in Riemannian geometry. Namely,
let Ω ⊂ Rn be a bounded domain with smooth boundary Σ. We are going to show
that the intrinsic Dirac operator D/ on Σ, which acts on sections of the spinor bundle
of Σ, can be interpreted as a limit of Euclidean Dirac operators, either in Ω with
a suitable boundary condition, or in the whole of Rn, with a suitably chosen term
containing a large mass.

For n ≥ 2 and N := 2[n+1
2

] let α1, . . . , αn+1 be anticommuting Hermitian N ×N
matrices with α2

j = IN , where IN is the N × N identity matrix. The associated
Dirac operator with a mass m ∈ R acts on functions u : Rn → CN (spinors) by the
differential expression

Dmu = −i
n∑
j=1

αj
∂u

∂xj
+mαn+1u, (1)

see e.g. [24]. We remark that the expression Dm does not correspond to the intrinsic
Dirac operator on Rn (see Subsection 2.2) and can be interpreted as follows: the

intrinsic operator D̃ in Rn+1 is defined as

D̃v = −i
n+1∑
j=1

αj
∂v

∂xj
,
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and acts on functions v : Rn+1 → CN , then assuming that v is of the form
v(x1, . . . , xn+1) = eimxn+1u(x1, . . . , xn) one obtains D̃v = eimxn+1Dmu.

For x = (x1, . . . , xn) ∈ Rn we define the associated N ×N matrices Γ(x) by

Γ(x) :=
n∑
j=1

xjαj. (2)

Denote by ν the unit normal at Σ pointing to the exterior of Ω and consider the
N ×N matrices

B(s) := −iαn+1Γ
(
ν(s)

)
, s ∈ Σ. (3)

By the Dirac operator Am in Ω with a mass m ∈ R and the infinite mass bound-
ary condition (also called MIT Bag boundary condition) we mean the operator in
L2(Ω,CN) given by

Amu = Dmu on the domain D(Am) =
{
u ∈ H1(Ω,CN) : u = Bu on Σ

}
,

which is self-adjoint with compact resolvent (see Proposition A.2). Remark that in
order to have a simpler writing we prefer to use the same symbol u for a function
u ∈ H1(Ω) and its zero order boundary trace γ0u ∈ H

1
2 (Σ) on Σ, where Hk stands

for the usual Sobolev space of order k ∈ R.
In addition, for m,M ∈ R we consider the following operator Bm,M in

L2(Rn,CN), which is the Dirac operator in the whole space with the mass m in
Ω and the mass M outside Ω, i.e.

Bm,M = D0 +
[
m1Ω +M(1− 1Ω)

]
αn+1 ≡ Dm + (M −m)(1− 1Ω)αn+1

with domain D(Bm,M) = H1(Rn,CN). We are going to show that the eigenvalues
of the intrinsic Dirac operator D/ on Σ (whose construction is briefly reviewed in
Subsection 2.2) and of the Euclidean Dirac operators Am and Bm,M , are related to
each other for suitable values of m and M . We provide first strict formulations of
the main results and then discuss their relation with the existing literature.

For a self-adjoint lower semibounded operator T and j ∈ N we denote by Ej(T )
the jth eigenvalue of T , if it exists, when enumerated in the non-decreasing order
and counted with multiplicities. First we show that the eigenvalues of D/ 2 on Σ are
the limits of the eigenvalues of the square of the MIT Bag Dirac operator Am on Ω
for large negative m:

Theorem 1.1. For each j ∈ N there holds Ej(D/
2) = limm→−∞Ej(A

2
m).

Then we show that, in turn, for any fixed m, the MIT Bag Dirac operators Am on
Ω can be viewed as the limits of the Dirac operators Bm,M in the whole space with
a large mass outside Ω (which justifies the use of the term “infinite mass boundary
condition”):

Theorem 1.2. Let j ∈ N and m ∈ R. Then there exists Mj > 0 such that B2
m,M

has at least j discrete eigenvalues for M > Mj, and limM→+∞Ej(B
2
m,M) = Ej(A

2
m).

It is easily seen (Proposition A.1) that the essential spectrum of Bm,M is equal
to
(
−∞,−|M |

]
∪
[
|M |,+∞

)
while the spectrum in

(
− |M |, |M |

)
consists of at

most finitely many discrete eigenvalues. The above Theorem 1.2 shows, in particular,
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that the number of discrete eigenvalues grows unboundedly as M becomes large: the
essential spectrum escapes to ∞, and the individual eigenvalues have finite limits.

Finally, by an additional construction we find an asymptotic regime in which the
eigenvalues of D/ 2 on Σ are directly recovered as the limits of the eigenvalues of the
square of the Dirac operator B2

m,M on the whole space:

Theorem 1.3. Let j ∈ N. Then there exist µj > 0 and δj > 0 such that the
operator B2

m,M has at least j discrete eigenvalues for m < −µj and M > |m|/δj,
and the jth eigenvalue Ej(B

2
m,M) converges to Ej(D/

2) as m→ −∞ and M → +∞
with m/M → 0.

In the recent paper [2] the operator Am in three dimensions was considered,
and it was shown that for each j ∈ N one has limm→−∞Ej(A

2
m) = Ej(L) for some

operator L on Σ given by its sesquilinear form. Hence, Theorem 1.1 extends this
result in two directions: first, we consider arbitrary dimensions and, second, we show
that the operator L in question is in fact unitarily equivalent to the geometric Dirac
operator D/ 2, which is the central observation. Some analogs of Theorem 1.2 in two
and three dimensions were obtained very recently in [1, 5, 23], and we extend them
to all dimensions and shorten the existing proofs by making use of the monotone
convergence. As for Theorem 1.3, the interpretation of D/ using an infinite mass
jump on Σ seems to be completely new, as we are not aware of any previous work
containing similar results. In a sense, it can be viewed as a potential-induced collapse
by analogy with Dirac operators on manifolds converging to a lower-dimensional
structure [17, 20]. Nevertheless, our situation appears to have the special feature
that the rank of the spin bundle on which D/ acts is the half of that for Am and
Bm,M , which could be viewed as an effect of the boundary condition u = Bu on
Σ. (We recall that Am and Bm,M are not intrinsic Dirac operators in Rn, see
above.) Our results have a direct application to estimating the central gap (i.e. the
first eigenvalue) of Am or Bm,M : in the respective asymptotic regime one is simply
reduced to the eigenvalue estimate for the Dirac operator D/ , for which a number
of results are available in terms of the geometry of Σ, (we refer to the book [12]
for a review). We mention explicitly some simple situations. Consider first the case
n ≥ 3:

Corollary 1.4. Let n ≥ 3 and S(Σ) denote the minimum scalar curvature of Σ. As-
sume that S(Σ) > 0, which holds at least if and each maximal connected component
of Σ is strictly convex, then

lim
m→−∞

E1(A2
m) ≥ n− 1

4(n− 2)
S(Σ),

lim
m→−∞,M→+∞,m/M→0

E1(B2
m,M) ≥ n− 1

4(n− 2)
S(Σ).

Proof. As Σ is a compact (n − 1)-dimensional spin manifold, Friedrich’s estimate
[11, Sec. 5.1] gives E1(D/ 2) ≥ n−1

4(n−2)
S(Σ), and the rest follows from Theorems 1.1

and 1.3.

The case n = 2 allows for a more precise analysis, as the spectrum of D/ can be
computed explicitly.
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Corollary 1.5. Let n = 2. Assume that Σ has k connected components Σp, p =
1, . . . , k, and `p stands for the length of Σp. Denote

εj := the jth element of the disjoint union
k⊔
p=1

⊔
r∈Z

{π2

`2
p

(2r − 1)2
}

(when numbered in the non-decreasing order). Then for each j ∈ N there holds

lim
m→−∞

Ej(A
2
m) = εj, lim

m→−∞,M→+∞,m/M→0
Ej(B

2
m,M) = εj.

Proof. If one denotes by D/ p the intrinsic Dirac operator on Σp, then D/ =
⊕k

p=1D/ p,
and the eigenvalues of D/ p are (2r− 1)π/`p, r ∈ Z, by a simple explicit computation
(see Appendix C). The rest follows again by Theorems 1.1 and 1.3.

It is well known, see e.g. [12, Theorem 1.3.7], that the spectrum of the intrinsic
Dirac operator on a k-dimensional compact spin manifold is symmetric with respect
to zero provided k /∈ 4Z + 3. In our language (as the dimension of Σ is n − 1)
this means that for n /∈ 4Z one has dim ker(D/ − E) = dim ker(D/ + E) for any
E ∈ R. On the other hand, elementary considerations show that the symmetry of
the spectrum for n /∈ 4Z holds for and Am and Bm,M with arbitrary m and M as well
(see Propositions A.1 and A.2). Hence, in these dimensions, the spectra of D/ , Am,
Bm,M are uniquely recovered from the spectra of their squares: if one denotes by E±j
the jth non-negative/non-positive eigenvalue (numbered in the order of increasing
absolute value), then the preceding results imply the convergences

E±j (D/ ) = lim
m→−∞

E±j (Am), E±j (Am) = lim
M→+∞

E±j (Bm,M),

E±j (D/ ) = lim
m→−∞,M→+∞,m/M→0

E±j (Bm,M).

It would be interesting to understand if such a convergence also holds for n ∈ 4Z.
Indeed, the study of the squares of the operators is insufficient then, and a reconsid-
eration of the whole proof strategy using more involved min-max characterizations
of eigenvalues in gaps of the essential spectrum [9] could be necessary. This remains
an open question for future work.

The text is organized as follows. In Subsection 1.2 we recall a link between self-
adjoint operators and sesquilinear forms, choose a suitable notation, and then recall
two important tools of the spectral analysis: the min-max characterization of the
eigenvalues and the monotone convergence. In Section 2 we construct the sesquilin-
ear forms for the squares of all the Dirac operators in question, which will allow one
to obtain eigenvalue estimates based on the min-max principle: in Subsection 2.1
we recall the definition of various curvatures of Σ and study Am and Bm,M , and in
Subsection 2.2 we introduce an operator L, which already appeared in [2] for the
three-dimensional case, and prove that it is unitarily equivalent to D/ 2. The unitary
equivalence is shown using the Schrödinger-Lichnerowicz formula for extrinsically
defined Dirac operators whose elementary proof for our Euclidean setting is given
in Appendix B for reader’s convenience. In Section 3 we collect some preliminary
constructions: in Subsection 3.1 we study the eigenvalues and the eigenfunctions
of one-dimensional Laplacians S and S ′ with a large parameter in the boundary
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conditions, and in Subsection 3.2 we give some computations in tubular coordinates
near Σ.

In Section 4 we prove Theorem 1.1. We first reduce the problem to the spectral
analysis in small tubular δ-neighborhoods of Σ, and in order to work in Σ× (0, δ) we
use the computations from Subsection 3.2. The upper bound is obtained by taking
as test functions the tensor products of the eigenfunctions of (a small perturbation
of) the effective operator L on Σ with the first eigenfunction of the model operator S
in the normal direction. For the lower bound we perform a unitary transform, which
is just the expansion in eigenfunctions of the second model operator S ′ in the normal
variable, thus transforming the problem into the study of a monotonically increasing
sequence of operators. A simple application of the respective machinery presented
in Subsection 1.2 then shows that only the projection onto the lowest eigenfunction
of S ′ contributes to the asymptotics of the individual eigenvalues, which induces an
effective operator acting on Σ only.

The proof of Theorem 1.2 is presented in Section 5. To establish the upper
bound we construct first an extension operator from Σ to the exterior of Ω with a
suitable control in terms of the mass M , and then use the corresponding extensions
of the eigenfunctions of Am to construct test functions for Bm,M used in the min-max
principle. For the lower bound we first decouple the two sides of Ω in order to deal
separately with Ω and its exterior, then it is easily seen that the exterior does not
contribute to the lowest eigenvalues, while the part in Ω appears to be monotonically
increasing in M and then easily handled with the help of the monotone convergence.
The overall scheme here is very close to the one used in [23] for the two-dimensional
case.

In Section 6 we prove Theorem 1.3. The proof is by combining in a new way
various components from the preceding analysis, but we still provide a complete
self-contained argument.The upper bound is obtained by taking the eigenfunctions
of the operator L on Σ and extending them on both sides of Σ by taking tensor
products with the first eigenfunctions of the model operators S and S ′ in the two
normal directions, and then using them as test functions in the min-max principle for
B2
m,M . For the lower bound we again decouple the two sides of Σ and eliminate the

exterior of Ω as in Theorem 1.2. The analysis of the part in Ω is then quite similar
to the one in Theorem 1.1: one is first reduced to the analysis in a thin tubular
neighborhood of Ω, and then one applies a unitary transform in order obtain a
monotone family with an explicit limit operator. We remark that our proof of
Theorem 1.3 is independent of the other two theorems, in particular, it does not
make any use of the Dirac operator Am in Ω.

As will be seen from the proofs, the two sides of Σ play symmetric roles, and,
as a result, a number of similar convergences hold in other asymptotic regimes. In
particular, one can consider an additional operator A′m in L2(Ω,CN) given by

A′mu = Dmu on the domain D(A′m) =
{
u ∈ H1(Ω,CN) : u = −Bu on Σ

}
,

i.e. the only difference from Am is in the sign in the boundary condition, and which
is also self-adjoint with compact resolvent (see Proposition A.2). Then the following
complementary results can be proved (the proofs are almost literally the same as
for above Theorems 1.1, 1.2, 1.3, one only needs to apply suitable sign changes, see
e.g. Remarks 2.2, 2.5, 4.1 in the text).
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Theorem 1.6. For each j ∈ N there holds Ej(D/
2) = limm→+∞Ej(A

′
m

2).

Theorem 1.7. Let j ∈ N and m ∈ R. Then there exists Mj > 0 such that B2
m,M has

at least j discrete eigenvalues for M < −Mj, and limM→−∞Ej(B
2
m,M) = Ej(A

′
m

2).

Finally, the convergence of the eigenvalues of B2
m,M to those of D/ 2 can be recov-

ered in three additional asymptotic regimes:

Theorem 1.8. Let j ∈ N. Then there exist µj and εj > 0 such that if one of the
following three conditions is satisfied:

(i) M > µj and m < −M/δj,

(ii) m > µj and M < −m/δj,
(iii) M < −µj and m > |M |/δj,

then the operator B2
m,M has at least j discrete eigenvalues. Furthermore, the eigen-

value Ej(B
2
m,M) converges to Ej(D/

2) in the following asymptotic regimes:

(I) m→ −∞ and M → +∞ with M/m→ 0,

(II) m→ +∞ and M → −∞ with m/M → 0,

(III) m→ +∞ and M → −∞ with M/m→ 0.

Our approach based on the monotone convergence was chosen on purpose in
order to obtain the main terms in a transparent way and to be able to concentrate
on the geometric aspects. We expect that, in some form, the above convergence
results should also hold for a suitable class of unbounded hypersurfaces Σ. How-
ever, a rigorous study of this situation has to include highly non-trivial (essential)
self-adjointness aspects of the associated operators D/ and Am, and the language of
eigenvalues does not seem to be most adapted: the resolvents of these operators
are non compact anymore, and their discrete spectra can be empty. A more pre-
cise analysis involving detailed remainder estimates and reformulation in terms of
suitable operator convergences should be possible in the spirit of recent works in
specific dimensions, e.g. [1, 2, 5, 14], but a rigorous implementation requires a con-
siderably higher technical effort, and we prefer to discuss these aspects in separate
forthcoming works.

1.2 Notation, min-max principle, monotone convergence

The most part of the subsequent spectral analysis is based on the min-max principle
for the eigenvalues of self-adjoint operators and uses rather sesquilinear forms than
operators (in particular, most operators are introduced just through their sesquilin-
ear forms, while the action and the domain of the operators are not specified explic-
itly). The correspondence between operators and sesquilinear forms is well known,
and it is based on classical representation theorems, see e.g. the monographs by
Kato [15, Ch. 6, §1–2] or Reed–Simon [18, Sec. VIII.6]. In order to avoid potential
confusions (due to various conventions used by different communities), we recall here
some basic facts of the theory and introduce some notation.

In this text we only work with complex Hilbert spaces. Let G be a Hilbert
space, then by 〈·, ·〉G we denote the scalar product in G, which is assumed antilinear
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with respect to the first argument, and the associated norm is denoted ‖ · ‖G. A
sesquilinear form t in G defined on a dense subspace D(t) of G is a map

D(t)×D(t) 3 (u, v) 7→ t(u, v) ∈ C

which is antilinear with respect to the first argument and linear with respect to
the second one, and it is called Hermitian if t(v, u) = t(u, v) for all u, v ∈ D(t).
As a consequence of the polar identity, a Hermitian sesquilinear form t is uniquely
determined by its diagonal values t(u, u) with u ∈ D(t). An Hermitian sesquilinear
form t is called lower semibounded if there is c ∈ R such that t(u, u) ≥ c‖u‖2

G for all
u ∈ D(t). Such a form is then called closed if D(t) endowed with the scalar product
〈u, v〉t := t(u, v) + (1− c)〈u, v〉G is a Hilbert space. With such a sesquilinear form t
one associates a self-adjoint operator T in G uniquely defined by the following two
conditions: (a) the domain D(T ) of T is contained in D(t) and (b) t(u, v) = 〈u, Tv〉G
all u, v ∈ D(T ), and we then say that T is the self-adjoint operator generated by the
form t. It is worth noting that D(T ) 6= D(t) in general.

On the other hand, let T be a self-adjoint operator in G with domain D(T ).
It is called lower semibounded if for some c ∈ R one has 〈u, Tu〉G ≥ c‖u‖2

G for all
u ∈ D(T ), or T ≥ c for short. In such a case, the completion of D(T ) with respect
to the scalar product 〈u, v〉Q(T ) := 〈u, Tv〉G +(1− c)〈u, v〉G is called the form domain
of T and is denoted by Q(T ). The map D(T ) × D(T ) 3 (u, v) 7→ 〈u, Tv〉G then
uniquely extends to a closed lower semibounded Hermitian sesquilinear form t with
domain D(t) = Q(T ), which will be called the sesquilinear form generated by the
operator T . In turn, T is exactly the self-adjoint operator generated by this form t.
To have a shorter writing (and to reduce the number of symbols in use), we will
write

T [u, v] := t(u, v) for u, v ∈ Q(T ),

in particular, one has the simple equality T [u, v] = 〈u, Tv〉G if v ∈ D(T ). We further
recall that due to the spectral theorem we have

Q(T ) = D
(√

T − c
)

= D(
√
|T |),

T [u, v] ≡ t(u, v) = 〈
√
T − c u,

√
T − c v〉G + c〈u, v〉G, u, v ∈ Q(T ),

and the operator T has compact resolvent iff its form domain Q(T ) endowed with
the above scalar product 〈·, ·〉t ≡ 〈·, ·〉Q is compactly embedded into G. It follows
from the preceding discussion that a lower semibounded self-adjoint operator T is
uniquely determined by the knowledge of its form domain Q(T ) and of the diagonal
values T [u, u] of its sesquilinear form for all u ∈ Q(T ). Many operators appearing
in the subsequent discussion will be introduced in this way.

Using the above convention let us recall the min-max characterization of eigenval-
ues. Let T be a lower semibounded self-adjoint operator in an infinite-dimensional
Hilbert space G. For j ∈ N we denote

Ej(T ) := inf
L⊂Q(T )
dimL=j

sup
u∈L
u6=0

T [u, u]

‖u‖2
G

,

The classical min-max principle states that Ej(T ) ≤ inf specess T for any j, and, if
the inequality is strict, that Ej(T ) is the jth eigenvalue of T when enumerated in the
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non-decreasing order and counted with multiplicities, see e.g. [19, Section XIII.1]. In
particular, one always has E1(T ) = inf specT , and if T has compact resolvent, then
Ej(T ) is the jth eigenvalue of T for any j ∈ N. The main well-known consequence
of the min-max principle we are going to use is as follows (the proof directly follows
from the definition):

Proposition 1.9. Let T and T ′ be lower semibounded self-adjoint operators in
infinite-dimensional Hilbert spaces G and G′ respectively. Assume that there exists a
linear map J : Q(T )→ Q(T ′) such that ‖Ju‖G′ = ‖u‖G and T ′[Ju, Ju] ≤ T [u, u] for
all u ∈ Q(T ), then Ej(T

′) ≤ Ej(T ) for any j ∈ N.

We will also use some classical results on the monotone convergence of operators.
The following particular case will be sufficient for our purposes:

Proposition 1.10. Let H be a Hilbert space and H∞ be a closed subspace of H

endowed with the induced scalar product. Let

• Tn with n ∈ N be lower semibounded self-adjoint operators with compact resol-
vents in H,

• T∞ be a lower semibounded self-adjoint operator with compact resolvent in H∞

such that the following conditions are satisfied:

• the sequence (Tn) is monotonically increasing, i.e.

Q(Tn) ⊃ Q(Tn+1), Tn[u, u] ≤ Tn+1[u, u] for all n ∈ N and u ∈ Q(Tn+1),

• one has the equalities

Q(T∞) =
{
u ∈

⋂
n∈N

Q(Tn) : supTn[u, u] <∞
}
,

T∞[u, u] = lim
n→+∞

Tn[u, u] for each u ∈ Q(T∞),

then for each j ∈ N there holds Ej(T∞) = limn→+∞Ej(Tn).

The result follows, for example, from the constructions of [25, Abs. 3]: Satz 3.1
establishes a (generalized) strong resolvent convergence of Tn to T∞ and Satz 3.2
gives the convergence of the eigenvalues. An interested reader may refer to the papers
[6, 22, 25] dealing with the monotone convergence in a more general framework, i.e.
beyond densely defined operators with compact resolvents.

2 Sesquilinear forms

This section is about preliminary computations for the various Dirac operators we
are interested in. In particular, its aim is to obtain explicit expressions for the
sesquilinear forms of the squares of these operators in terms of geometric properties
of the hypersurface Σ. After recalling why Am and Bm,M are self-adjoint operators on
their respective domains, Subsection 2.1 gives explicit expressions for the sesquilinear
form of A2

m and B2
m,M . In particular, the influence of the hypersurface Σ is encoded

in a boundary term involving the mean curvature. The objective of Subsection 2.2
is to relate the sesquilinear form of the square of the intrinsic Dirac operator D/
on Σ to a sesquilinear form which naturally arises when performing the asymptotic
spectral analysis involved in the main theorems.
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2.1 Sesquilinear forms for the squares of Euclidean Dirac
operators

For the rest of the text we denote

Ωc := Rn \ Ω,

and recall that ν stands for the unit normal on Σ ≡ ∂Ω pointing to the exterior
of Ω. The shape operator W : TΣ→ TΣ is given by

WX := ∇Xν

with ∇ being the gradient in Rn, and its eigenvalues h1, . . . , hn−1 are the principal
curvatures of Σ. For k = 1, . . . , n− 1 we will denote by Hk the k-th mean curvature
of Σ with respect to ν defined by

Hk =
∑

1≤j1<···<jk≤n−1

hj1 · . . . · hjk ,

in particular, H1 = h1 + . . . + hn−1 = trW is the mean curvature, R = 2H2 ≡
H2

1 − |W |2 with |W |2 := tr(W 2) is the scalar curvature. We set formally Hk = 0 for
k ≥ n.

We will need some identities related to the operator Am, which is known to
be self-adjoint with compact resolvent and essentially self-adjoint on C∞(Ω,CN) ∩
D(Am) (see Proposition A.2).

Lemma 2.1. For all u ∈ D(Am) there holds

〈Amu,Amu〉L2(Ω,CN ) =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds. (4)

Proof. As Am is essentially self-adjoint on C∞(Ω,CN) ∩D(Am), it is sufficient to
show (4) for u ∈ C∞(Ω,CN) ∩D(Am). We use a partial integration formula in the
form given in [13, Section 3, Eq. (13)].1 The map Γ induces the extrinsically defined

Dirac operator D̃Σ in L2(Σ,CN) given by

D̃Σψ :=
H1

2
ψ − Γ(ν)

n−1∑
j=1

Γ(ej)∇ejψ

with (e1, . . . , en−1) being an orthonormal frame tangent to Σ. For u ∈ C∞(Ω,CN)
one has the integral identity, see [13, Section 3, Eq. (13)],∫

Ω

|D0u|2 dx =

∫
Ω

|∇u|2 dx+

∫
Σ

(H1

2
|u|2 − 〈D̃Σu, u〉

)
ds,

where D0 is given by (1) with m = 0. Therefore, for u ∈ D∞(Am) one has

1It was pointed out by one of the anonymous reviewers that some of the results of [13] on the
self-adjointness of Dirac operators with boundary conditions depend on implicit assumptions, as
the respective proofs of [13] use previous works which were found to contain flaws. We stress that
we do not use any of the self-adjointness results stated in [13], and we only use some constructions
of Sections 1–3 in [13], which are not concerned by the issues mentioned.
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〈Amu,Amu〉L2(Ω,CN ) ≡
〈(
D0 +mαn+1

)
u,
(
D0 +mαn+1

)
u
〉
L2(Ω,CN )

= 〈D0u,D0u〉L2(Ω,CN ) + 2m<〈D0u, αn+1u〉L2(Ω,CN )) +m2〈αn+1u, αn+1u〉L2(Ω,CN )

=

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(H1

2
|u|2 − 〈D̃Σu, u〉

)
ds

+ 2m<〈D0u, αn+1u〉L2(Ω,CN ). (5)

The operator D̃Σ anticommutes with Γ(ν), see [13, Proposition 1]. As the matrix

αn+1 anticommutes with all Γ(x), it commutes with D̃Σ by construction. Therefore,
using the boundary condition for u we have the pointwise equalities

〈D̃Σu, u〉 =
〈
D̃Σ
[
− iαn+1Γ(ν)

]
u, u
〉

=
〈
iαn+1Γ(ν)D̃Σu, u

〉
=
〈
D̃Σu,−iΓ(ν)αn+1u

〉
=
〈
D̃Σu, iαn+1Γ(ν)u

〉
= −〈D̃Σu, u〉,

implying
〈D̃Σu, u〉 = 0 on Σ. (6)

It remains to transform the third summand on the right-hand side of (5). Recall
that due to the integration by parts for any v, w ∈ H1(Ω,CN) we have∫

Ω

n∑
j=1

〈αj∂jv, w〉CN dx = −
∫

Ω

n∑
j=1

〈v, αj∂jw〉CN dx+

∫
Σ

n∑
j=1

〈αjνjv, w〉CN ds,

which then gives

〈
D0u, αn+1u

〉
L2(Ω,CN )

=

∫
Ω

〈
D0u, αn+1u

〉
CN dx

=

∫
Ω

〈
u,D0αn+1u

〉
CN dx+

∫
Σ

n∑
j=1

〈−iαjνju, αn+1u〉CN ds

= −
∫

Ω

〈
αn+1u,D0u

〉
CN dx+

∫
Σ

〈
− iΓ(ν)u, αn+1u

〉
CN ds. (7)

Therefore, using the boundary condition,

2m<
〈
D0u, αn+1u

〉
L2(Ω,CN )

= m
(〈
D0u, αn+1u

〉
L2(Ω,CN )

+
〈
αn+1u,D0u

〉
L2(Ω,CN )

)
= m

∫
Σ

〈
− iΓ(ν)u, αn+1u

〉
CN ds = m

∫
Σ

〈
− iαn+1Γ(ν)u, u

〉
CN ds

= m

∫
Σ

〈Bu, u〉CN ds = m

∫
Σ

|u|2CN ds.

(8)

Using the last equality and (6) in the right-hand side of (5) one arrives at the
result.

Remark 2.2. For the operator A′m, only a sign change in (8) is needed, which
results in

〈A′mu,A′mu〉L2(Ω,CN ) =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
−m+

H1

2

)
|u|2 ds. (9)
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With the help of the Fourier transform one easily establishes the self-adjointness
of Bm,M as well as the essentially self-adjointness on C∞c (Rn,CN), see Proposi-
tion A.1. Let us obtain a suitable expression for the sesquilinear form of B2

m,M .

Lemma 2.3. For all u ∈ D(Bm,M) there holds

〈Bm,Mu,Bm,Mu〉L2(Rn,CN ) =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx

+ (M −m)
(∫

Σ

|P−u|2 ds−
∫

Σ

|P+u|2 ds
)
, (10)

where P±(s) :=
IN ±B(s)

2
for s ∈ Σ.

Proof. As Bm,M is essentially self-adjoint on C∞c (Rn,CN), it is sufficient to obtain
(10) for u ∈ C∞c (Rn,CN). Representing Bm,Mu = DMu+ (m−M)1Ωαn+1u we have

〈Bm,Mu,Bm,Mu〉L2(Rn,CN )

= 〈DMu+ (m−M)1Ωαn+1u,DMu+ (m−M)1Ωαn+1u〉L2(Rn,CN )

= 〈DMu,DMu〉L2(Rn,CN ) + (m−M)2〈1Ωαn+1u, 1Ωαn+1u〉L2(Rn,CN )

+ (m−M)
(
〈DMu, 1Ωαn+1u〉L2(Rn,CN ) + 〈1Ωαn+1u,DMu〉L2(Rn,CN )

)
=

∫
Rn

(
|∇u|2 +M2|u|2

)
dx+ (m−M)2

∫
Ω

|u|2 dx

+ (m−M)
(
〈DMu, 1Ωαn+1u〉L2(Rn,CN ) + 〈1Ωαn+1u,DMu〉L2(Rn,CN )

)
.

Now using DMu = D0u+Mαn+1u we transform the last summand as follows:

(m−M)
[
〈DMu, 1Ωαn+1u〉L2(Rn,CN ) + 〈1Ωαn+1u,DMu〉L2(Rn,CN )

]
= (m−M)

[
〈D0u+Mαn+1u, 1Ωαn+1u〉L2(Rn,CN )

+ 〈1Ωαn+1u,D0u+Mαn+1u〉L2(Rn,CN )

]
= 2M(m−M)

∫
Ω

|u|2 dx

+ (m−M)
(
〈D0u, 1Ωαn+1u〉L2(Rn,CN ) + 〈1Ωαn+1u,D0u〉L2(Rn,CN )

)
= 2M(m−M)

∫
Ω

|u|2 dx+ (m−M)

∫
Σ

〈Bu, u〉CN ds,

where we used the equality (7) in the last step. This gives

〈Bm,Mu,Bm,Mu〉L2(Rn,CN ) =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx

+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx− (M −m)

∫
Σ

〈Bu, u〉CN ds,

and it remains to remark that

〈Bu, u〉CN =
1

2

〈
(1 + B)u, u

〉
CN −

1

2

〈
(1−B)u, u

〉
CN

= 〈P+u, u〉CN − 〈P−u, u〉CN ≡ |P+u|2CN − |P−u|
2
CN ,

where in the last step we used the fact that P± are orthogonal projectors.
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2.2 Dirac operators on Euclidean hypersurfaces

The definition of the intrinsic Dirac operator D/ on Σ with a detailed presentation
of preliminary constructions can be found in the monographs [7,11,12]. Recall that
if SΣ is the intrinsic spinor bundle over Σ with the associated spin connection ∇/
and carrying the natural Hermitian and Clifford module structures, then D/ acts
on smooth sections ψ of SΣ by D/ψ =

∑n−1
j=1 ej · ∇/ ejψ, where (e1, . . . , en−1) is an

orthonormal frame tangent to Σ and · is the Clifford multiplication. For our situ-
ation, the study of D/ is easier to approach through the extrinsically defined Dirac
operators, which will be more suitable for the subsequent asymptotic analysis, and
we explain this link in the present section.

For n ≥ 2 and K := 2[n
2

] let β1, . . . , βn be anticommuting Hermitian K × K
matrices with β2

j = IK , and for x = (x1, . . . , xn) we denote β(x) =
∑n

j=1 βjxj.

Recall that the intrinsic Dirac operator DRn in Rn acts then by

DRn = −i
n∑
j=1

βj
∂

∂xj
,

and it is a self-adjoint operator in L2(Rn,CK) with domain H1(Rn,CK). In this
explicit case the Clifford multplication x· is realized as the multiplication by the
matrix −iβ(x) where β(ej) = βj and ∇ej = ∂xj for the canonical basis (e1, . . . , en) of
Rn. We remark that the expression D0 given in the introduction does not correspond
to the intrinsic Dirac operator on Rn, as N 6= K in general. The extrinsically
defined Dirac operator DΣ on Σ is a self-adjoint operator in L2(Σ,CK) with domain
H1(Σ,CK) and given by

DΣ =
H1

2
− β(ν)

n−1∑
j=1

β(ej)∇ej , (11)

where (e1, . . . , en−1) is an orthonormal frame tangent to Σ. It is a fundamental
result that DΣ is unitarily equivalent to D/ for odd n and to D/ ⊕ (−D/ ) for even n; in
the latter case, the operator D/ can be identified with the restriction of β(ν)DΣ on
ker
(
1− β(ν)

)
, see e.g. [7, Section 2.4]. In other words, the study of the eigenvalues

of (DΣ)2 is equivalent to that of D/ 2, modulo the multiplicities for even n.
In turn, a classical tool for the analysis of the eigenvalues of (DΣ)2 is provided

by the Schrödinger-Lichnerowicz formula (DΣ)2 = (∇Σ)∗∇Σ + 1
2
H2 I (whose proof

we recall in Appendix B), where ∇Σ is the induced spin connection

∇Σ
X = ∇X +

1

2
β(ν)β(WX) : C∞(Σ,CK)→ C∞(Σ,CK), X ∈ TΣ.

In other words, for u ∈ H1(Σ,CK) one has

〈DΣu,DΣu〉L2(Σ,CK) =

∫
Σ

(
|∇Σu|2 +

H2|u|2

2

)
dx, (12)

while in the local coordinates on Σ one has

|∇Σu|2 =
n−1∑
j,k=1

gjk
〈
∂ju+

1

2
β(ν)β(∂jν)u, ∂ku+

1

2
β(ν)β(∂kν)u

〉
CK
, (13)
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where (gjk) := (gjk)
−1 with (gjk) being the Riemannian metric on Σ induced by the

embedding into Rn.
For the subsequent analysis we introduce the Hilbert space

H :=
{
f ∈ L2(Σ,CN) : f = Bf

}
, ‖f‖2

H :=

∫
Σ

|f |2 ds, (14)

with B given in (3), and the self-adjoint operator L in H given by its sesquilinear
form as follows:

L[f, f ] =

∫
Σ

[
|∇f |2 +

(
H2 −

H2
1

4

)
|f |2
]

ds, Q(L) = H1(Σ,CN) ∩H,

with Q(L) being the form domain (see Section 3). Remark that the operator L for
n = 3 already appeared (without any further interpretation) in [2], and will arise
naturally in the asymptotic spectral analysis of the Dirac operators Am and Bm,M .
Its importance is explained in the following assertion:

Lemma 2.4. The operator L is unitarily equivalent to D/ 2.

Before going through the proof of Lemma 2.4, we would like to emphasize that the
result can be of its own interest as it allows one to investigate the eigenvalues of the
intrinsic Dirac operator D/ on Σ via those of a unitarily equivalent operator defined
thanks to a matrix framework and local expressions but without any additional
algebraic construction.

Proof. The proof is by direct computation, by constructing an explicit isomorphism
between L2(Σ,CN/2) and H and then by establishing a link with the extrinsically
defined Dirac operator DΣ using the Schrödinger-Lichnerowicz formula. Following
the standard rules, see e.g. [8, Chapter 15] or [26, Appendix E], for n ∈ N we define
2[n

2
] × 2[n

2
] Dirac matrices γj(n) with j ∈ {1, . . . , n} using the following iterative

procedure:

• For n = 1, set γ1(1) := (1).

• For n = 2, set γ1(2) :=

(
0 1
1 0

)
and γ2(2) :=

(
0 −i
i 0

)
.

• For n = 2m+ 1 with m ∈ N:

γj(2m+ 1) := γj(2m), j = 1, . . . , 2m,

γ2m+1(2m+ 1) := ±imγ1(2m) · . . . · γ2m(2m) = ±
(
−I2m−1 0

0 I2m−1

)
, (15)

• For n = 2m+ 2 with m ∈ N:

γj(2m+ 2) :=

(
0 γj(2m+ 1)

γj(2m+ 1) 0

)
, j = 1, . . . , 2m+ 1,

γ2m+2(2m+ 2) :=

(
0 −iI2m

iI2m 0

)
.
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One easily checks that at a fixed n ∈ N the matrices γj(n) are Hermitian and
anticommute, the square of each of them is the identity matrix. Furthermore, if(
γ′j(n)

)
is another set of matrices with these properties and of the same size, then

there exists a unitary matrix C and a suitable choice of ± in (15) such that the
equalities γ′j(n)C = γj(n)C hold for all j, see e.g. [8, Prop. 15.16]. Therefore,
without loss of generality one may assume that the matrices αj in the expression
(3) of B and the matrices βj used in the definition of DΣ are chosen in the form

αj = γj(n+ 1), j = 1, . . . , n+ 1, βj = γj(n), j = 1, . . . , n. (16)

For x = (x1, . . . , xn) ∈ Rn and q ∈ {n, n+ 1} we define a matrix Γq(x) by

Γq(x) =
n∑
j=1

xjγj(q),

then one has the relations

Γn(x)Γn(y) + Γn(y)Γn(x) = 2〈x, y〉RnI, x, y ∈ Rn, (17)

Γ(x) = Γn+1(x), β(x) = Γn(x).

Now we consider separately the cases of odd and even dimensions, as the construc-
tions are rather different for the two cases.

Case 1: n is odd. Let n = 2m+ 1 with m ∈ N. Represent f ∈ H as f = (f−, f+)
with f± ∈ L2(Σ,CN/2), then, under the convention (16), the condition f = Bf takes
the form (

f−
f+

)
= −i

(
0 −iI2m

iI2m 0

)(
0 Γn(ν)

Γn(ν) 0

)(
f−
f+

)
,

which holds if and only if f± = ±Γn(ν)f±. Therefore, the map

U : L2(Σ,CN/2)→ H, (Uf)(s) =
1

2

((
1− Γn(ν)

)
f(

1 + Γn(ν)
)
f

)
defines a unitary operator, and Uf ∈ H1(Σ,CN) iff f ∈ H1(Σ,CN/2). As Hj are
scalar functions, one has(

H2 −
H2

1

4

)
|Uf |2CN =

(
H2 −

H2
1

4

)
|f |2CN/2 . (18)

In order to compute
∣∣∇(Uf)

∣∣2 we use local coordinates on Σ. One has

∣∣∇(Uf)
∣∣2 =

1

4

n−1∑
j,k=1

gj,k
[〈
∂j

((
1− Γn(ν)

)
f
)
, ∂k

((
1− Γn(ν)

)
f
)〉

CN/2

+
〈
∂j

((
1 + Γn(ν)

)
f
)
, ∂k

((
1 + Γn(ν)

)
f
)〉

CN/2

]
=

1

2

n−1∑
j,k=1

gj,k
[
〈∂jf, ∂kf〉CN/2 +

〈
∂j
(
Γn(ν)f

)
, ∂k
(
Γn(ν)f

)〉
CN/2

]
.
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We have then〈
∂j
(
Γn(ν)f

)
, ∂k
(
Γn(ν)f

)〉
CN/2

=
〈

Γn(ν)∂jf + Γn(∂jν)f,Γn(ν)∂kf + Γn(∂kν)f
〉
CN/2

=
〈
∂jf + Γn(ν)Γn(∂jν)f, ∂kf + Γn(ν)Γn(∂kν)f

〉
CN/2

,

and it follows that

∣∣∇(Uf)
∣∣2 =

n−1∑
j,k=1

gj,k
〈
∂jf +

1

2
Γn(ν)Γn(∂jν)f, ∂kf +

1

2
Γn(ν)Γn(∂kν)f

〉
CN/2

+
1

4

n−1∑
j,k=1

gj,k
〈

Γn(∂kν)Γn(∂jν)f, f
〉
CN/2

= |∇Σf |2 +
1

4
〈f, V f〉CN/2 , V :=

n−1∑
j,k=1

gj,kΓn(∂kν)Γn(∂jν).

Using the symmetry of (gj,k) and the commutation relation (17) we compute

V =
1

2

n−1∑
j,k=1

gj,k
(

Γn(∂jν)Γn(∂kν) + Γn(∂kν)Γn(∂jν)
)

=
n−1∑
j,k=1

gj,k〈∂jν, ∂kν〉 I = |∇ν|2I = |W |2I = (H2
1 − 2H2)I.

By combining with (18) we arrive at

L[Uf, Uf ] =

∫
Σ

(
|∇Σf |2 +

H2|f |2

2

)
ds.

Due to the Schrödinger-Lichnerowicz formula (12) we conclude that L = U∗(DΣ)2U ,
while (DΣ)2 is unitarily equivalent to D/ 2 as n is odd. This proves the claim for odd
dimensions.

Case 2: n is even. Let n = 2m with m ∈ N. As for the previous case, we try to
find a block representation for the condition f = Bf , which now takes the form

(
I2m + iγ2m+1(2m+ 1)

2m∑
j=1

γj(2m+ 1) νj

)
f = 0. (19)

We first remark that for x = (x1, . . . , xn) ∈ Rn we have the block representation

2m∑
j=1

γj(2m+ 1)xj ≡
2m∑
j=1

γj(2m)xj ≡ Γn(ν) =

(
0 λ(x)

λ(x)∗ 0

)
, (20)

λ(x) :=
2m−1∑
j=1

γj(2m− 1)xj − ix2mI2m−1 .
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Represent f = (ψ−, ψ+) with ψ± ∈ L2(Σ,CN/2), then we rewrite the condition (19)
in the block form[(

I 0
0 I

)
± i

(
−I 0
0 I

)(
0 λ(ν)

λ(ν)∗ 0

)](
ψ−
ψ+

)
=

(
0
0

)
,

where I := I2m−1 . Using λ(ν)λ(ν)∗ = λ(ν)∗λ(ν) = I we see that the condition
f = Bf can be rewritten as ψ− = ±iλ(ν)ψ+. Hence, the map

U : L2(Σ,CN/2)→ H, Uψ =
1√
2

(
±iλ(ν)ψ

ψ

)
defines a unitary operator, and at each point of Σ there holds

∣∣∇(Uψ)
∣∣2 =

n−1∑
j,k=1

gj,k
(

1

2

〈
iλ(ν)∂jψ + iλ(∂jν)ψ, iλ(ν)∂kψ + iλ(∂kν)ψ

〉
CN/2

+
1

2
〈∂jψ, ∂kψ〉CN/2

)
.

(21)

We then transform

1

2

〈
iλ(ν)∂jψ + iλ(∂jν)ψ, iλ(ν)∂kψ + iλ(∂kν)ψ

〉
CN/2

+
1

2
〈∂jψ, ∂kψ〉CN/2

=
1

2

〈
∂jψ + λ(ν)∗λ(∂jν)ψ, ∂kψ + λ(ν)∗λ(∂kν)ψ

〉
CN/2

+
1

2
〈∂jψ, ∂kψ〉CN/2

=
〈
∂jψ +

1

2
λ(ν)∗λ(∂jν)ψ, ∂kψ +

1

2
λ(ν)∗λ(∂kν)ψ

〉
CN/2

+
1

4

〈
λ(ν)∗λ(∂jν)ψ, λ(ν)∗λ(∂kν)ψ

〉
CN/2

=
〈
∂jψ +

1

2
λ(ν)∗λ(∂jν)ψ, ∂kψ +

1

2
λ(ν)∗λ(∂kν)ψ

〉
CN/2

+
1

4

〈
ψ, λ(∂jν)∗λ(∂kν)ψ

〉
CN/2

.

The substitution into (21) gives

∣∣∇(Uψ)
∣∣2 =

n−1∑
j,k=1

gj,k
〈
∂jψ +

1

2
λ(ν)∗λ(∂jν)ψ, ∂kψ +

1

2
λ(ν)∗λ(∂kν)ψ

〉
CN/2

+
1

4
〈ψ, V ψ〉CN/2 , V :=

2m−1∑
j,k=1

gj,kλ(∂jν)∗λ(∂kν).

In order to compute V we introduce

Ṽ :=
2m−1∑
j,k=1

gj,kλ(∂jν)λ(∂kν)∗,

then (
Ṽ 0
0 V

)
=

2m−1∑
j,k=1

gj,k
(
λ(∂jν)λ(∂kν)∗ 0

0 λ(∂jν)∗λ(∂kν)

)
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=
2m−1∑
j,k=1

gj,k
(

0 λ(∂jν)
λ(∂jν)∗ 0

)(
0 λ(∂kν)

λ(∂kν)∗ 0

)

=
2m−1∑
j,k=1

gj,kΓn(∂jν)Γn(∂kν)

=
1

2

2m−1∑
j,k=1

gj,k
(

Γn(∂jν)Γn(∂kν) + Γn(∂kν)Γn(∂jν)
)

=
2m−1∑
j,k=1

gj,k〈∂jν, ∂kν〉 I = |∇ν|2I = |W |2I = (H2
1 − 2H2)I.

In addition, as the functions Hj are scalar, we have〈
Uψ,

(
H2 −

H2
1

4

)
Uψ
〉
H

=
〈
ψ,
(
H2 −

H2
1

4

)
ψ
〉
L2(Σ,CN/2)

,

and then

L[Uψ,Uψ]

=

∫
Σ

n−1∑
j,k=1

gj,k
〈
∂jψ +

1

2
λ(ν)∗λ(∂jν)ψ, ∂kψ +

1

2
λ(ν)∗λ(∂kν)ψ

〉
CN/2

ds

+
1

2
〈ψ,H2ψ〉L2(Σ,CN/2).

Now consider the unitary transform U0 : L2(Σ,CN/2)→ L2(Σ,CN/2) given by U0ψ =
λ(ν)∗ψ, then a simple computation shows that

L[UU0ψ,UU0ψ]

=

∫
Σ

n−1∑
j,k=1

gj,k
〈
∂jψ +

1

2
λ(ν)λ(∂jν)∗ψ, ∂kψ +

1

2
λ(ν)λ(∂kν)∗ψ

〉
CN/2

ds

+
1

2
〈ψ,H2ψ〉L2(Σ,CN/2).

Using (20), for ψ± ∈ H1(Σ,CN/2) and ψ := (ψ−, ψ+) ∈ H1(Σ,CN) one has

L[UU0ψ−, UU0ψ−] + L[Uψ+, Uψ+]

=

∫
Σ

n−1∑
j,k=1

gj,k
〈
∂jψ +

1

2
Γn(ν)Γn(∂jν)ψ, ∂kψ +

1

2
Γn(ν)Γn(∂kν)ψ

〉
CN ds

+
1

2
〈ψ,H2ψ〉L2(Σ,CN ).

By comparing with the Schrödinger-Lichnerowicz formula (12)–(13) we see that the
operator (U∗0U

∗LUU0)⊕ (U∗LU) is unitarily equivalent to (DΣ)2. As (DΣ)2 is now
unitarily equivalent to D/ 2 ⊕ D/ 2 (because n is even), it follows that L is unitarily
equivalent to D/ 2.
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Remark 2.5. One can also consider

H′ :=
{
f ∈ L2(Σ,CN) : f = −Bf

}
, ‖f‖2

H′ :=

∫
Σ

|f |2 ds, (22)

and the self-adjoint operator L′ in H′ given by its sesquilinear form

L′[f, f ] =

∫
Σ

[
|∇f |2 +

(
H2 −

H2
1

4

)
|f |2
]

ds, Q(L′) = H1(Σ,CN) ∩H′,

then the preceding proof can be easily adapted to show that L′ is also unitarily
equivalent to D/ 2.

3 Preliminary constructions

As explained in the end of Subsection 1.1, our proofs of the main theorems rely
on the investigation of reduced spectral problems in tubular neighborhoods of the
hypersurface Σ. These reductions are performed by studying operators only acting
in the normal variable, which are introduced and investigated in Subsection 3.1.
The same operators play a role in the construction of an extension operator while
proving Theorem 1.2. In Subsection 3.2 we gather various estimates for sesquilinear
forms in tubular neighborhoods of the hypersurface Σ. These sesquilinear forms
appear further on while proving the main results on the eigenvalue asymptotics.

3.1 One-dimensional model operators

Lemma 3.1. Let δ > 0 be fixed. For α > 0, let S be the self-adjoint operator in
L2(0, δ) with

S[f, f ] =

∫ δ

0

|f ′|2 dt− α
∣∣f(0)

∣∣2, Q(S) =
{
f ∈ H1(0, δ) : f(δ) = 0

}
,

then for α→ +∞ one has E1(S) = −α2 +O(e−δα), and the associated eigenfunction

ψ with ‖ψ‖L2(0,δ) = 1 satisfies
∣∣ψ(0)

∣∣2 = 2α + O(1).

Proof. One easily see that the operator S acts as f → −f ′′ defined of the functions
f ∈ H2(0, δ) with f ′(0) + αf(0) = f(δ) = 0. Let us estimate its first eigenvalue
as α → +∞. Look for negative eigenvalues E = −k2 with k > 0, then using the
boundary condition at δ we see that the associated normalized eigenfunction ψ is
of the form ψ(t) = c sinh

(
k(δ − t)

)
with c 6= 0 being a normalizing constant. The

boundary condition at 0 gives 0 = ψ′(0) + αψ(0) = −k cosh(kδ) + α sinh(kδ), i.e.

F (kδ) = αδ, F (x) := x cothx. (23)

One easily sees that F : (0,+∞) → (1,+∞) is strictly increasing and bijective,
and for αδ > 1 the equation (23) admits a unique solution k, and then kδ → +∞
for α → +∞. Now rewrite (23) as k = α tanh(kδ). Due to kδ → +∞ we have
3
4
≤ tanh(kδ) ≤ 1 implying 3α/4 ≤ k ≤ α. Then using the equation again we have

α tanh
(

3
4
αδ
)
≤ k ≤ α, while tanh

(
3
4
αδ
)

= 1 + O(e−3δα/2). Therefore, with some

c1 > 0 one has E1(S) = −k2 = −α2
(
1 + O(e−3δα/2)

)
≤ −α2 + c1e

−δα as α→ +∞.
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In order to find the value of the normalizing constant c we use

1 = ‖ψ‖2
L2(0,δ) = |c|2

∫ δ

0

sinh2
(
k(δ − t)

)
dt = |c|2

( 1

4k
sinh(2kδ)− δ

2

)
,

then ∣∣ψ(0)
∣∣2 =

(
sinh2(kδ)

)(sinh(2kδ)

4k
− δ

2

)−1

= 2k + O(1) = 2α + O(1).

Lemma 3.2. Let δ > 0 and β ≥ 0 be fixed. For α > 0, let S ′ be the self-adjoint
operator in L2(0, δ) given by

S ′[f, f ] =

∫ δ

0

|f ′|2 dt− α
∣∣f(0)

∣∣2 − β∣∣f(δ)
∣∣2, Q(S ′) = H1(0, δ),

then for α→ +∞ one has E1(S ′) = −α2 +O(e−δα). Furthermore, there exist b± > 0
and b > 0 such that

b−j2 − b ≤ Ej(S
′) ≤ b+j2 for all j ≥ 2 and α ∈ R. (24)

Proof. The operator S ′ clearly acts as f 7→ −f ′′ on the functions f ∈ H2(0, δ) with
f ′(0) + αf(0) = f ′(δ) − βf(δ) = 0. To estimate E1(S ′) we remark that a value
E = −k2 with k > 0 is an eigenvalue of S ′ iff one can find (C1, C2) ∈ C2 \

{
(0, 0)

}
such that the function f : t 7→ C1e

kt +C2e
−kt belongs to its domain. The boundary

conditions give

0 = f ′(0) + αf(0) = (α + k)C1 + (α− k)C2,

0 = f ′(δ)− βf(δ) = (k − β)ekδC1 − (k + β)e−kδC2,

and one has a non-zero solution iff the determinant of the system vanishes, i.e. iff k
solves (k + α)(k + β)e−kδ = (k − α)(k − β)ekδ, which we rewrite as

g(k) = h(k), g(k) :=
k + α

k − α
, h(k) :=

k − β
k + β

e2kδ. (25)

Both g and h are continuous, and g is strictly decreasing on (α,+∞) with g(α+) =
+∞ and g(+∞)=1, while h is strictly increasing on (α,+∞) being the product of
two strictly increasing positive functions (we assume without loss of generality that
α > β), and h(α+) = e2αδ(α − β)/(α + β) < +∞ and h(+∞) = +∞. Therefore,
there exists a unique solution k of (25) with k ∈ (α,+∞). To obtain the required
estimate we use again the monotonicity of h on (α,+∞):

k + α

k − α
= g(k) = h(k) > h(α+) =

α− β
α + β

e2αδ.

We bound the last term from below very roughly by e3αδ/2 then

k + α

k − α
≥ e3αδ/2, k ≤ α

1 + e−3αδ/2

1− e−3αδ/2
= α

(
1 + O(e−3αδ/2)

)
.

By combining with k > α we arrive at the sought estimate

E1(S ′) = −k2 = −α2
(
1 + O(e−3αδ/2)

)
= −α2 + α2O(e−3αδ/2) = −α2 + O(e−αδ).
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To estimate Ej(S
′) with j ≥ 2 we consider the operator S ′D acting in L2(0, δ) as

f 7→ −f ′′ on the functions f ∈ H2(0, δ) with f(0) = f ′(δ) − βf(δ) = 0. Remark
that S ′D is independent of α, and by the min-max principle for any α ∈ R one
has Ej−1(S ′D) ≤ Ej(S

′) ≤ Ej(S
′
D): the upper bound follows from the fact that the

sesquilinear form of S ′D is a restriction of that for S ′, while the lower bound follows
from the fact that S ′D is a rank-one perturbation of S ′. As the eigenvalues of S ′D
satisfy the Weyl asymptotics Ej(S

′
D) ∼ π2j2/δ2 as j → +∞, one arrives at the

sought inequalities (24).

3.2 Tubular coordinates

Recall that the shape operator W and curvatures of Σ were defined in Subsection 2.1.
In what follows we will actively use tubular coordinates on both sides of Σ. In this
section,

let Ω∗ be either Ω or Ωc,

and let ν∗ be the unit normal on Σ pointing to the exterior of Ω∗, i.e.

ν∗ := ν, W∗ := W for Ω∗ = Ω, ν∗ := −ν, W∗ := −W for Ω∗ = Ωc.

The principal curvatures and the (higher) mean curvatures of Σ with respect to ν∗
will be denoted by h∗j and H∗k respectively, i.e.

h∗j := hj and H∗k = Hk for Ω∗ = Ω,

h∗j := −hj and H∗k = (−1)kHk for Ω∗ = Ωc.

For small δ > 0 denote

Πδ := Σ× (0, δ), Ωδ
∗ =

{
x ∈ Ω∗ : dist(x,Σ) < δ

}
It is a well known result in differential geometry that there exists a small δ0 > 0
such that for sufficiently small δ > 0 the map

Φ∗ : Πδ → Ωδ
∗, (s, t) 7→ s− tν∗(s),

is a diffeomorphism, and dist
(
Φ∗(s, t), ∂U

)
= t for (s, t) ∈ Πδ. Consider the associ-

ated unitary map

Θδ : L2(Ωδ
∗)→ L2(Πδ), u 7→

√
det(Φ′∗)u ◦ Φ∗

We will use several times the following computations:

Lemma 3.3. For γ ∈ R denote

Jγ(u) ≡ J(u) :=

∫
Ωδ∗

|∇u|2 dx+

∫
Σ

(
γ +

H∗1
2

)
|u|2 ds, u ∈ H1(Ωδ

∗).

There exist δ0 > 0 and c > 0 such that for any γ ∈ R and δ ∈ (0, δ0) the following
assertions hold true with v := Θδu:

(a) for any u ∈ H1(Ωδ
∗) with u = 0 on ∂Ωδ

∗ \ Σ one has

J(u) ≤
∫

Πδ

[
(1+cδ)|∇sv|2+|∂tv|2+

(
H∗2−

(H∗1 )2

4
+cδ

)
|v|2
]

ds dt+γ

∫
Σ

∣∣v(s, 0)
∣∣2 ds,
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(b) for any u ∈ H1(Ωδ
∗) one has

J(u) ≥
∫

Πδ

[
(1− cδ)|∇sv|2 + |∂tv|2 +

(
H∗2 −

(H∗1 )2

4
− cδ

)
|v|2
]

ds dt

+ γ

∫
∂U

∣∣v(s, 0)
∣∣2 ds− c

∫
Σ

∣∣v(s, δ)
∣∣2 ds,

where ∇s is the gradient on Σ, i.e. with respect to the coordinates s ∈ Σ.

Proof. The metricG on Πδ induced by the map Φ∗ is given byG = g◦(1−tW∗)+ dt2,
with g being the metric on Σ induced by the embedding in Rn, and the volume form
is detG ds dt = ϕ ds dt with ds being the volume form on Σ and the weight

ϕ(s, t) =
∏n−1

j=1

(
1− th∗j(s)

)
= 1 +

∑
j≥1

(−t)jH∗j (s). (26)

Denote w := u◦Φ∗, then the standard change of variables gives, for any u ∈ H1(Ωδ
∗),

J(u) =

∫
Πδ

|∇w|2ϕ ds dt+

∫
Σ

(
γ +

H∗1
2

) ∣∣w(s, 0)
∣∣2 ds,

and we remark that the condition u = 0 on ∂Ωδ
∗ \ Σ is equivalent to w(·, δ) = 0.

Due to the above representation of the metric G, for a suitable fixed c0 > 0 one can
estimate, uniformly in u,

(1− c0δ)|∇sw|2 + |∂tw|2 ≤ |∇w|2 ≤ (1 + c0δ)|∇sw|2 + |∂tw|2,

with ∇s being the gradient on Σ (i.e. with respect to the variable s), which gives∫
Πδ

(
(1− c0δ)|∇sw|2 + |∂tw|2

)
ϕ ds dt+

∫
Σ

(
γ +

H∗1
2

) ∣∣w(s, 0)
∣∣2 ds

≤ J(u) ≤
∫

Πδ

(
(1 + c0δ)|∇sw|2 + |∂tw|2

)
ϕ ds dt+

∫
Σ

(
γ +

H∗1
2

) ∣∣w(s, 0)
∣∣2 ds. (27)

Recall that w = ϕ−
1
2v, and that ϕ = 1 on Σ. Hence,(
γ +

H∗1
2

) ∣∣w(s, 0)
∣∣2 =

(
γ +

H∗1
2

) ∣∣v(s, 0)
∣∣2,

which allows to transform the last summand in (27). In addition,

|∇sw|2ϕ =
∣∣∣∇sv −

1

2ϕ
v∇sϕ

∣∣∣2 = |∇sv|2 +
|v|2

4ϕ2
|∇sϕ|2 −

1

ϕ
<
(
〈∇sv, v∇sϕ〉

)
.

The Cauchy-Schwarz inequality gives
∣∣<〈∇sv, v∇sϕ〉

∣∣ ≤ δ|∇sv|2 + |v|2|∇sϕ|2/δ, and
in view of the expression (26) for ϕ one has |∇sϕ|2 ≤ c1δ

2 for some c1 > 0 and all
t ∈ (0, δ). Therefore, for a suitable c2 > 0 one estimates, uniformly in u,

(1− c2δ)|∇sv|2 − c2δ|v|2 ≤ (1± c0δ)|∇sw|2ϕ ≤ (1 + c2δ)|∇sv|2 + c2δ|v|2.

We represent now

|∂tw|2ϕ =
∣∣∣∂tv − 1

2ϕ
v ∂tϕ

∣∣∣2 = |∂tv|2 −
∂tϕ

2ϕ
∂t
(
|v|2
)

+
(∂tϕ)2

4ϕ2
|v|2
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and performing an integration by parts with respect to t in the middle term we have∫
Πδ

|∂tw|2ϕ ds dt =

∫
Πδ

(
|∂tv|2 +

(
∂t

(∂tϕ
2ϕ

)
+

(∂tϕ)2

4ϕ2

)
|v|2
)

ds dt

−
∫

Σ

H∗1
2

∣∣v(s, 0)
∣∣2 ds−

∫
Σ

(∂tϕ)(s, δ)

2ϕ(s, δ)

∣∣v(s, δ)
∣∣2 ds,

while the last summand vanishes for v(·, δ) = 0, i.e. for u = 0 on ∂Ωδ
∗ \ Σ. Putting

the above estimates together we obtain

J(u) ≤
∫

Πδ

(
(1 + c2δ)|∇sv|2 + |∂tv|2 +

(∂2
t ϕ

2ϕ
− (∂tϕ)2

4ϕ2
+ c2δ

)
|v|2 ds dt

+ γ

∫
Σ

∣∣v(s, δ)
∣∣2 ds, u ∈ H1(Ωδ

∗), u = 0 on ∂Ωδ
∗ \ Σ,

J(u) ≥
∫

Πδ

(
(1− c2δ)|∇sv|2 + |∂tv|2 +

(∂2
t ϕ

2ϕ
− (∂tϕ)2

4ϕ2
− c2δ

)
|v|2 ds dt

+ γ

∫
Σ

∣∣v(s, 0)
∣∣2 ds−

∫
Σ

(∂tϕ)(s, δ)

2ϕ(s, δ)

∣∣v(s, δ)
∣∣2 ds, u ∈ H1(Ωδ

∗).

It remains to estimate, with a suitable c3 > 0,∥∥∥(∂tϕ)(·, δ)
2ϕ(·, δ)

∥∥∥
L∞(Σ)

≤ c3,
∥∥∥∂2

t ϕ

2ϕ
− (∂tϕ)2

4ϕ2
−
(
H∗2 −

(H∗1 )2

4

)∥∥∥
L∞(Σ)

≤ c3δ

and to choose c := max{c2, c3}.

4 Proof of Theorem 1.1

We are going to show that Ej(A
2
m) → Ej(D/

2) for each j ∈ N as m → −∞. Due
to Lemma 2.4 for each j ∈ N there holds Ej(D/

2) = Ej(L), hence, it is sufficient to
prove that

Ej(L) = lim
m→−∞

Ej(A
2
m) for each j ∈ N. (28)

The proof of (28) decomposes into three steps and relies on a dimension reduction
argument.

In Subsection 4.1 we use the standard Dirichlet-Neumann bracketing to bound
from above and from below the sesquilinear form of A2

m. We reduce the spectral
analysis of A2

m to the one of sesquilinear forms in tubular neighborhoods of the
hypersurface Σ, and the sesquilinear forms are covered by the constructions of Sub-
section 3.2. Then, in Subsection 4.2, we obtain an upper bound by considering a
well-chosen test function and by applying the min-max principle. The test function
is constructed by taking advantage of the tensor structure of the sesquilinear form
which bounds from above the sesquilinear form of A2

m: it is obtained by taking the
tensor product of the lowest mode of the operator in normal variable with an eigen-
function of the operator along the surface. The lower bound is more subtle and is
handled in Subsection 4.3. One first decomposes the sesquilinear form which bounds
from below the sesquilinear form of A2

m along the modes of a one-dimensional op-
erator acting only in the normal variable, and then one concludes using estimates
on the eigenvalues of the one-dimensional operator and the monotone convergence
(Proposition 1.10).
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Remark 4.1. Using the constructions mentioned in Remarks 2.2 and 2.5, the proof
below can be easily modified in order to show that Ej(L

′) = limm→+∞Ej(A
′
m

2) for
each j ∈ N, which then gives Theorem 1.6.

4.1 Dirichlet-Neumann bracketing

For small δ > 0 denote Ωδ :=
{
x ∈ Ω : dist(x,Σ) < δ

}
and Πδ := Σ × (0, δ) and

consider the diffeomorphisms Φ : Πδ → Ωδ given by (s, t) 7→ s− tν(s) together with
the associated unitary maps Θδ : L2(Ωδ,CN)→ L2(Πδ,CN), Θδu =

√
det(Φ′) u◦Φ.

Consider the self-adjoint operator Z+
m in L2(Ωδ,CN) given by

Z+
m[u, u] =

∫
Ωδ

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds, (29)

Q(Z+
m) =

{
u ∈ H1(Ωδ,CN) : u = Bu on Σ, u = 0 on ∂Ωδ \ Σ

}
,

the self-adjoint operator Z−m in L2(Ωδ,CN) given by

Z−m[u, u] =

∫
Ωδ

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds, (30)

Q(Z−m) =
{
u ∈ H1(Ωδ,CN) : u = Bu on Σ

}
,

and the self-adjoint operator Z ′m in L2(Ωc
δ,CN) given by

Z ′m[u, u] =

∫
Ωcδ

(
|∇u|2 +m2|u|2

)
dx, Q(Z ′m) = H1(Ωc

δ,CN),

with Ωc
δ := Ω \ Ωδ. Due to the min-max principle for any j ∈ N and we have the

eigenvalue inequality

Ej(Z
−
m ⊕ Z ′m) ≤ Ej(A

2
m) ≤ Ej(Z

+
m).

(It is sufficient to apply Proposition 1.9: for the left inequality one takes T = A2
m,

T ′ := Z−m ⊕ Z ′m, and J : L2(Ω,CN) 7→ (f−, f ′) ∈ L2(Ωδ,Ω
c
δ) defined by f− := f |Ωδ

and f ′ := f |Ωcδ , while for the right inequality one takes T := Z+
m, T ′ := A2

m and
J : L2(Ωδ)→ L2(Ω) the extension by zero.) Noting that Z ′m ≥ m2 we deduce that

Ej(Z
−
m) ≤ Ej(A

2
m) ≤ Ej(Z

+
m) for any j ∈ N with Ej(Z

+
m) < m2. (31)

Using the change of coordinates of Lemma 3.3 to bound Z±m[Θ∗δv,Θ
∗
δv] from above

and below we then obtain

Ej(Z
+
m) ≤ Ej(Y

+
m ), Ej(Z

−
m) ≥ Ej(Y

−
m ) for any j ∈ N

with Y ±m being the self-adjoint operators in L2(Πδ,CN) given by

Y +
m [v, v] =

∫
Πδ

[
(1 + cδ)|∇sv|2 + |∂tv|2 +

(
m2 +H2 −

H2
1

4
+ cδ

)
|v|2
]

ds dt

+m

∫
Σ

∣∣v(s, 0)
∣∣2 ds,

Q(Y +
m ) =

{
v ∈ H1(Πδ,CN) : v(·, 0) = Bv(·, 0) and v(·, δ) = 0

}
,
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Y −m [v, v] =

∫
Πδ

[
(1− cδ)|∇sv|2 + |∂tv|2 +

(
m2 +H2 −

H2
1

4
− cδ

)
|v|2
]

ds dt

+m

∫
Σ

∣∣v(s, 0)
∣∣2 ds− c

∫
Σ

∣∣v(s, δ)
∣∣2 ds,

Q(Y −m ) =
{
v ∈ H1(Πδ,CN) : v(·, 0) = Bv(·, 0)

}
,

where c is independent of δ ∈ (0, δ0) and m ∈ R is arbitrary. Therefore, we arrive
at the two-sided estimate

Ej(Y
−
m ) ≤ Ej(A

2
m) ≤ Ej(Y

+
m ) for any j ∈ N with Ej(Y

+
m ) < m2. (32)

4.2 Upper bound

To obtain an upper bound for the eigenvalues of Y +
m let us consider the self-adjoint

operator S in L2(0, δ) with

S[f, f ] =

∫ δ

0

|f ′|2 dt+m
∣∣f(0)

∣∣2, Q(S) =
{
f ∈ H1(0, δ) : f(δ) = 0

}
and let ψ be an eigenfunction for the first eigenvalue normalized by ‖ψ‖2

L2(0,δ) = 1.

The analysis of Lemma 3.1 shows that for some b > 0 one has E1(S) ≤ −m2+be−δ|m|

as (−m) is large, and then S[ψ, ψ] +m2 ≤ be−δ|m|.
Let c > 0 be the same as in the above expressions for Y ±m . For small a ∈ R, let

La be the self-adjoint operator in H given by

La[g, g] =

∫
Σ

[
(1 + ca)|∇g|2 +

(
H2 −

H2
1

4
+ ca

)
|g|2
]

ds,

Q(La) = H1(Σ,CN) ∩H.

(33)

Remark that for a = 0 we recover exactly the operator L and that due to the
min-max principle one has

Ej(L) = lim
a→0

Ej(La) for each j ∈ N. (34)

Let j ∈ N be fixed and g1, . . . , gj be linearly independent eigenfunctions of Lδ for
the first j eigenvalues, then the subspace G := span(g1, . . . , gj) is j-dimensional and
Lδ[g, g]/‖g‖2

H ≤ Ej(Lδ) for any 0 6= g ∈ G. Consider the subspace

V = {v ∈ L2(Πδ,CN) : v(s, t) = g(s)ψ(t), g ∈ G} ⊂ Q(Y +
m ),

then for v ∈ V with v(s, t) = g(s)ψ(t) and g ∈ G one has ‖v‖2
L2(Πδ,CN ) = ‖g‖2

H and

Y +
m [v, v] = Lδ[g, g]‖ψ‖2

L2(0,δ) +
(
S[ψ, ψ] +m2‖ψ‖2

L2(0,δ)

)
‖g‖2

H

≤ Lδ[g, g] + be−δ|m|‖g‖2
H ≤

(
Ej(Lδ) + be−δ|m|

)
‖g‖2

H

≡
(
Ej(Lδ) + be−δ|m|

)
‖v‖2

L2(Πδ,CN ).

As dimV = dimG = j, it follows by the min-max principle that

Ej(Y
+
m ) ≤ sup

06=v∈V

Y +
m [v, v]

‖v‖2
L2(Πδ,CN )

≤ Ej(Lδ) + be−δ|m|,
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hence, lim supm→−∞Ej(Y
+
m ) ≤ Ej(Lδ). As δ > 0 can be chosen arbitrarily small,

the convergence (34) implies lim supm→−∞Ej(Y
+
m ) ≤ Ej(L), and then due to the

upper bound (32) we arrive at

lim sup
m→−∞

Ej(A
2
m) ≤ Ej(L). (35)

4.3 Lower bound

Now let us pass to a lower bound for Ej(Y
−
m ). In the constructions below, the

constant c > 0 is the same as in the expression for Y −m . Let S ′ be the self-adjoint
operator in L2(0, δ) with

S ′[f, f ] =

∫ δ

0

|f ′|2 dt+m
∣∣f(0)

∣∣2 − c∣∣f(δ)
∣∣2, Q(S ′) = H1(0, δ).

Let ψk ∈ L2(0, δ) with k ∈ N be real-valued eigenfunctions of S ′ for the eigenvalues
Ek(S

′) forming an orthonormal basis in L2(0, δ), which induces the unitary trans-
forms Θ : L2(0, δ) → `2(N) given by (Θf)k = 〈ψk, f〉L2(0,δ), k ∈ N. Recall that due
to the analysis of Lemma 3.2 we have, with some b± > 0, b > 0 and b0 > 0,

E1(S ′) ≥ −m2 − be−δ|m| as m→ −∞, (36)

b−k2 − b0 ≤ Ek(S
′) ≤ b+k2 for all k ≥ 2 and m ∈ R. (37)

Let us give some more details on the subsequent constructions. Let Ym be the
self-adjoint operator whose sesquilinear form is given by the same expression as the
one for Y −m but on the larger form domain Q(Ym) = H1(Πδ,CN). It follows easily
that the new operator Ym admits a separation of variables. Namely, for small a ∈ R
we consider the self-adjoint operator Λa in L2(Σ,CN) given by

Λa[g, g] =

∫
Σ

[
(1 + ca)|∇g|2 +

(
H2 −

H2
1

4
+ ca

)
|g|2
]

ds, Q(Λa) = H1(Σ,CN),

i.e. its sesquilinear form is given by the same expression as the one for La in (33)
but without the restriction g ∈ H. Now, if one identifies L2(Πδ,CN) = L2(0, δ) ⊗
L2(Σ,CN), then Ym = (S ′ +m2)⊗ 1 + 1⊗ Λ−δ. Using the unitary transform

Ξ : L2(Πδ)→ `2(N)⊗ L2(Σ,CN),

Ξv = (vk), vk :=

∫ δ

0

ψk(t)v(t, ·) dt ∈ L2(Σ,CN),

and the spectral theorem we see that the operator Ŷm := ΞYmΞ∗ is given by

Ŷm
[
(vk), (vk)

]
=
∑
k∈N

(
Λ−δ[vk, vk] +

(
Ek(S

′) +m2
)
‖vk‖2

L2(Σ,CN )

)
,

while the form domain Q(Ŷm) consists of all (vk) ∈ `2(N) ⊗ L2(Σ,CN) with vk ∈
H1(Σ,CN) such that the right-hand side of the preceding expression is finite. Using
the two-sided estimate (37) we can rewrite
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Q(Ŷm) =
{

(vk) ∈ `2(N)⊗ L2(Σ,CN) : vk ∈ H1(Σ,CN) for each k ∈ N

and
∑
k∈N

(
‖vk‖2

H1(Σ,CN ) + k2‖vk‖2
L2(Σ,CN )

)
<∞

}
. (38)

As the sesquilinear form for Y −m is simply the restriction of that for Ym on the

functions v with v(·, 0) = Bv(·, 0), for the operator Ŷ −m := ΞY −mΞ∗ we have

Q(Ŷ −m ) =
{
v̂ = (vk) ∈ Q(Ŷm) : (1−B)(Ξ∗v̂)(·, 0) = 0

}
. (39)

Using the lower bounds (36) and (37) for Ek(S
′), for all v̂ = (vk) ∈ Q(Ŷ −m ) we

obtain the inequality Ŷ −m [v̂, v̂] ≥ wm(v̂, v̂) with the sesquilinear form wm defined on

D(wm) := Q(Ŷ −m ) by

wm(v̂, v̂) := Λ−δ[v1, v1]− be−δ|m|‖v1‖2
L2(Σ,CN )

+
∑
k≥2

(
Λ−δ[vk, vk] + (b−k2 − b0 +m2)‖vk‖2

L2(Σ,CN )

)
.

It follows from representation (38) that the form wm is lower semibounded and from
reprentation (39) that it is closed. Thus, it defines a self-adjoint operator Wm in
`2(N)⊗ L2(Σ,CN) with compact resolvent. For any j ∈ N we have then

Ej(A
2
m) ≥ Ej(Y

−
m ) = Ej(Ŷ

−
m ) ≥ Ej(Wm). (40)

We are now in the classical situation for the monotone convergence (Proposi-
tion 1.10) to analyze the eigenvalues of Wm. Namely, consider the set

Q∞ :=
{
v̂ = (vk) ∈

⋂
m<0

Q(Wm) ≡ Q(Ŷ −m ) : sup
m<0

Wm[v̂, v̂] < +∞
}
. (41)

It is easily seen that a vector v̂ = (vk) ∈ Q(Ŷ −m ) belongs to Q∞ if and only if vk = 0
for k ≥ 2 and 0 = (1− B)(Ξ∗v̂)(·, 0) ≡ ψ1(0)(1− B)v1, i.e. v1 ∈ H. This gives the
equality

Q∞ =
{
v̂ = e1 ⊗ v1 : v1 ∈ H1(Σ,CN) ∩H}, e1 = (1, 0, 0, . . . ) ∈ `2(N).

For each v̂ ∈ Q∞ one has

lim
m→−∞

Wm[v̂, v̂] = lim
m→−∞

(
Λ−δ[v1, v1]− c1e

−δ|m|‖v1‖2
L2(Σ,CN )

)
= Λ−δ[v1, v1] ≡ L−δ[v1, v1];

we recall that La was defined in (33). Let W∞ be the self-adjoint operator in
the Hilbert space H∞ := e1 ⊗ H with Q(W∞) = Q∞ and W∞[e1 ⊗ v1, e1 ⊗
v1] = L−δ[v1, v1], then the monotone convergence principle (Proposition 1.10) gives
limm→−∞Ej(Wm) = Ej(W∞) for each j ∈ N. On the other hand, the oper-
ator W∞ is unitarily equivalent to L−δ, and by combining with (40) we have
lim infm→−∞Ej(Am) ≥ Ej(L−δ). As δ can be arbitrarily small, the convergence
(34) implies lim infm→−∞Ej(Am) ≥ Ej(L). In combination with the upper bound
(35) one arrives at the sought limit (28), which proves Theorem 1.1.
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5 Proof of Theorem 1.2

The proof relies on the construction of an extension operator from H1(Σ) to H1(Ωc)
suitably controled in the regime M → +∞. This is done in Subsection 5.1 using
alternative expressions of the sesquilinear forms of A2

m and B2
m,M . Afterwards, we

prove Theorem 1.2 by obtaining separately the upper and lower bounds for all j ∈ N:

lim sup
M→+∞

Ej(B
2
m,M) ≤ Ej(A

2
m), Ej(A

2
m) ≤ lim inf

M→+∞
Ej(B

2
m,M).

In Subsection 5.2 we prove the upper bound by constructing an adequate test func-
tion, which is done by applying the above extension operator to the eigenfunctions
of A2

m. The lower bound is proved in Subsection 5.3 using a Neumann bracketing
argument, which allows for a decoupling along Σ. Hence, one is reduced to the study
of the direct sum of two operators in Ω and Ωc. One shows first that the one in Ωc

produces eigenvalues diverging to +∞, and only the operator in Ω is of relevance
for the low-lying eigenvalues. The problem in Ω in the regime M → +∞ appears
then to be covered by the monotone convergence (Proposition 1.10).

5.1 Preliminary estimates

We are going to prove that for each m ∈ R and j ∈ N one has limM→+∞Ej(B
2
m,M) =

Ej(A
2
m). We recall that Q(B2

m,M) ≡ D(Bm,M) = H1(Rn,CN), and

B2
m,M [u, u] ≡ 〈Bm,Mu,Bm,Mu〉L2(Rn,CN )

=

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx

+ (M −m)
(∫

Σ

|P−u|2 ds−
∫

Σ

|P+u|2 ds
)
,

=

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx

+ 2(M −m)

∫
Σ

|P−u|2 ds+ (m−M)

∫
Σ

|u|2 ds

(42)

where P±(s) :=
1±B(s)

2
for s ∈ Σ, while

Q(A2
m) ≡ D(Am) =

{
u ∈ H1(Ω,CN) : P−u = 0 on Σ

}
,

A2
m[u, u] ≡ 〈Amu,Amu〉L2(Ω,CN ) =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds.

Taking any ε ∈ R we rewrite the above expression for B2
m,M [u, u] as

B2
m,M [u, u] =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx

+

∫
Σ

(
m− ε+

H1

2

)
|u|2 ds+ 2(M −m)

∫
Σ

|P−u|2 ds

+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M − ε+

H1

2

)
|u|2 ds. (43)

Let us start with an additional estimate which will allow us to control the term in
the last line of (43).
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Lemma 5.1. For γ > 0 let Rγ be the self-adjoint operator in L2(Ωc) given by

Rγ[u, u] =

∫
Ωc
|∇u|2 dx−

∫
Σ

(
γ +

H1

2

)
|u|2 ds, Q(Rγ) = H1(Ωc), (44)

then:

(a) For some fixed C > 0 and all large γ > 0 there exists a linear map Fγ :
H1(Σ)→ H1(Ωc) such that for all f ∈ H1(Σ) one has Fγf = f on Σ and

Rγ[Fγf, Fγf ] + γ2‖Fγf‖2
L2(Ωc) ≤

C

γ
‖f‖2

H1(Σ).

(b) For some C0 > 0 there holds E1(Rγ) ≥ −γ2 − C0 for γ → +∞.

Proof. For a small δ > 0 consider the sets Ωc
δ :=

{
x ∈ Ωc : dist(x,Σ) < δ

}
and

Πδ := Σ × (0, δ) together with the the diffeomorphisms Φc : Πδ → Ωc
δ given by

Φc(s, t) 7→ s + tν(s) and the associated unitary maps Θc
δ : L2(Ωc

δ) → L2(Πδ) with

Θc
δu =

√
det
(
(Φc)′

)
u ◦ Φc.

Let us prove (a). Consider the self-adjoint operator S in L2(0, δ) given by

S[f, f ] =

∫ δ

0

|f ′|2 dt− γ
∣∣f(0)

∣∣2, Q(S) =
{
f ∈ H1(0, δ) : f(δ) = 0

}
and let ψ be an eigenfunction for the first eigenvalue normalized by ψ(0) = 1. By
Lemma 3.1, with some b > 0 one has E1(S) ≤ −γ2 + b and ‖ψ‖2

L2(0,δ) ≤ b/γ as γ is

large. For f ∈ H1(Σ) define v ∈ H1(Πδ) by v = f ⊗ ψ, i.e. v(s, t) = f(s)ψ(t), and
then set

(Fγf)(x) :=

{
(Θc

δ)
−1v in Ωc

δ,

0 in Ωc \ Ωc
δ.

Due to f ∈ H1(Σ) and ψ(δ) = 0 one has Fγf ∈ H1(Ωc), and the equality Fγf |Σ =
v(·, 0) = f holds by construction. Furthermore, using the result and the notation of
Lemma 3.3(a) we obtain, with some a > 0,

Rγ[Fγf, Fγf ] + γ2‖Fγf‖2 = J−γ(Fγf) + γ2‖Fγf‖2

≤
∫

Πδ

(
a|∇sv|2 + |∂tv|2 + (γ2 + a)|v|2

)
ds dt− γ

∫
Σ

|Fγf |2 ds

=
(
a

∫
Σ

|∇sf |2 ds+
(
E1(S) + γ2 + a

)
‖f‖2

L2(Σ)

)
‖ψ‖2

L2(0,δ)

≤
(
a

∫
Σ

|∇sf |2 ds+
(
be−δγ + a

)
‖f‖2

L2(Σ)

) b

γ
≤ C

γ
‖f‖2

H1(Σ)

with C := b
(
b+ a

)
. Hence, the assertion (a) is proved.

To prove (b) we remark first that due to the min-max principle one has the
inequality E1(Rγ) ≥ E1(R0

γ ⊕R′γ) where R0
γ is the operator in L2(Ωc

δ) given by

R0
γ[u, u] =

∫
Ωcδ

|∇u|2 dx−
∫

Σ

(
γ +

H1

2

)
|u|2 ds, Q(R0

γ) = H1(Ωc
δ),
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and R′γ is the self-adjoint operator in L2(Ω′δ), with Ω′δ := Ωc \ Ωc
δ, given by

R′γ[u, u] =

∫
Ω′δ

|∇u|2 dx, Q(R′γ) = H1(Ω′δ).

Due to R′γ ≥ 0 one has E1(Rγ) ≥ min{E1(R0
γ), 0}. By Lemma 3.3(b) one has

E1(R0
γ) ≥ E1(Xγ) with R being the self-adjoint operator in L2(Πδ) with

Xγ[v, v] =

∫
Πδ

[
a′|∇sv|2 +|∂tv|2−a′|v|2

]
ds dt−γ

∫
Σ

∣∣v(s, 0)
∣∣2 ds−a′

∫
∂U

∣∣v(s, δ)
∣∣2 ds

and Q(Xγ) = H1(Ωc
δ), with some a′ > 0. Let S ′ be the self-adjoint operator in

L2(0, δ) given by

S ′[f, f ] =

∫ δ

0

|f ′|2 dt− γ
∣∣f(0)

∣∣2 − a′∣∣f(δ)
∣∣2, Q(S ′) = H1(0, δ).

As |∇sv|2 ≥ 0, due to Fubini’s theorem one has E1(Xγ) ≥ E1(S ′) − a′, and now it
is sufficient to remark that by Lemma 3.2 one has E1(S ′) ≥ −γ2 − a0 with some
a0 > 0 as γ → +∞.

5.2 Upper bound

Pick m ∈ R and j ∈ N, and let u1, . . . , uj be linearly independent eigenfunctions of
A2
m for the first j eigenvalues, then for any function u ∈ V := span(u1, . . . , uj) there

holds A2
m[u, u] ≤ Ej(A

2
m)‖u‖2

L2(Ω,CN ). Recall that the standard elliptic regularity

argument implies one has V ⊂ C∞(Ω,CN),see Proposition A.2(b) for details, and
then

a := sup
{
‖u‖2

H1(Σ,CN ) : u ∈ V with ‖u‖2
L2(Ω,CN ) = 1

}
<∞.

Using the linear map Fγ as in Lemma 5.1(a), for u ∈ V define ũ ∈ H1(Rn,CN) by

ũ =

{
u in Ω,

(FM ⊗ 1)(u|Σ) in Ωc.

with 1 understood as the identity operator in CN , then for any u ∈ V we have∫
Ωc

(
|∇ũ|2 +M2|ũ|2

)
dx−

∫
Σ

(
M +

H1

2

)
|ũ|2 ds

≡
(

(RM +M2)⊗ 1
)

[ũ, ũ] ≤ C

M
‖u‖2

H1(Σ,CN ) ≤
Ca

M
‖u‖2

L2(Ω,CN )

with C > 0 independent of u. Noting that for u ∈ V we have P−u = 0 on Σ and
substituting the preceding upper bound into (43) with the choice ε = 0 we arrive at

B2
m,M [ũ, ũ] = A2

m[u, u] +
(
(RM +M2)⊗ 1

)
[ũ, ũ] ≤

(
Ej(A

2
m) +

Ca

M

)
‖u‖2

L2(Ω,CN ).

For u ∈ V there holds ‖ũ‖2
L2(Rn,CN ) ≥ ‖u‖

2
L2(Ω,CN ), and Ṽ := {ũ : u ∈ V } is therefore

a j-dimensional subspace of H1(Rn,CN) ≡ Q(B2
m,M). The min-max principle gives
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Ej(B
2
m,M) ≤ sup

06=v∈Ṽ

B2
m,M [v, v]

‖v‖2
L2(Rn,CN )

= sup
06=u∈V

B2
m,M [ũ, ũ]

‖ũ‖2
L2(Rn,CN )

≤ sup
0 6=u∈V

(
Ej(A

2
m) +

Ca

M

)
‖u‖2

L2(Ω,CN )

‖ũ‖2
L2(Rn,CN )

≤ Ej(A
2
m) +

Ca

M
,

which implies lim supM→+∞Ej(B
2
m,M) = Ej(A

2
m).

5.3 Lower bound

Now we use the representation (43) with an arbitrary fixed ε > 0. By the min-max
principle, for any j ∈ N one has

Ej(B
2
m,M) ≥ Ej(Km,M,ε ⊕Kc

M,ε) (45)

where Km,M,ε is the self-adjoint operator in L2(Ω,CN) with the form domain

Q(Km,M,ε) = H1(Ω,CN) and

Km,M,ε[u, u] =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx

+

∫
Σ

(
m− ε+

H1

2

)
|u|2 ds+ 2(M −m)

∫
Σ

|P−u|2 ds,

and Kc
M,ε is the self-adjoint operator in L2(Ωc,CN) with the form domain Q(Kc

M,ε) =
H1(Ωc,CN) and

Kc
M,ε[u, u] =

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M − ε+

H1

2

)
|u|2 ds.

Using the operator Rγ from Lemma 5.1 one easily sees that Kc
M,ε = (RM−ε ⊗ 1) +

M2 with 1 being the identity in CN , and then, using Lemma 5.1(b), E1(Kc
M,ε) =

E1(RM−ε)+M
2 ≥ εM asM is large. Due to the upper bound proved in the preceding

subsection we know already that for each fixed j ∈ N there holds Ej(B
2
m,M) = O(1)

for large M , hence, Eq. (45) implies

Ej(B
2
m,M) ≥ min

{
Ej(Km,M,ε), E1(Kc

M,ε)
}

= Ej(Km,M,ε) as M → +∞.

As the operators Km,M,ε are increasing with respect to M , one uses the monotone
convergence (Proposition 1.10) for each j ∈ N to obtain limM→+∞Ej(Km,M,ε) =
Ej(Cm,ε), where Cm,ε is the self-adjoint operator in L2(Ω,CN) given by

Cm,ε[u, u] =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m− ε+

H1

2

)
|u|2 ds,

Q(Cm,ε) =
{
u ∈ H1(Ω,CN) : P−u = 0 on Σ

}
≡ Q(A2

m).

This shows that lim infM→+∞Ej(B
2
m,M) ≥ Ej(Cm,ε). As ε > 0 is arbitrary and

we have the obvious limit limε→0Ej(Cm,ε) = Ej(Cm,0) ≡ Ej(A
2
m), we arrive at the

sought lower bound lim infM→+∞Ej(B
2
m,M) ≥ Ej(A

2
m), which finishes the proof.
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6 Proof of Theorem 1.3

We are going to show that for each j ∈ N the eigenvalues Ej(B
2
m,M) converge to

Ej(D/
2) as m → −∞ and M → +∞ with m/M → 0. Due to Lemma 2.4 for each

j ∈ N there holds Ej(D/
2) = Ej(L), hence, it is sufficient to prove that Ej(B

2
m,M)

converges to Ej(L) in the same asymptotic regime.
The proof is by combining in a new way several components used for Theorem 1.1

and 1.2. For the upper bound one extends the eigenfunctions of the operator L on
both sides of Σ by taking tensor products with the first eigenfunctions of the model
one-dimensional operators in the normal direction. These extensions are then used
as test functions in the min-max principle. For the lower bound we again decouple
the two sides of Σ and eliminate the contribution in Ωc by acting as in the proof of
Theorem 1.2. The analysis of the part in Ω is then quite similar to the constructions
in the proof of Theorem 1.1: one is first reduced to the analysis in a thin tubular
neighborhood of Ω, and then one applies a unitary transform (expansion in the
eigenfunctions of the operator in the normal direction) to obtain a monotone family
of operators.

6.1 Upper bound

Let us recall the important technical ingredients. For small δ > 0 consider the sets
Ωδ := {x ∈ Ω : dist(x,Σ) < δ} and Πδ := Σ× (0, δ) as well as the diffeomorphisms
Φ : Πδ → Ωδ given by Φ(s, t) = s − tν(s) and the associated unitary maps Θδ :
L2(Ωδ,CN)→ L2(Πδ,CN) with Θδu =

√
det(Φ′) u ◦ Φ.

Consider the self-adjoint operator S in L2(0, δ) with

S[f, f ] =

∫ δ

0

|f ′|2 dt+m
∣∣f(0)

∣∣2, Q(S) =
{
f ∈ H1(0, δ) : f(δ) = 0

}
and let ψ be an eigenfunction for the first eigenvalue normalized by ‖ψ‖2

L2(0,δ) = 1.
By Lemma 3.1 with some b > 0 one has

E1(S) ≤ −m2 + be−δ|m|,
∣∣ψ(0)

∣∣2 ≤ b|m|, as (−m) is large.

Also recall that due to Lemma 5.1(a) one can find c > 0 such that for δ ∈ (0, δ0)
and u ∈ H1(Ωδ) with u = 0 on ∂Ωδ \ Σ there holds, with w := Θδu,∫

Ωδ

|∇u|2 dx+

∫
∂U

(
m+

H1

2

)
|u|2 ds

≤
∫

Πδ

[
(1 + cδ)|∇sw|2 + |∂tw|2 +

(
H2 −

H2
1

4
+ cδ

)
|w|2

]
ds dt

+m

∫
Σ

∣∣w(s, 0)
∣∣2 ds. (46)

We will use the representation (43) with ε = 0, i.e.

B2
m,M [u, u] =

∫
Ω

(
|∇u|2+m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds+2(M−m)

∫
Σ

|P−u|2 ds

+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M +

H1

2

)
|u|2 ds, u ∈ H1(Rn,CN). (47)
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For small a ∈ R consider the operator La in H given by

La[g, g] =

∫
Σ

[
(1 + ca)|∇g|2 +

(
H2 −

H2
1

4
+ ca

)
|g|2
]

ds,

Q(La) = H1(Σ,CN) ∩H.

(48)

Finally, by Lemma 5.1 for large M > 0 there exists C > 0 and a linear extension
map FM : H1(Σ,CN)→ H1(Ωc,CN) with (FMf)|Σ = f and∫

Ωc

(
|∇FMf |2 +M2|FMf |2

)
dx−

∫
Σ

(
M +

H1

2

)
|FMf |2 ds ≤ C

M
‖f‖2

H1(Σ,CN ).

for all f ∈ H1(Σ,CN).
Let j ∈ N and v1, . . . , vj be linearly independent eigenfunctions of Lδ for the first

j eigenvalues, then for v ∈ V := span(v1, . . . , vj) one has Lδ[v, v] ≤ Ej(Lδ) ‖v‖2
H ≡

Ej(Lδ) ‖v‖2
L2(Σ,CN ). Denote

a0 := sup
{
‖v‖2

H1(Σ,CN ) : v ∈ V with ‖v‖2
H = 1

}
<∞.

For v ∈ V construct u ∈ H1(Rn,CN) as follows:

u =


Θ−1
δ (v ⊗ ψ) in Ωδ,

ψ(0)FMv in Ωc,

0 in Ω \ Ωδ.

By construction one has

‖u‖2
L2(Rn,CN ) ≥ ‖u‖

2
L2(Ωδ,CN ) = ‖v‖2

L2(Σ,CN )‖ψ‖
2
L2(0,δ) = ‖v‖2

L2(Σ,CN ) ≡ ‖v‖
2
H,

hence, the subspace U := {u : v ∈ V } ⊂ H1(Rn,CN) is j-dimensional. By the
above properties of FM and ψ one has∫

Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M +

H1

2

)
|u|2 ds

=
∣∣ψ(0)

∣∣2(∫
Ωc

(
|∇FMv|2 +M2|FMv|2

)
dx−

∫
Σ

(
M +

H1

2

)
|FMv|2 ds

)
≤
∣∣ψ(0)

∣∣2 C
M
‖v‖2

H1(Σ,CN ) ≤ b|m| C
M

a0‖v‖2
L2(Σ,CN ) ≡ a0bC

|m|
M
‖v‖2

H,

and due to (46) there holds∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds+ 2(M −m)

∫
Σ

|P−u|2 ds
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≡
∫

Ωδ

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m+

H1

2

)
|u|2 ds

≤
∫ δ

0

∫
Σ

[
(1 + cδ)

∣∣∇s(v ⊗ ψ)
∣∣2 +

∣∣∂t(v ⊗ ψ)
∣∣2

+
(
m2 +H2 −

H2
1

4
+ cδ

)∣∣(v ⊗ ψ)
∣∣2] ds dt+m

∫
Σ

∣∣(v ⊗ ψ)(s, 0)
∣∣2 ds

=
(∫

Σ

[
(1 + cδ)|∇v|2 +

(
H2 −

H2
1

4
+ cδ

)
|v|2
]

ds
)
‖ψ‖2

L2(0,δ)

+
(∫ δ

0

|ψ′|2 dt+m
∣∣ψ(0)

∣∣2 +m2‖ψ‖2
L2(0,δ)

)
‖v‖2

L2(Σ,CN )

= Lδ[v, v] +
(
E1(S) +m2

)
‖v‖2

H ≤
(
Ej(Lδ) + be−δ|m|

)
‖v‖2

H.

Inserting the preceding inequalities into the expression (47) for B2
m,M one sees that

for all u ∈ U there holds

B2
m,M [u, u] ≤

(
Ej(Lδ) + be−δ|m| + a0bC

|m|
M

)
‖v‖2

H, ‖u‖2
L2(Rn,CN ) ≥ ‖v‖

2
H,

and the min-max principle gives

Ej(B
2
m,M) ≤ max

06=u∈U

B2
m,M [u, u]

‖u‖2
L2(Rn,CN )

= max
06=v∈V

B2
m,M [u, u]

‖u‖2
L2(Rn,CN )

≤ Ej(Lδ)+be−δ|m|+a0bC
|m|
M

.

Therefore, one has lim supm→−∞,m/M→0Ej(B
2
m,M) ≤ Ej(Lδ). As δ can be chosen

arbitrarily small and limδ→0Ej(Lδ) = Ej(L0) ≡ Ej(L) one arrives at

lim sup
m→−∞,m/M→0

Ej(B
2
m,M) ≤ Ej(L). (49)

6.2 Lower bound

Now we will use the representation (43) with ε = ε0/|m| and an arbitrary but fixed
ε0 > 0, i.e.

B2
m,M [u, u]

=

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m− ε0

|m|
− H1

2

)
|u|2 ds+ 2(M −m)

∫
Σ

|P−u|2 ds

+

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M − ε0

|m|
+
H1

2

)
|u|2 ds, u ∈ H1(Rn,CN).

Due to the min-max principle for any j ∈ N one has

Ej(B
2
m,M) ≥ Ej(Km,M ⊕Kc

m,M), (50)

where Km,M is the self-adjoint operator in L2(Ω,CN) with the form domain given
by Q(Km,M) = H1(Ω,CN) and

Km,M [u, u] =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx

34



+

∫
Σ

(
m− ε0

|m|
− H1

2

)
|u|2 ds+ 2(M −m)

∫
Σ

|P−u|2 ds

and Kc
m,M is the self-adjoint operator in L2(Ωc,CN) with Q(Kc

m,M) = H1(Ωc,CN)
and

Kc
m,M [u, u] =

∫
Ωc

(
|∇u|2 +M2|u|2

)
dx−

∫
Σ

(
M − ε0

|m|
+
H1

2

)
|u|2 ds.

Using the operator Rγ from Lemma 5.1 we see that in the asymptotic regime under
consideration we have, with some C0 > 0,

E1(Kc
m,M) = E1(RM−ε0/m) +M2 ≥M2 −

(
M − ε0

|m|

)2

− C0

= 2ε0
M

|m|
− ε2

0

m2
− C0 → +∞.

As we have already the upper bound Ej(B
2
m,M) = O(1), it follows from (50) that

Ej(B
2
m,M) ≥ Ej(Km,M). One can assume in addition that M ≥ 0 and m ≤ 0, then

2(M −m) ≥ −2m ≥ 2|m|, which implies

Ej(B
2
m,M) ≥ Ej(Km), (51)

with Km being the self-adjoint operator in L2(Ω,CN) with Q(Km) = H1(Ω,CN) and

Km[u, u] =

∫
Ω

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m− ε0

|m|
− H1

2

)
|u|2 ds+ 2|m|

∫
Σ

|P−u|2 ds.

In order to obtain a lower bound for the eigenvalues of Km we take a small δ > 0
and consider the domains Ωδ =

{
x ∈ Ω : dist(x, δ)

}
and Ωc

δ := Ω \ Ωδ, then due to
the min-max principle one has

Ej(Km) ≥ Ej(K
′
m ⊕K ′′m), (52)

where K ′m is the self-adjoint operator in L2(Ωδ,CN) with the form domain Q(K ′m) =
H1(Ωδ,CN) and

K ′m[u, u] =

∫
Ωδ

(
|∇u|2 +m2|u|2

)
dx+

∫
Σ

(
m− ε0

|m|
− H1

2

)
|u|2 ds+ |m|

∫
Σ

|P−u|2 ds,

while K ′′m is the self-adjoint operator in L2(Ωc
δ,CN) with

Q(K ′′m) = H1(Ωc
δ,CN), K ′′m[u, u] =

∫
Ωcδ

(
|∇u|2 +m2|u|2

)
dx,

and E1(K ′′m) ≥ m2 → +∞. By combining (51) and (52) one sees that Ej(B
2
m,M) ≥

Ej(K
′
m ⊕ K ′′m). As we already have proved the upper bound Ej(B

2
m,M) = O(1), it

follows that
Ej(B

2
m,M) ≥ Ej(K

′
m). (53)

Using now the diffeomorphism

Φ : Πδ → Ωδ, Πδ := Σ× (0, δ), Φ(s, t) 7→ s− tν(s),
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and the unitary maps Θδ : L2(Ωδ,CN)→ L2(Πδ,CN), Θδu =
√

det(Φ′) u ◦ Φ, with
the help of Lemma 3.3(b) one obtains Ej(K

′
m) = Ej(Θ

∗
δK
′
mΘδ) ≥ Ej(K

0
m) with K0

m

being the self-adjoint operator in L2(Πδ,CN) given by

K0
m[v, v] =

∫
Πδ

[
(1− cδ)|∇sv|2 + |∂tv|2 +

(
H2 −

H2
1

4
− cδ

)
|v|2
]

ds dt

+
(
m− ε0

|m|

)∫
Σ

∣∣v(s, 0)
∣∣2 ds− c

∫
Σ

∣∣v(s, δ)
∣∣2 ds+ |m|

∫
Σ

∣∣P−v(s, 0)
∣∣2 ds (54)

on the form domain Q(K0
m) = H1(Πδ,CN), where c > 0 is chosen independent of δ

and v. With this choice of c, let S ′ be the self-adjoint operator in L2(0, δ) with

S ′[f, f ] =

∫ δ

0

|f ′|2 dt+
(
m− ε0

|m|

)∣∣f(0)
∣∣2 − c∣∣f(δ)

∣∣2, Q(S ′) = H1(0, δ).

and ψk ∈ L2(0, δ) with k ∈ N be its eigenfunctions for the eigenvalues Ek(S
′) forming

an orthonormal basis in L2(0, δ). Due to Lemma 3.2 we have, with some b± > 0,
b > 0 and b0 > 0,

E1(S ′) ≥ −
(
|m|+ ε0

|m|

)2

− be−δ|m| ≥ −m2 − 3ε0 as m→ −∞, (55)

b−k2 − b0 ≤ Ek(S
′) ≤ b+k2 for all k ≥ 2 and m ∈ R. (56)

For small a ∈ R, in addition to the operator La in H defined in (48) we consider the
self-adjoint operator Λa in L2(Σ,CN) given by

Λa[g, g] =

∫
Σ

[
(1 + ca)|∇g|2 +

(
H2 −

H2
1

4
+ ca

)
|g|2
]

ds, Q(Λa) = H1(Σ,CN).

Let K1
m be the self-adjoint operator in L2(Πδ) having the same form domain as

K0
m and with the sesquilinear form obtained from the one of K0

m by omitting the last
summand in (54), then K1

m admits a separation of variables: using the identification
L2(Πδ) ' L2(0, δ) ⊗ L2(Σ,CN) one has K1

m = S ′ ⊗ 1 + 1 ⊗ Λ−δ. Using the unitary
transform

Θ : L2(0, δ)→ `2(N), (Θf)k = 〈ψk, f〉L2(0,δ), k ∈ N,

the identification L2(Πδ) ' L2(0, δ)⊗ L2(Σ,CN) and another unitary transform

Ξ := Θ⊗ 1 : L2(Πδ)→ `2(N)⊗ L2(Σ,CN),

Ξv = (vk) =: v̂, vk :=

∫ δ

0

ψk(t) v(t, ·) dt ∈ L2(Σ,CN),

for the self-adjoint operator K̂1
m := ΞK1

mΞ∗ in `2(N)⊗ L2(Σ,CN) one has

K̂1
m[v̂, v̂] =

∑
k∈N

(
Λ−δ[vk, vk] +

(
Ek(S

′) +m2
)
‖vk‖2

L2(Σ,CN ),

while Q(K1
m) consists of all v̂ ∈ `2(N)⊗L2(Σ,CN) with vk ∈ H1(Σ,CN) such that the

right-hand side of the preceding expression is finite. Using the two-sided estimate
(56) one can rewrite
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Q(K̂1
m) =

{
v̂ = (vk) ∈ `2(N)⊗ L2(Σ,CN) : vk ∈ H1(Σ,CN) for each k ∈ N

and
∑
k∈N

(
‖vk‖2

H1(Σ,CN ) + k2‖vk‖2
H1(Σ,CN )

)
<∞

}
. (57)

For the operator K̂0
m := ΞK0

mΞ∗ one has the same form domain and

K̂0
m[v̂, v̂] =

∑
k∈N

(
Λ−δ[vk, vk] +

(
Ek(S

′) +m2
)
‖vk‖2

L2(Σ,CN )

)
+ |m|

∫
Σ

∣∣P−Ξ∗v̂(·, 0)
∣∣2 ds.

Using the lower bounds (55) and (56) for Ek(S
′), for any v̂ ∈ Q(K̂0

m) we obtain the

inequality K̂0
m[v̂, v̂] ≥ wm(v̂, v̂) with the sesquilinear form wm in `2(N)⊗ L2(Σ,CN)

defined on D(wm) := Q(K̂0
m) by

wm(v̂, v̂) := Λ−δ[v1, v1]− 3ε0‖v1‖2
L2(Σ,CN )

+
∑
k≥2

(
Λ−δ[vk, vk] + (b−k2 − b0 +m2)‖vk‖2

L2(Σ,CN )

)
+ |m|

∫
Σ

∣∣P−Ξ∗v̂(·, 0)
∣∣2 ds.

Using the above representation (57) one sees that the form wm is lower semibounded
and closed, hence it generates a self-adjoint operator Wm in `2(N)⊗L2(Σ,CN) with
compact resolvent, and then Ej(K̂

0
m) ≥ Ej(Wm) for all j ∈ N. By summarizing

all the preceding constructions, for any j ∈ N in the asymptotic regime under
consideration one has

Ej(B
2
m,M) ≥ Ej(Wm). (58)

For the analysis of the eigenvalues of Wm as m → −∞ we are now in the classical
situation for the monotone convergence (Proposition 1.10), as Wm are increasing
with respect to |m|. Namely, consider the set

Q∞ :=
{
v̂ = (vk) ∈

⋂
m<0

Q(Wm) ≡ Q(K̂0
m), sup

m<0
Wm[v̂, v̂] < +∞

}
,

then a vector v̂ = (vk) ∈ Q(K̂0
m) belongs to Q∞ iff the following two conditions are

satisfied: (i) vk = 0 for all k ≥ 2 and (ii) P−Ξ∗v̂(·, 0) = 0. The condition (i) gives
v = e1 ⊗ v1 with e1 = (1, 0, 0, . . . ) ∈ `2(N), and then the condition (ii) reduces to
P−v1 = 0, i.e. v1 ∈ H. Therefore, there holds Q∞ =

{
e1⊗v1 : v1 ∈ H1(Σ,CN)∩H

}
.

Moreover, for any e1 ⊗ v1 ∈ Q∞ one has

lim
m→−∞

Wm[e1 ⊗ v1, e1 ⊗ v1] = L−δ[v1, v1]− 3ε0‖v1‖2
H,

while we recall that L−δ is defined as in (48). Therefore, if one denotes by W∞ the
self-adjoint operator in e1 ⊗H given by

W∞[e1 ⊗ v1, e1 ⊗ v1] = L−δ[v1, v1]− 3ε0‖v1‖2
H,

then it follows by the monotone convergence (Proposition 1.10) that for each j ∈ N
there holds limm→−∞Ej(Wm) = Ej(W∞) ≡ Ej(L−δ) − 3ε0. By (58) one has
lim infM→+∞,m→−∞,m/M→0 ≥ Ej(L−δ) − 3ε0. As both δ and ε0 can be chosen arbi-
trarily small and we have the convergence lima→0Ej(La) = Ej(L), we arrive at the
inequality lim infM→+∞,m→−∞,m/M→0Ej(B

2
m,M) ≥ Ej(L). By combining it with the

upper bound (49) we arrive at the result of Theorem 1.3.
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A Basic properties of Euclidean Dirac operators

In the present section we would like to recall some key facts on the Euclidean Dirac
operators Bm,M and Am. All the properties are very standard and well known for
n ∈ {2, 3}, but we were not able to find a suitable single reference covering arbitrary
dimensions.

The analysis of Bm,M will be provided in a slightly more general setting, with
the hope that the constructions can be of use for other works. Denote

BM := BM,M .

Proposition A.1. Let V ∈ L∞(Rn) be real-valued with compact support. Con-
sider the linear operator C := BM + V αn+1 in L2(Rn,CN) with domain D(C) =
H1(Rn,CN), then:

(a) The operator C is self-adjoint, and it is essentially self-adjoint on C∞c (Rn,CN).

(b) The essential spectrum of C is
(
−∞,−|M |

]
∪
[
|M |,+∞

)
, and there are at

most finitely many discrete eigenvalues in
(
− |M |, |M |

)
.

(c) Assume in addition that n /∈ 4Z. If E is an eigenvalue of C, then (−E) is
also an eigenvalue of C of the same multiplicity.

In particular, the three assertions hold for C := Bm,M ≡ BM + (m−M)1Ωαn+1.

Proof. (a) As both C and B0 are symmetric and only differ by the bounded sym-
metric operator (M + V )αn+1, the (essential) self-adjointness of C is equivalent to
that of B0. First, it is directly seen that B0 is symmetric. Let S be the restriction of
B0 to C∞c (Rn,CN), then S is a densely defined symmetric operator, and by applying
the definitions one sees that its adjoint S∗ is given by

S∗u = D0u, D(S∗) =
{
u ∈ L2(Rn,CN) : D0u ∈ L2(Rn,CN)

}
with D0 acting in the sense of distributions. In order to complete the proof we simply
need to show that S∗ = B0. As both operators are given by the same differential
expression D0 and S∗ is clearly an extension of B0, one only needs to check the
inclusion D(S∗) ⊂ D(B0). Let a function u belong to D(S∗), i.e.

u ∈ L2(Rn,CN) and − i
n∑
j=1

αj∂ju ∈ L2(Rn,CN).

We need to show that this implies u ∈ H1(Rn,CN). We remark first that the
Fourier transform û of u satisfies û ∈ L2(Rn,CN) and Γ(ξ)û ∈ L2(Rn,CN). The
matrices Γ(ξ) are Hermitian, and, by construction, Γ(ξ)2 = |ξ|2IN . In particular,
one can represent Γ(ξ) = |ξ|U(ξ) with the unitary matrices U(ξ) := Γ(ξ/|ξ|). As the
pointwise multiplication by U(·) is an isomorphism of L2(Rn,CN), it follows that the
condition Γ(ξ)û ∈ L2(Rn,CN) yields |ξ|û ∈ L2(Rn,CN). Due to |ξj| ≤ |ξ| we obtain
ξjû ∈ L2(Rn,CN) for each j = 1, . . . n. By applying the inverse Fourier transform
this implies ∂ju ∈ L2(Rn,CN) for each j = 1, . . . n, and then u ∈ H1(Rn,CN).

(b) Let us start by showing the inclusion(
−∞,−|M |

]
∪
[
|M |,+∞

)
⊂ specess C. (59)
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Denote e1 := (1, 0, . . . , 0) ∈ Rn. For ρ > 0, denote during the proof

bρ := {x ∈ Rn : |x| < ρ}.

Let χ ∈ C∞c (Rn) with χ = 1 in b1 and χ = 0 outside b2, and E ∈ R with |E| > |M |.
Let us choose η ∈ CN with

ϕ := (
√
E2 −M2 α1 +Mαn+1 + E IN)η 6= 0,

which is possible as the matrix
√
E2 −M2 α1 +Mαn+1 +E IN is non-zero (otherwise

α1 could not anticommute with αn+1). For large k ∈ N consider the following
functions uk ∈ H1(Rn,CN):

uk(x) = χ
(x
k
− ke1

)
ei
√
E2−M2 x1ϕ

≡ χ
(x
k
− ke1

)
ei
√
E2−M2 x1(

√
E2 −M2 α1 +Mαn+1 + E IN)η,

then one easily checks that ‖uk‖2
L2(Rn,CN ) = ckn > 0 with c = ‖χ‖2

L2(Rn,CN ) > 0
independent of k. On the other hand, for large k one has V = 0 on the support of
uk, hence,

(Cuk)(x) = −i
n∑
j=1

αj∂juk(x) +Mαn+1uk(x)

= − i

k

n∑
j=1

αj∂jχ
(x
k
− ke1

)
ei
√
E2−M2 x1ϕ

+ χ
(x
k
− ke1

)(√
E2 −M2 α1 +Mαn+1

)
ei
√
E2−M2 x1ϕ,

and then (C − E)uk = vk + wk with

vk(x) = − i

k

n∑
j=1

αj∂jχ
(x
k
− ke1

)
ei
√
E2−M2 x1ϕ,

wk(x) = χ
(x
k
− ke1

)
ei
√
E2−M2 x1

(√
E2 −M2 α1 +Mαn+1 − E IN

)
ϕ

≡ χ
(x
k
− ke1

)
ei
√
E2−M2 x1

(√
E2 −M2 α1 +Mαn+1 − E IN

)
×
(√

E2 −M2 α1 +Mαn+1 + E
)
η = 0.

One estimates easily ‖vk‖2
L2(Rn,CN ) = O(kn−2) for k → +∞, and this shows that

‖(C−E)uk‖L2(Rn,CN )/‖uk‖L2(Rn,CN ) = O(1/k)→ 0 and yields E ∈ specC. It follows
that

(
−∞,−|M |

)
∪
(
|M |,+∞

)
⊂ specC, and one can take the closure on the left-

hand side as specC is a closed set. Furthermore, as the set
(
−∞,−|M |

]
∪
[
|M |,+∞

)
has no isolated points, it is included into the essential spectrum of C. Hence, the
claim (59) is proved.

Now it remains to check that C has no essential spectrum in
(
− |M |, |M |

)
and that it has at most finitely many discrete eigenvalues, which will be done by
an iterated application of the min-max principle. For E ∈ R and a self-adjoint
semibounded from below operator T we will denote

N(E, T ) := #
{
j ∈ N : Ej(T ) < E

}
.
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In other words, if specess T ∩ (−∞, E) 6= ∅, then N(E, T ) = +∞, otherwise
N(E, T ) is the number of eigenvalues of T in (−∞, E), where each eigenvalue
counted according to its multiplicity. In these terms, we simply need to show that
N(M2, C2) < +∞.

Choose r > 0 large such that the support of V is contained in br, and then pick
any R > r and real-valued functions χ1, χ2 ∈ C∞(R2) with

χ2
1 + χ2

2 = 1, χ1 = 1 in br, χ2 = 1 in R2 \ bR.

Let u ∈ D(C), then for each k ∈ {1, 2} one also has χku ∈ D(C) and C(χku) =
χkCu− iΓ(∇χk)u, and∥∥C(χku)

∥∥2

L2(Rn,CN )
=

∫
Rn

(
χ2
k|Cu|2 +

∣∣iΓ(∇χk)u
∣∣2) dx+ Jk,

Jk = 2<
∫
Rn

〈
χkCu,−iΓ(∇χk)u

〉
Cn dx

= <
∫
Rn

〈
Cu,−iΓ(2χk∇χk)u

〉
Cn dx = <

∫
Rn

〈
Cu,−iΓ

(
∇(χ2

k)
)
u
〉
Cn dx.

From χ2
1 + χ2

2 = 1 we infer ∇(χ2
1 + χ2

2) = 0 and then J1 + J2 = 0. Therefore,∥∥C(χ1u)
∥∥2

L2(Rn,CN )
+
∥∥C(χ2u)

∥∥2

L2(Rn,CN )

=

∫
Rn

(χ2
1 + χ2

2)|Cu|2 dx+

∫
R2

(
|∇χ1|2 + |∇χ2|2

)
|u|2
)

dx

=

∫
Rn
|Cu|2 dx+

∫
Rn
W |u|2 dx, W := |∇χ1|2 + |∇χ2|2, (60)

Recall that W is supported in bR \ br, while the support of χ2u does not intersect
the support of V , which gives∥∥C(χ2u)‖2

L2(Rn,CN ) =
∥∥BM(χ2u)‖2

L2(Rn,CN ) =

∫
Rn

(
|∇(χ2u)|2 +M2|χ2u|2

)
dx

(for u ∈ C∞c (Rn,CN) this is a simple integration by parts, and it is then extended by
density to the whole of D(C) as C∞c (Rn,CN) is a domain of essential self-adjointness
as shown above). This allows one to rewrite (60) as

∥∥Cu‖2
L2(Rn,CN ) =

∫
bR

(∣∣C(χ1u)
∣∣2 −W |χ1u|2

)
dx

+

∫
Rn

(
|∇(χ2u)|2 +M2|χ2u|2 −W |χ2u|2

)
dx. (61)

For v ∈ L2(bR,CN) let us denote by v′ its extension by zero to the whole of Rn

and consider the following sesqulinear form s1 in L2(bR,CN):

s1(v, v) =

∫
bR

|Cv′|2 dx, D(s1) = H1
0 (bR,CN).

The form s1 is clearly non-negative and densely defined. Let us show that it is also
closed. Let (vk) ⊂ D(S1) and v ∈ L2(bR,CN) with ‖vk− v‖L2(bR,CN ) → 0 for k →∞
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and s1(vk − vl, vk − vl) ≡ ‖C(v′k − v′l)‖2
L2(Rn,CN ) → 0 as k, l → +∞. Then one has

‖v′k − v′‖L2(Rn,CN ) → 0 for k → ∞, and the closedness of the operator C implies
that v′ ∈ D(C) with Cv′ = limk→∞Cv

′
k. Hence, the function v is such that its

extension by zero belongs to H1(Rn,CN), and this shows v ∈ H1
0 (bR,CN) ≡ D(s1)

and then s1(vk − v, vk − v) ≡ ‖C(v′k − v′)‖2
L2(Rn,CN ) → 0. The semiboundedness and

closedness of s1 imply the existence of a self-adjoint operator S1 in L2(bR,CN) with
S1[v, v] = s1(v, v) for v ∈ Q(S1) = D(s1), and S1 has compact resolvent as Q(S1) is
compactly embedded into L2(bR,CN).

Denote by S0 the (scalar) Schrödinger operator −∆−W in L2(Rn), i.e.

S0[u, u] =

∫
Rn

(
|∇u|2 −W |u|2

)
dx, Q(S0) = H1(Rn),

and consider the linear map J : D(C) ≡ Q(C2) 7→ Q(S1) × Q(S0 ⊗ IN) given by
Ju =

(
(χ1u)|bR , χ2u

)
. For any u ∈ D(C) one has then ‖Ju‖L2(bR,CN )×L2(Rn,CN ) =

‖u‖L2(Rn,CN ), and the above representation (61) can be rewritten as

C2[u, u] =
∥∥Cu‖2

L2(Rn,CN )

= (S1 −W )[(χ1u)|bR , (χ1u)|bR ] +
(
(S0 +M2)⊗ IN

)
[χ2u, χ2u]

≡
(

(S1 −W ) ⊕
(
(S0 +M2)⊗ IN

))
[Ju, Ju].

A standard application of the min-max principle (see e.g. Proposition 1.9) yields
the inequality

N(M2, C2) ≤ N
(
M2, (S1 −W ) ⊕

(
(S0 +M2)⊗ IN

))
≡ N(M2, S1 −W ) +NN(0, S0).

As S1−W is semibounded from below with compact resolvent, one has N(M2, S1−
W ) < ∞, and in order to show N(M2, C2) < ∞ it is sufficient to prove that
N(0, S0) <∞.

Recall that W vanishes outside bR. Let TR be the self-adjoint operator in L2(bR)
with

TR[u, u] =

∫
bR

(
|∇u|2 −W |u|2

)
dx, Q(TR) = H1(bR),

denote by OR the zero operator in L2(R2 \ bR), and consider the linear map

J ′ : Q(S0)→ Q(TR)× Q(OR), J ′u = (u|bR , u|R2\bR).

One has then

S0[u, u] ≥
∫
bR

(
|∇u|2 −W |u|2

)
dx ≡ (TR ⊕OR)[J ′u, J ′u]

implying N(0, S0) ≤ N(0, TR⊕OR) ≡ N(0, TR)+N(0, OR) ≡ N(0, TR) <∞, as TR is
semibounded from below with compact resolvent. This shows that N(M2, C2) <∞
and finishes the proof of(b).
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(c) According to the general theory of Clifford algebras, see e.g. Theorem 15.19
in [8], for n /∈ 4Z there exists an antilinear map θ : CN → CN with θ2 ∈ {−1,+1

}
and2

θαj = αjθ for j = 1, . . . , n, θ(iαn+1) = (iαn+1)θ. (62)

The pointwise map Θ defined by (Θu)(x) = θ
(
u(x)

)
is clearly an isomorphism of

H1(Rn,CN). Let u ∈ ker(C − E), E ∈ R, then Θu ∈ D(C) and

Eu = −i
n∑
j=1

αj
∂u

∂xj
+ V αn+1u.

The last equality in (62) rewrites as θαn+1 = −αn+1θ. We compute then

−EΘu = Θ(−Eu) = Θ
(

i
n∑
j=1

αj
∂u

∂xj
− V αn+1u

)
= −i

n∑
j=1

θαj
∂u

∂xj
− V θαn+1u = −i

n∑
j=1

αjθ
∂u

∂xj
+ V αn+1θu = CΘu,

which shows that Θu ∈ ker(C + E). By construction one has Θ2 ∈ {1,−1}, hence,
Θ is a bijection and the claim follows.

Let us now discuss the basic properties of the operator Am.

Proposition A.2. The following assertions hold:

(a) The operator Am is self-adjoint, and, in addition, it is essentially self-adjoint
on D∞(Am) := C∞(Ω,CN) ∩D(Am),

(b) The operator Am has compact resolvent, and its eigenfunctions belong to

D∞(Am),

(c) Assume in addition that n /∈ 4Z, then the spectrum of Am is symmetric with
respect to zero, i.e. dim ker(C − E) = dim ker(C + E) for any E ∈ R.

The above assertions also hold with Am replaced by A′m.

Proof. The assertions (a) and (b) are standard properties of elliptic Dirac operators.
One can use e.g. [3, Ex. 4.20] or [4, Ex. 7.26], by noting that B is a boundary chirality
operator, which shows that Am belongs to the class of Dirac operators with local
elliptic boundary conditions. Then [3, Thm. 4.11] implies that the restriction R of
Am on D∞(Am) is essentially self-adjoint, while the boundary regularity theorem [3,
Thm. 4.9] implies that R ⊂ Am. As Am is clearly symmetric, this implies that Am
is self-adjoint and proves (a). The same boundary regularity theorem [3, Thm. 4.9]
implies that all eigenfunctions are smooth up to the boundary, and the compactness
of the resolvent of Am follows then from the compactness of the embedding of H1(Ω)
into L2(Ω). This proves (b).

2In the language of [8, Theorem 15.19], the matrices α1, . . . , αn, iαn+1 form a basis of a minimal
representation of the Clifford algebra of R1,n, while θ is a real (if θ2 = 1) or quaternionic (if θ2 = −1)
charge conjugation, which is shown to exist for n− 1 /∈ 4Z + 3.
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The proof of (c) is very similar to the proof of Proposition A.1(c) with an addi-
tional attention given to the operator domain. Namely, for n /∈ 4Z there exist an
antilinear map θ : CN → CN with θ2 ∈ {−1,+1

}
satisfying (62), and the pointwise

map Θ defined by (Θu)(x) = θ
(
u(x)

)
is again an isomorphism of H1(Ω,CN). Fur-

thermore, if v ∈ H1(Ω,CN) satisfies the boundary condition v = Bv on Σ, then due
to

ΘB(s) = Θ
(
− iαn+1Γ(s)

)
= −iαn+1ΘΓ(s) = −iαn+1Γ(s)Θ = BΘ(s)

one also has Θv = BΘv on Σ. Therefore, if v ∈ D(Am), then also Θv ∈ D(Am).
Finally, let v ∈ ker(Am − E), E ∈ R, then the same computation as in Proposi-
tion A.1(c) gives Θv ∈ ker(Am + E).

The preceding arguments apply to A′m as well. First, (−B) is still a boundary
chirality operator in the sense of [3], which implies the assertions (a) and (b). The
proof of (c) is the same by noting that v = −Bv on Σ yields Θv = −BΘv on Σ.

B Schrödinger-Lichnerowicz formula for Eucli-

dean hypersurfaces

Let Σ ⊂ Rn be a smooth compact hypersurface with the outer unit normal field
ν and endowed with the Riemannian metric induced by the embedding. Recall
that the standard scalar product in Rn gives rise to the induced scalar product in
TΣ, which we simply denote by 〈·, ·〉 in this section. Denote by W the Weingarten
operator, WX = ∇Xν for X ∈ TΣ, with ∇ being the gradient in Rn. Recall that
the Levi-Civita connection ∇′ on Σ is given by the Gauss formula

∇′XY = ∇XY + 〈WX,Y 〉ν, X, Y ∈ TΣ.

We denote

H1 := trW, |W |2 := tr(W 2), H2 :=
H2

1 − |W |2

2
,

i.e. H1 is the mean curvature and H2 is the half of the scalar curvature of Σ.
Let N ∈ N and γ1, . . . , γn be N×N anticommuting Hermitian matrices satisfying

γ2
j = I, with I being the N ×N identity matrix, then the matrices

γ(x) :=
n∑
j=1

xjγj, x = (x1, . . . , xn) ∈ Rn,

satisfy the Clifford commutation relation γ(x)γ(y) + γ(y)γ(x) = 2〈x, y〉I for all
x, y ∈ Rn. Let us recall the definition of the associated extrinsically defined Dirac
operator DΣ on Σ following [13, Sec. 1–3].3 The induced spin connection ∇Σ on Σ
is defined by

∇Σ
Xψ = ∇X +

1

2
γ(ν)γ(WX) : C∞(Σ,CN)→ C∞(Σ,CN), X ∈ TΣ,

then DΣ acts on functions ψ ∈ C∞(Σ,CN) by

DΣψ := −γ(ν)
n−1∑
j=1

γ(ej)∇Σ
ej
ψ

3See footnote 1 on page 10.
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with (e1, . . . , en−1) being an orthonormal frame of TΣ. Recall that γ(ej) anticom-
mute with γ(ν) and, furthermore,

n−1∑
j=1

γ(ej)γ(Wej) = H1 I (63)

(which is seen by testing on an eigenbasis of W ), and we may rewrite

DΣψ =
H1

2
ψ − γ(ν)

n−1∑
j=1

γ(ej)∇ejψ,

Being viewed as an operator in L2(Σ,CN), the operator DΣ is known to be essentially
self-adjoint on C∞(Σ,RN). We would like to provide a elementary direct proof,
adapted to the Euclidean setting, of the eminent Schrödinger-Lichnerowicz formula

(DΣ)2 = (∇Σ)∗∇Σ +
H2

2
I, (64)

where the first term on the right-hand side is the Bochner Laplacian associated with
the above spin connection ∇Σ, which is a self-adjoint operator in L2(Σ,CN). (We
refer to the original papers [16, 21] and other sources [7, 10–12] for a more general
setting.)

In what follows we use the standard identification of TΣ and T ∗Σ with the help
of the musical isomorphism. For ψ ∈ C∞(Σ,CN) we have the decomposition

∇Σψ =
n−1∑
j=1

ej ⊗∇Σ
ej
ψ =

n−1∑
j=1

ej ⊗
(
∇ej +

1

2
γ(ν)γ(Wej)

)
ψ. (65)

To compute the adjoint (∇Σ)∗ : T ∗Σ ⊗ C∞(Σ,CN) → C∞(Σ,CN), let X ∈ TΣ '
T ∗Σ and ϕ, ψ ∈ C∞(Σ,CN) then〈

(∇Σ)∗(X ⊗ ϕ), ψ
〉
L2(Σ,CN )

= 〈X ⊗ ϕ,∇Σψ〉T ∗Σ⊗L2(Σ,CN )

=
〈
ϕ,∇Xψ +

1

2
γ(ν)γ(WX)ψ

〉
L2(Σ,CN )

=
〈
ϕ,∇Xψ

〉
L2(Σ,CN )

+
〈1

2
γ(WX)γ(ν)ϕ, ψ

〉
L2(Σ,CN )

.

Using Leibniz rule and the divergence theorem we have

〈ϕ,∇Xψ〉L2(Σ,CN ) =

∫
Σ

X〈ϕ, ψ〉CN ds− 〈∇Xϕ, ψ〉L2(Σ,CN )

= −
〈
(divΣ X)ϕ+∇Xϕ, ψ

〉
L2(Σ,CN )

,

where divΣ is the divergence on Σ,

divΣX =
n−1∑
j=1

〈ej,∇′ejX〉.

Therefore,

(∇Σ)∗(X ⊗ ϕ) = −(divΣ X)ϕ−∇Xϕ+
1

2
γ(WX)γ(ν)ϕ.
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By combining (65) with the last expression, for ψ ∈ C∞(Σ,CN) one obtains

(∇Σ)∗∇Σψ =
n−1∑
j=1

(∇Σ)∗
[
ej ⊗

(
∇ej +

1

2
γ(ν)γ(Wej)

)
ψ
]

= −
n−1∑
j=1

(divΣ ej)
(
∇ej +

1

2
γ(ν)γ(Wej)

)
ψ

+
n−1∑
j=1

{
−∇ej

(
∇ej +

1

2
γ(ν)γ(Wej)

)
ψ

+
1

2
γ(Wej)γ(ν)

(
∇ej +

1

2
γ(ν)γ(Wej)

)
ψ

}
=: S1 + S2.

(66)

To simplify S1 we first use the Leibniz rule and the orthogonality of (ej) to obtain

divΣ ej =
n−1∑
k=1

〈ek,∇′ekej〉 = −
n−1∑
k=1

〈∇′ekek, ej〉,

S1 =
n−1∑
j,k=1

〈∇′ekek, ej〉∇ejψ +
1

2

n−1∑
j,k=1

〈∇′ekek, ej〉γ(ν)γ(Wej)ψ

=
n−1∑
k=1

( n−1∑
j=1

〈∇′ekek, ej〉∇ejψ
)

+
1

2

n−1∑
k=1

γ(ν)γ

(
W

n−1∑
j=1

〈∇′ekek, ej〉ej
)

=
n−1∑
k=1

∇∇′ekekψ +
1

2

n−1∑
k=1

γ(ν)γ
(
W∇′ekek

)
.

Furthermore,

S2 =
n−1∑
j=1

{
−∇ej∇ejψ −

1

2
γ(Wej)γ(Wej)ψ −

1

2
γ(ν)γ

(
∇ej(Wej)

)
ψ

− 1

2
γ(ν)γ(Wej)∇ejψ +

1

2
γ(Wej)γ(ν)∇ejψ +

1

4
γ(Wej)γ(ν)γ(ν)γ(Wej)ψ

}
=

n−1∑
j=1

{
−∇ej∇ejψ −

1

2
γ(ν)γ

(
∇ej(Wej)

)
ψ − γ(ν)γ(Wej)∇ejψ

}
ψ − 1

4
|W |2ψ,

and then

(∇Σ)∗∇Σψ =
n−1∑
j=1

[
∇∇′ej ejψ −∇ej∇ejψ

+
1

2
γ(ν)γ

(
W∇′ejej −∇ej(Wej)

)
ψ − γ(ν)γ(Wej)∇ejψ

]
− 1

4
|W |2ψ.

Using ∇′ej(Wej) = ∇ej(Wej) + |Wej|2ν and Leibniz rule we have

W∇′ejej −∇ej(Wej) = W∇′ejej −∇
′
ej

(Wej) + |Wej|2ν = −(∇′ejW )ej + |Wej|2ν
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implying γ(ν)γ
(
W∇′ejej−∇ej(Wej)

)
ψ = −γ(ν)γ

(
(∇′ejW )ej

)
ψ+ |Wej|2ψ, and then

(∇Σ)∗∇Σψ =
n−1∑
j=1

[
∇∇′ej ejψ −∇ej∇ejψ

− 1

2
γ(ν) γ

(
(∇′ejW )ej

)
ψ − γ(ν) γ(Wej)∇ejψ

]
+

1

4
|W |2ψ. (67)

On the other hand,

(DΣ)2ψ =
(H1

2
− γ(ν)

n−1∑
j=1

γ(ej)∇ej

)(H1 ψ

2
− γ(ν)

n−1∑
j=1

γ(ej)∇ejψ
)

=
H2

1

4
ψ − 1

2

(
γ(ν)

n−1∑
j=1

γ(ej)∇ejH1

)
ψ − H1

2
γ(ν)

n−1∑
j=1

γ(ej)∇ejψ

− H1

2
γ(ν)

n−1∑
j=1

γ(ej)∇ejψ + γ(ν)
n−1∑
j,k=1

γ(ej)γ(Wej)γ(ek)∇ekψ

+ γ(ν)
n−1∑
j,k=1

γ(ej)γ(ν)γ(∇ejek)∇ekψ + γ(ν)
n−1∑
j,k=1

γ(ej)γ(ν)γ(ek)∇ej∇ekψ.

(68)
The sum of the third, forth and fifth terms is zero, in fact,

− H1

2
γ(ν)

n−1∑
j=1

γ(ej)∇ejψ −
H1

2
γ(ν)

n−1∑
j=1

γ(ej)∇ejψ

+ γ(ν)
n−1∑
j,k=1

γ(ej)γ(Wej)γ(ek)∇ekψ

= −H1 γ(ν)
n−1∑
j=1

γ(ek)∇ekψ + γ(ν)
n−1∑
j,k=1

γ(ej)γ(Wej)γ(ek)∇ekψ

= γ(ν)
n−1∑
k=1

(
−H1 +

n−1∑
j=1

γ(ej)γ(Wej)
)
γ(ek)∇ekψ = 0

as the term in the parentheses vanishes due to (63). Therefore, Eq. (68) reads as

(DΣ)2ψ =
H2

1

4
ψ − 1

2
γ(ν)

n−1∑
j=1

γ(ej)(∇ejH1)ψ −
n−1∑
j,k=1

γ(ej)γ(∇ejek)∇ekψ

−
n−1∑
j,k=1

γ(ej)γ(ek)∇ej∇ekψ.

(69)

We transform the last summand as follows:

n−1∑
j,k=1

γ(ej)γ(ek)∇ej∇ekψ =
1

2

n−1∑
j,k=1

(
γ(ej)γ(ek)∇ej∇ekψ + γ(ek)γ(ej)∇ek∇ejψ

)
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=
1

2

n−1∑
j,k=1

(
γ(ej)γ(ek) + γ(ek)γ(ej)

)
∇ej∇ekψ

+
1

2

n−1∑
j,k=1

γ(ek)γ(ej)
(
∇ek∇ej −∇ej∇ek

)
ψ

=
n−1∑
j=1

∇ej∇ejψ +
1

2
J,

where

J :=
n−1∑
j,k=1

γ(ej)γ(ek)
(
∇ej∇ek −∇ek∇ej

)
ψ ≡

n−1∑
j,k=1

γ(ej)γ(ek)∇[ej ,ek]ψ.

Representing [ej, ek] =
∑n−1

l=1

〈
el, [ej, ek]

〉
ek we have

J =
n−1∑
j,k,l=1

γ(ej)γ(ek)
[
〈el,∇′ejek〉 − 〈el,∇

′
ek
ej〉
]
∇elψ,

and using
n−1∑
j=1

ej〈el,∇′ekej〉 = −
n−1∑
j=1

ej〈∇′ekel, ej〉 = −∇′ekel

we rewrite

J = −
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ +
n−1∑
j,k=1

γ(∇′ejek) γ(ej)∇ekψ

= −2
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ

+
n−1∑
j,k=1

(
γ(ej) γ(∇′ejek) + γ(∇′ejek) γ(ej)

)
∇ekψ

= −2
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ + 2
n−1∑
j,k=1

〈ej,∇′ejek〉∇ekψ

= −2
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ − 2
n−1∑
j,k=1

〈∇′ejej, ek〉∇ekψ

= −2
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ − 2
n−1∑
j=1

∇∇′ej ejψ.

The substitution into (69) gives

(DΣ)2ψ =
H2

1

4
ψ − 1

2
γ(ν)

n−1∑
j=1

γ(ej)(∇ejH1)ψ −
n−1∑
j,k=1

γ(ej)γ(∇ejek)∇ekψ

−
n−1∑
j=1

∇ej∇ejψ +
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ +
n−1∑
j=1

∇∇′ej ejψ.
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The sum of the third and the fifth terms simplifies as

−
n−1∑
j,k=1

γ(ej)γ(∇ejek)∇ekψ +
n−1∑
j,k=1

γ(ej) γ(∇′ejek)∇ekψ

=
n−1∑
j,k=1

γ(ej)γ(∇′ejek −∇ejek)∇ekψ =
n−1∑
j,k=1

γ(ej)γ
(
〈Wej, ek〉ν

)
∇ekψ

=
n−1∑
j,k=1

γ
(
ej〈ej,Wek〉

)
γ(ν)∇ekψ =

n−1∑
k=1

γ(Wek)γ(ν)∇ekψ,

hence,

(DΣ)2ψ =
H2

1

4
ψ − 1

2
γ(ν)

n−1∑
j=1

γ(ej)(∇ejH1)ψ

+
n−1∑
j=1

γ(Wej)γ(ν)∇ejψ −
n−1∑
j=1

∇ej∇ejψ +
n−1∑
j=1

∇∇′ej ejψ.

By comparing the last expression with (67) we obtain

D2
Σψ − (∇Σ)∗∇Σψ

=
H2

1

4
ψ − 1

4
|W |2 ψ − 1

2
γ(ν)

n−1∑
j=1

γ(ej)(∇ejH1)ψ +
n−1∑
j=1

γ(Wej)γ(ν)∇ejψ

+
1

2

n−1∑
j=1

γ(ν) γ
(
(∇′ejW )ej

)
ψ +

n−1∑
j=1

γ(ν) γ(Wej)∇ejψ.

The sum of the fourth and sixth term on the right hand is zero, hence,

(DΣ)2ψ − (∇Σ)∗∇Σψ

=
H2

2
ψ − 1

2
γ(ν)

n−1∑
j=1

γ(ej)(∇ejH1)ψ +
1

2

n−1∑
j=1

γ(ν) γ
(
(∇′ejW )ej

)
ψ

=
H2

2
ψ +

1

2
γ(ν)γ

( n−1∑
j=1

(∇′ejW )ej −
n−1∑
j=1

(∇ejH1)ej

)
ψ.

Therefore, to show the sought identity (64) it is sufficient to prove the equality

n−1∑
j=1

(∇′ejW )ej =
n−1∑
j=1

(∇ejH1)ej. (70)

In order to check (70) let us remark that ∇X∇YZ−∇Y∇XZ−∇[X,Y ]Z = 0 for any
X, Y, Z ∈ TΣ. Using the definition of ∇′ we have

0 =∇X

(
∇′YZ − 〈WY,Z〉ν

)
−∇Y

(
∇′XZ − 〈WX,Z〉ν

)
−∇′[X,Y ]Z +

〈
W [X, Y ], Z

〉
ν

=∇′X
(
∇′YZ − 〈WY,Z〉ν

)
−
〈
WX,∇′YZ − 〈WY,Z〉ν

〉
−∇′Y

(
∇′XZ − 〈WX,Z〉ν

)
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+
〈
WY,∇′XZ − 〈WX,Z〉ν

〉
−∇′[X,Y ]Z +

〈
W [X, Y ], Z

〉
ν.

Using ∇′Xν = ∇Xν = WX we then arrive at

0 =∇′X∇′YZ −
〈
(∇′XW )Y, Z

〉
ν −

〈
W (∇′XY ), Z

〉
ν − 〈WY,∇′XZ〉ν − 〈WY,Z〉WX

− 〈WX,∇′YZ〉ν −∇′Y∇′XZ +
〈
(∇′YW )X,Z

〉
ν + 〈W∇′YX,Z〉ν

+ 〈WX,∇′YZ〉ν + 〈WX,Z〉WY + 〈WY,∇′XZ〉 − ∇′[X,Y ]Z +
〈
W [X, Y ], Z

〉
ν

=∇′X∇′YZ −∇′Y∇′XZ −∇′[X,Y ]Z − 〈WY,Z〉WX + 〈WX,Z〉WY

+
〈
(∇′YW )X,Z

〉
ν −

〈
(∇′XW )Y, Z

〉
ν

+ 〈W∇′YX,Z〉ν −
〈
W∇′XY, Z

〉
ν +

〈
W [X, Y ], Z

〉
ν.

As ∇′XY − ∇′YX = [X, Y ], the sum of the three terms in the last line van-
ishes. Considering the normal components of the remaining equality we obtain〈
(∇′YW )X,Z

〉
=
〈
(∇′XW )Y, Z

〉
, and then

〈
(∇′YW )X,Z

〉
=
〈
Y, (∇′XW )Z

〉
. Taking

Y = Z = ek and summing over k we arrive at

n−1∑
k=1

〈
(∇′ekW )X, ek

〉
=

n−1∑
j=1

〈
ek, (∇′XW )ek

〉
, i.e.

n−1∑
k=1

〈
X, (∇′ekW )ek

〉
= ∇XH1.

Using the last equality for X = ej we obtain

n−1∑
j=1

n−1∑
k=1

〈
ej, (∇′ekW )ek

〉
ej =

n−1∑
j=1

(∇ejH1)ej.

The left-hand side of the last equality simplifies to
∑n−1

k=1(∇′ekW )ek, which gives (70)
and finishes the proof of (64).

C Dirac operator on a loop

Let Σ ⊂ R2 be a smooth loop of length ` > 0. We give an explicit computation
for the eigenvalues of the intrinsic Dirac operator D/ on Σ. Consider first the as-
sociated extrinsically defined Dirac operator DΣ using the notation introduced in
Subsection 2.2. Denote by T := R/(`Z) and let γ : T → R2 be an arc-length
parametrization of Σ, which provides a global coordinate of Σ. To be definite, as-
sume that γ(s) runs through Σ in the anti-clockwise direction as s runs from 0 to
`, which amounts to the choice of an orientation. We take (e) with e = τ := γ′

as an orthonormal frame tangent to Σ and denote by ν the outer unit normal. In
addition, let us make an explicit choice of 2 × 2 matrices β1 and β2 satisfying the
Clifford commutation relation: we choose them as the Pauli matrices,

β1 =

(
0 1
1 0

)
, β2 =

(
0 −i
i 0

)
,

then, by setting N := ν1 + iν2 and T := τ1 + iτ2,

β(ν) =

(
0 N

N 0

)
, β(e) =

(
0 T

T 0

)
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Using (11) we realize DΣ as an operator in L2(T,C2): for ψ ∈ C∞(T,C2) one has

DΣψ =
(H1

2
− β(ν)

n−1∑
j=1

β(ej)∇ej

)
ψ =

κ

2
ψ −

(
0 N

N 0

)(
0 T

T 0

)
ψ′.

where κ is the curvature of Σ. The above choice of orientation gives T = iN and

DΣψ =
κ

2
ψ + i

(
1 0
0 −1

)
ψ′.

Consider the function K : R→ R given by

K(s) :=
1

2

∫ s

0

κ(t) dt.

Using the well-known identity ∫ `

0

κ(t) dt = 2π

we conclude that K(·+ `) = π +K. Hence, using the unitary transform

U : L2((0, `),C2)φ 7→
(
eiK 0
0 e−iK

)
φ ∈ L2(T,C2)

we rewrite

U−1DΣUφ = i

(
1 0
0 −1

)
φ′,

and remark that Uφ ∈ C∞(T,C2) if and only if φ extends to a function from
C∞(R,C2) with φ(·+ `) = −φ.

It follows that DΣ is unitarily equivalent to D⊕ (−D), where D is the operator
φ→ −iφ′ on (0, `) with the antiperiodic boundary condition φ(`) = −φ(0), and one
easily shows that the eigenvalues of D are (2r − 1)π/`, r ∈ Z. In addition, as the
dimension n = 2 is even, the operator DΣ is also unitarily equivalent to D/ ⊕ (−D/ ),
which means that D/ has the same eigenvalues as D.
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an infinite mass limit. J. Éc. polytech. Math. 6 (2019) 329–365.

[2] N. Arrizabalaga, L. Le Treust, N. Raymond: On the MIT bag model in the
non-relativistic limit. Comm. Math. Phys. 354 (2017) 641–669.

[3] C. Bär, W. Ballmann: Guide to boundary value problems for Dirac-type op-
erators. In W. Ballmann et al. (Eds.): Arbeitstagung Bonn 2013. Progress in
Mathematics, Vol. 319, Birkhäuser, 2016, pp. 43–80.

[4] C. Bär, W. Ballmann: Boundary value problems for elliptic differential op-
erators of first order. H.-D. Cao, S.-T. Yau (Eds.): Algebra and Geometry:
In Memory of C. C. Hsiung (Surveys in Differential Geometry, vol. 17, Intl.
Press, 2012), pp. 1–78.

[5] J.-M. Barbaroux, H. D. Cornean, L. Le Treust, E. Stockmeyer: Resolvent
convergence to Dirac operators on planar domains. Ann. H. Poincaré 20 (2019)
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gaps. Application to Dirac operators. J. Funct. Anal. 174 (2000) 208–226.

[10] L. Erdös, J. P. Solovej: The kernel of Dirac operators on S3 and R3. Rev.
Math. Phys. 13 (2001) 1247–1280.

[11] T. Friedrich: Dirac operators in Riemannian geometry. Graduate Studies in
Mathematics, vol. 25, AMS, Providence, Rhode Island, 2000.

[12] N. Ginoux: The Dirac spectrum. Lecture Notes in Mathematics, vol. 1976,
Springer-Verlag, Berlin, 2009.

[13] O. Hijazi, S. Montiel, X. Zhang: Dirac operator on embedded hypersurfaces.
Math. Res. Lett. 8 (2001) 195–208.

[14] M. Holzmann, T. Ourmières-Bonafos, K. Pankrashkin: Dirac operators with
Lorentz scalar shell interactions. Rev. Math. Phys. 30 (2018) 1850013.

[15] T. Kato: Perturbation theory for linear operators. 2nd edition. Springer, 1980.

[16] A. Lichnerowicz: Spineurs harmoniques. C. R. Acad. Sci. Paris Sér. A 257
7–9.

[17] J. Lott: Collapsing and Dirac-type operators. Geom. Ded. 91 (2002) 175–196.

[18] M. Reed, B. Simon: Methods of modern mathematical physics. I: Functional
analysis. Academic Press, 1972.

51



[19] M. Reed, B. Simon: Methods of modern mathematical physics. IV: Analysis
of operators. Academic Press, 1978.

[20] S. Roos: The Dirac operator under collapse to a smooth limit space. Preprint
http://arxiv.org/abs/1802.00630.

[21] E. Schrödinger: Diracsches Elektron im Schwerefeld I. Sitzungsber. Preuss.
Akad. Wiss., Phys.-Math. Kl. (1932) 105–128.

[22] B. Simon: A canonical decomposition for quadratic forms with applications to
monotone convergence theorems. J. Funct. Anal. 28 (1978) 377–385.

[23] E. Stockmayer, S. Vugalter: Infinite mass boundary conditions for Dirac op-
erators. J. Spect. Theory 9 (2019) 569–600.

[24] B. Thaller: The Dirac equation. Texts and Monographs in Physics. Springer-
Verlag, Berlin, 1992.

[25] J. Weidmann: Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen ellip-
tischer Differentialoperatoren vom Gebiet. Math. Scand. 54 (1984) 51–69.

[26] B. de Wit, J. Smith: Field theory in particle physics. Volume 1. North-Holland,
Amsterdam etc., 1986.

52


