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Abstract. We show that if a compact connected n-dimensional manifold M has a con-
formal class containing two non-homothetic metrics g and g̃ = e2ϕg with non-generic
holonomy, then after passing to a finite covering, either n = 4 and (M, g, g̃) is an am-
bikähler manifold, or n ≥ 6 is even and (M, g, g̃) is obtained by the Calabi Ansatz from a
polarized Hodge manifold of dimension n − 2, or both g and g̃ have reducible holonomy,
M is locally diffeomorphic to a product M1×M2×M3, the metrics g and g̃ can be written
as g = g1 + g2 + e−2ϕg3 and g̃ = e2ϕ(g1 + g2) + g3 for some Riemannian metrics gi on Mi,
and ϕ is the pull-back of a non-constant function on M2.

1. Introduction

A connected Riemannian manifold (M, g) of dimension n ≥ 2 has non-generic (or re-
duced) holonomy if the restricted holonomy group Hol0(M, g) of its Levi-Civita connection
is strictly contained in SO(n). The Berger-Simons holonomy theorem roughly says that a
Riemannian manifold with non-generic holonomy is either reducible (i.e. locally isometric
to a Riemannian product), or locally symmetric (i.e. has parallel curvature) or else its
restricted holonomy group is conjugate to one of the groups of the so-called Berger list (see
Section 2 below for details).

The property of having non-generic holonomy is not preserved by conformal changes
of the metric, except for constant (or homothetic) metric changes. Indeed, homothetic
metrics have the same Levi-Civita connections, thus if g has reduced holonomy, λg has
reduced holonomy too, for every positive constant λ.

Besides this trivial example, which will be excluded in the sequel, there are only few in-
stances where a given conformal class on a compact manifold contains two non-homothetic
Riemannian metrics which have both reduced holonomy. One of them was recently con-
sidered in [10], where a classification of compact manifolds carrying two non-homothetic
conformally related Kähler metrics was obtained. The only solutions to this problem are
ambikähler structures (cf. [1]) in dimension 4, or obtained by the so-called Calabi Ansatz,
as S2-bundles over polarized Hodge manifolds in dimensions at least 6 (cf. [10, Thm. 1.1]).

Another class of examples can be constructed on products of three manifolds as follows.
Let (Mi, gi) be Riemannian manifolds for i = 1, 2, 3 and let ϕ be a non-constant smooth
function on M2, identified with a function on M := M1×M2×M3 by pull-back. Then the
Riemannian metrics g := g1 +(g2 +e−2ϕg3) and g̃ := e2ϕ(g1 +g2)+g3 on M are conformally
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related, non-homothetic, and have both reducible holonomy, being product metrics. The
Riemannian manifolds obtained in this way will be called triple warped products in this
article.

Our main result is to show that the above examples exhaust the list of possible con-
formal classes on compact manifolds containing two non-homothetic metrics with reduced
holonomy. More precisely, we show in Theorem 5.1 that if (M, g) is a compact Riemannian
manifold, ϕ ∈ C∞(M) is non-constant and (M, g) and (M, e2ϕg) have both non-generic
holonomy, then either the two metrics are both (locally) isometric to Riemannian product
metrics, or else a finite covering of the manifold is ambikähler or is given by the Calabi
Ansatz. The reducible case is studied further in Theorem 6.3 where we show that every
compact manifold with two conformally related non-homothetic reducible metrics is locally
isometric to a triple warped product.

The proofs go roughly as follows: assume that M is compact, and both (M, g) and (M, g̃)
have non-generic holonomy, with g̃ = e2ϕg for some non-constant smooth function ϕ. If
g and g̃ are both irreducible, then the Berger-Simons theorem shows that either the two
metrics g and g̃ are both Einstein, which is impossible by Corollary 3.2, or one is Kähler
and the other one has reduced holonomy, in which case Theorem 1.3 in [10] applies, or one
of the two metrics, say g, is reducible, and g̃ is Einstein irreducible. In this case (M, g)
has, up to a finite covering, two parallel orthogonal distributions, whose volume forms
define conformal Killing forms ω̃1 and ω̃2 on the irreducible manifold (M, g). Moreover, a
result of Cleyton [5], also proved by Kühnel and Rademacher [8], shows that the conformal
change of the metric only depends on one of the factors. This implies that either ω̃1 or ω̃2

is actually a Killing form on (M, g̃) and one can apply the classification of Killing forms
on manifolds with special holonomy obtained in [2] for locally symmetric spaces, in [12] for
quaternionic-Kähler manifolds, and in [18] for G2 and Spin(7) manifolds.

In the case where both metrics have reducible holonomy, the key ingredient is the clas-
sification of conformal Killing forms on compact Riemannian products [13]. After passing
to a finite covering, one may assume that (M, g) has non-trivial, parallel, oriented dis-
tributions whose volume forms induce conformal Killing forms on (M, g̃). Using a slight
extension of [13, Thm. 2.1], one can show that every conformal Killing form on a reducible
compact Riemannian manifold is a sum of parallel forms, Killing forms which are basic
with respect to the parallel distributions, and Hodge duals of them. By doing this in both
directions, and using some tricky topological arguments, one obtains that one of the ∇g-
parallel distributions of (M, g) is orthogonal to one of the ∇g̃-parallel distributions (M, g̃),
and the conformal change factor is constant in the direction of these two distributions,
which eventually gives the desired form of the metric.

2. Holonomy issues

Since the terminology about holonomy groups is slightly confusing, let us start with
giving some precise definitions.
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Let (Mn, g) be a connected Riemannian manifold with Levi-Civita connection ∇g. For
every x ∈ M and orthonormal frame u : Rn → TxM , the holonomy group Holu(M, g) is
the subgroup of O(n) defined by Holu(M, g) := Ad−1u (Holx(∇g)), where Holx(∇g) is the
holonomy group of ∇g at x and Adu : O(n)→ Iso(TxM) is defined by

Adu(A) := u ◦ A ◦ u−1, ∀ A ∈ O(n).

Since all holonomy groups are conjugated, we will simply write Hol(M, g) ⊂ O(n) by
choosing one fixed frame u, being understood that Hol(M, g) is only defined up to conju-
gation (of course all statements below are invariant under conjugation).

Definition 2.1. 1. The restricted holonomy group Hol0(M, g) ⊂ SO(n) is the connected
component of the identity in Hol(M, g).

2. The metric g has reduced holonomy if its restricted holonomy group Hol0(M, g) is
non-generic, i.e. strictly contained in SO(n).

3. The metric g has reducible holonomy if the standard representation of Hol0(M, g) on
Rn is reducible.

Note that if (M̂, ĝ) denotes the universal cover of (M, g), then Hol0(M, g) = Hol(M̂, ĝ).

We now introduce three disjoint classes of Riemannian manifolds with reduced holonomy
which will be relevant for our study.

Definition 2.2. A connected Riemannian manifold (Mn, g) is called of:

• Type K, if n is even, Hol0(M, g) = U(n/2) ⊂ SO(n) and (M, g) is not locally
symmetric.
• Type E, if (M, g) is locally symmetric, irreducible, with non-constant sectional cur-

vature, or if its restricted holonomy group Hol0(M, g) is (conjugated to) one of the
following subgroups of SO(n): SU(n/2) for n even, Sp(n/4) for n multiple of 4,
Sp(n/4)Sp(1) for n ≥ 8 and multiple of 4, G2 for n = 7 or Spin(7) for n = 8.
• Type P, if the metric g has reducible holonomy.

The terminology is justified by the fact that Riemannian manifolds of type K are (locally)
Kähler, those of type E are Einstein, and those of type P are (locally) Riemannian products.

An immediate consequence of the Berger-Simons holonomy theorem [4, p. 300] is that
(M, g) has reduced holonomy if and only if it is of one of the three types above.

For later use, we now prove the following rather folklorical result:

Lemma 2.3. Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 2.

(i) If n = 2m and Hol0(M, g) = U(m) then either (M, g) or a double covering of it has
full holonomy equal to U(m).

(ii) If n = 4q and Hol0(M, g) = Sp(q)Sp(1), then either (M, g) or a double covering of
it has full holonomy equal to Sp(q)Sp(1).

(iii) If Hol0(M, g) is reducible, then a finite covering of (M, g) has a non-trivial parallel
distribution.
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Proof. (i) The universal cover (M̂, ĝ) of (M, g) has holonomy U(m). The fundamental

group π1(M) acts on (M̂, ĝ) by isometries. Since the standard representation of U(m)
on Λ2(R2m) has exactly one trivial summand (spanned by the fundamental 2-form), it

follows that every parallel 2-form on (M̂, ĝ) is a multiple of the Kähler form Ω̂ ∈ Ω2M .
Consequently, there exists a group morphism ε : π1(M) → Z/2 such that for every γ ∈
π1(M) we have γ∗Ω̂ = ε(γ)Ω̂. Then M̂/ ker(ε) has full holonomy U(m) and is either equal
to M , if ε is trivial, or to a two-sheeted covering of M , otherwise.

(ii) The proof is similar, and follows from the fact that the standard representation of
Sp(q)Sp(1) on Λ4(R4q) has exactly one trivial summand, spanned by the so-called Kraines
form, whose stabilizer in SO(4q) is Sp(q)Sp(1).

(iii) If (M, g) is flat, by Bieberbach’s theorem it is finitely covered by a flat torus (which
has parallel distributions of any rank). We assume for the rest of the proof that (M, g) is

not flat. The universal cover (M̂, ĝ) of (M, g) has reducible holonomy, so by [7, Theorem

IV.5.4], the tangent bundle of M̂ splits in an orthogonal direct sum TM̂ = T0⊕ . . .⊕Tk of

parallel sub-bundles and the holonomy group of (M̂, ĝ) satisfies Hol(M̂, ĝ) = H1× . . .×Hk,
where for every i, j ≥ 1 with j 6= i, Hi acts irreducibly on Ti and trivially on Tj (T0 being
the flat component). Moreover this decomposition is unique up to a permutation of the
set {1, . . . , k} (such permutations may occur if some of the Hi-representations on Ti are
isomorphic). Note that T0 may or may not be reduced to 0, but by our non-flatness
assumption, there are at least two non-trivial summands Ti in the above decomposition.

The elements of the fundamental group π1(M) act on (M̂, ĝ) by isometries, so there exists
a group morphism σ : π1(M)→ Sk such that γ∗(Ti) = Tσ(γ)(i) for every γ ∈ π1(M). Every

γ ∈ ker(σ) preserves the decomposition TM̂ = T0 ⊕ . . .⊕ Tk, so the parallel distributions

Ti define parallel distributions on (M̂, ĝ)/ ker(σ), which is a covering of (M, g) with finite
deck transformation group π1(M)/ ker(σ), isomorphic to a subgroup of Sk. �

3. Conformal Killing vector fields

Let (M, g) be a connected Riemannian manifold of dimension n. A vector field ξ on M
is called conformal Killing if the trace-free part (Lξg)0 of the Lie derivative Lξg of g along
ξ vanishes, or equivalently, if Lξg = f g for some function f , depending on ξ and g. This
condition is clearly independent on conformal changes of the metric. A vector field ξ is
called Killing with respect to the Riemannian metric g if Lξg = 0.

The following result although not explicitely stated, is due to Lichnerowicz [9, §85],
Obata [16], Nagano and Yano [14, 15], cf. also [6, Prop. 2.2] for a short proof:

Proposition 3.1. Assume that (Mn, g) is a compact oriented Einstein manifold carrying
a conformal vector field which is not Killing. Then (M, g) is, up to constant rescaling,
isometric to the round sphere Sn.
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Corollary 3.2. Assume that Mn (n ≥ 2) is a compact manifold carrying two conformally
related metrics g and g̃ = e2ϕg which are both Einstein. Then, either ϕ is constant (i.e.
the two metrics are homothetic), or (M, g) is homothetic to the round sphere Sn.

Proof. The formula relating the trace-free Ricci tensors Ricg0 and Ricg̃0 of g and g̃ reads (cf.
[4, p. 59 e)]):

(1) Ricg̃0 = Ricg0 − (n− 2)(∇gdϕ− dϕ⊗ dϕ)− n− 2

n
(∆gϕ+ |dϕ|2g)g.

Since g and g̃ are both Einstein, this gives

∇gdϕ− dϕ⊗ dϕ = f g, where f := − 1

n
(∆gϕ+ |dϕ|2g).

This relation can be equivalently written

(2) ∇g(e−ϕdϕ) = (e−ϕf) g.

Since for every 1-form α, the symmetric part of ∇gα is equal to 1
2
Lα]g, (2) shows that the

metric dual ξ of the 1-form e−ϕdϕ is conformal Killing. By Proposition 3.1, either (M, g) is
homothetic to Sn, or ξ is Killing. In the latter case, we get e−ϕf = 0, thus ∆gϕ+ |dϕ|2g = 0,
which shows that dϕ = 0 by integrating over M . �

For later use, we state here the following similar result:

Lemma 3.3. Let (Mn, g) (n ≥ 2) be a compact Riemannian manifold carrying a non-
trivial parallel vector field ξ. If the metric g̃ := e2ϕg on M is Einstein for some smooth
function ϕ, then ϕ is constant.

Proof. By replacing M with a double cover if necessary, we may assume that it is oriented.
The vector field ξ is conformal Killing with respect to g̃, so either (M, g̃) is homothetic to
the standard sphere, or ξ is Killing with respect to g̃. The former case is impossible since
g(ξ, ·) is a harmonic 1-form on (M, g), so the first Betti number of M is non-vanishing.
Consequently 0 = Lξg̃ = 2ξ(ϕ)e2ϕg, showing that ξ(ϕ) = 0. Denoting by η := dϕ] the
dual vector field of dϕ with respect to g, we have

∇g
ξη = ∇g

ξη −∇
g
ηξ = Lξη = (Lξdϕ)] = 0,

thus showing that

(3) ∇g
ξdϕ = 0 and dϕ(ξ) = 0.

We denote by Scalg̃ and Scalg the scalar curvatures of (M, g̃) and (M, g) respectively.

Since Ricg0 = Ricg − 1
n
Scalg g, and Ricg̃0 = 0, we obtain from (1):

(4) 0 = Ricg − 1

n
Scalg g − (n− 2)(∇gdϕ− dϕ⊗ dϕ)− n− 2

n
(∆gϕ+ |dϕ|2g) g.

Plugging ξ into this formula and using (3) together with the fact that Ric(ξ) = 0, yields

(5) Scalg = −(n− 2)(∆gϕ+ |dϕ|2g).
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On the other hand, the scalar curvatures of g and g̃ are related by (cf. [4, p. 59 f)]):

(6) e2ϕScalg̃ = Scalg + 2(n− 1)∆gϕ− (n− 2)(n− 1)|dϕ|2g,
whence taking (5) into account:

(7) e2ϕScalg̃ = n(∆gϕ− (n− 2)|dϕ|2g).

This formula shows that the constant Scalg̃ is non-negative at a point where ϕ attains its
maximum, and non-positive at a point where ϕ attains its minimum. Thus Scalg̃ = 0, so

(8) ∆gϕ = (n− 2)|dϕ|2g.
Integrating this equation over M with respect to the volume form dµg we obtain

0 =

∫
M

∆gϕ dµg = (n− 2)

∫
M

|dϕ|2g dµg,

thus proving that ϕ is constant on M if n ≥ 3. The same conclusion holds for n = 2, since
in this case (8) shows directly that ϕ is harmonic, thus constant. �

4. Conformal Killing forms

In this section we review some classification results about Killing forms on manifolds
with reduced holonomy, which will be crucial for the proof of Theorems 5.1 and 6.3.

Definition 4.1. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇g. A
conformal Killing (or twistor) form on (M, g) is a p-form ψ ∈ Γ(ΛpM) which satisfies

(9) ∇g
Xψ = 1

p+1
Xydψ − 1

n−p+1
X[ ∧ δgψ,

for all vector fields X, where X[ := g(X, ·) denotes the metric dual of X and δg denotes the
co-differential defined by the metric g. If ψ is in addition co-closed, it is called a Killing
p-form. This is equivalent to ∇gψ ∈ Γ(Λp+1M) or to Xy∇g

Xψ = 0 for any vector field X.

Conformal Killing forms have the following well known conformal invariance property:

Lemma 4.2 (cf. e.g. [3]). Let g and g̃ := e2ϕg be two conformally related metrics on a

manifold M . Then ψ is a conformal Killing p-form on (M, g) if and only if ψ̃ := e(p+1)ϕψ
is a conformal Killing p-form on (M, g̃).

Proof. We first compute

(10) dψ̃ = e(p+1)ϕ (dψ + (p+ 1)dϕ ∧ ψ) .

The Levi-Civita connections ∇g and ∇g̃ of g and g̃ are related by

∇g̃
XY = ∇g

XY + dϕ(X)Y + dϕ(Y )X − g(X, Y ) gradgϕ

where gradgϕ is the gradient of ϕ with respect to g (cf. [4, Th. 1.159]). This immediately
shows that for every p-form ψ and tangent vector X, the following relation holds:

∇g̃
Xψ = ∇g

Xψ − p dϕ(X)ψ +X[ ∧ (gradgϕyψ)− dϕ ∧ (Xyψ),
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whence

(11) ∇g̃
Xψ̃ = e(p+1)ϕ

(
∇g
Xψ + dϕ(X)ψ +X[ ∧ (gradgϕyψ)− dϕ ∧ (Xyψ)

)
,

If {ei} is a local orthonormal frame with respect to g, then {ẽi := e−ϕei} is a local
orthonormal frame with respect to g̃, and thus the co-differentials of g and g̃ are related
by

(12) δg̃ψ̃ = −
n∑
i=1

ẽiy∇g̃
ei
ψ̃ = e(p−1)ϕ

(
δgψ − (n− p+ 1)gradgϕyψ

)
.

Using (10), (11) and (12), together with the fact that the metric dual of X with respect
to g̃ is X[g̃ = e2ϕX[, we obtain

∇g̃
Xψ̃ − 1

p+1
Xydψ̃ + 1

n−p+1
X[g̃ ∧ δg̃ψ̃ = e(p+1)ϕ

(
∇g
Xψ − 1

p+1
Xydψ + 1

n−p+1
X[ ∧ δgψ

)
,

thus proving the claim. �

Assume that M is oriented, and denote by ∗ the Hodge operator. From the general
identities

(13) ∗(X[ ∧ ψ) = (−1)pXy ∗ ψ, ∗(∗ψ) = (−1)p(n−p)ψ, δgψ = (−1)n(p−1)−1 ∗ d ∗ ψ
which hold for any vector field X and any p-form ψ on M , we deduce that the Hodge op-
erator maps conformal Killing p–forms into conformal Killing (n−p)–forms. In particular,
if ψ is a closed conformal Killing form, ∗ψ is a Killing form.

Killing forms on compact manifolds with reduced holonomy have been recently studied
in a series of papers [2], [11], [12], [13], [17] and [18]. The following proposition summarizes
some of the results of these papers.

Proposition 4.3. A Killing form ψ of degree p ≥ 2 on a compact Riemannian manifold
(M, g) is automatically ∇g-parallel provided that one of the following conditions holds:

(i) (M, g) is Kähler;
(ii) (M, g) is quaternion-Kähler;

(iii) (M, g) has holonomy contained in G2 for n = 7 or Spin(7) for n = 8;
(iv) (M, g) is locally symmetric, irreducible and has non-constant sectional curvature.

Proof. The first three assertions follow from [2, Lemma 4.2], [12, Thm. 6.1] and [18,
Thm. 1.1 and Thm. 1.2] respectively. The proof of (iv) is implicitly contained in [2,
Thm. 1.1], where one further assumes that (M, g) is a simply connected symmetric space
of compact type. This assumption is in fact superfluous in the irreducible case, since [2,
Lemma 4.3] actually shows that if an irreducible locally symmetric space (M, g) carries
a non-parallel Killing p-form with p ≥ 2, then its Weyl tensor vanishes identically, thus
(M, g) has constant sectional curvature (being Einstein). �

We finally consider one further situation where conformal Killing forms can be classified.
Assume that (M, g) is a Riemannian manifold whose tangent bundle decomposes in an
orthogonal direct sum TM = T1 ⊕ T2 of ∇g-parallel distributions. A p-form ψ on M is
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called basic with respect to T1 if Xyψ = 0 and ∇g
Xψ=0 for every X ∈ T2. Of course, by

the local de Rham decomposition theorem, every point has a neighbourhood isometric to
a Riemannian product, and basic forms are just pull-backs of forms on the factors. We
then have

Proposition 4.4. If (M, g) is a compact oriented Riemannian manifold whose tangent
bundle has an orthogonal parallel splitting TM = T1 ⊕ T2, then every conformal Killing
form on (M, g) is a sum of parallel forms, basic Killing forms with respect to T1 or T2, and
Hodge duals of them.

Proof. If (M, g) is a Riemannian product, this is exactly the statement of [13, Thm. 2.1].
Although the situation needed here is slightly more general, the same proof continues to
hold. One defines the partial exterior derivatives d1, d2 and co-differentials δ1, δ2 by the
same formulas as in the Riemannian product case using local orthonormal bases of Ti, and
one easily checks using Stokes’ formula that δi is still the formal adjoint of di for i = 1, 2.
The rest of the proof from [13, Thm. 2.1] is unchanged. �

5. Conformally related metrics with reduced holonomy

We are now in position to state our first main result:

Theorem 5.1. Let Mn be a compact connected manifold carrying two conformally related
non-homothetic Riemannian metrics g and g̃ such that (M, g) and (M, g̃) have reduced
holonomy. Then either g and g̃ have both reducible holonomy, or up to a finite covering
(M, g, g̃) is an ambikähler structure for n = 4 or is obtained from the Calabi Ansatz for
n ≥ 6.

Proof. By assumption we have g̃ = e2ϕg for some non-constant function ϕ on M .

Assume first that (M, g̃) is of type K. Lemma 2.3 (i) shows that after replacing M
with a double covering if necessary, there exists a complex structure J on M such that
(M, g̃, J) is Kähler. Then (M, g, J) is a globally conformally Kähler manifold with non-
generic holonomy. Using the classification of the possible holonomy groups of compact
locally conformally Kähler manifolds [10, Theorem 1.3] we see that up to a finite covering,
either n = 4 and (M, g, g̃) is ambikähler in the sense of [1], or n ≥ 6 and (M, g, g̃) is
obtained from the Calabi Ansatz, or (M, g) is obtained from the construction described
in [10, Theorem 4.6]. In the latter case, the universal covering of (M, g) is isometric to
(R2 ×N, ds2 + dt2 + e2c(t)gN) for some Kähler manifold (N, gN) and some real function c,
whose differential is equal to the Lee form −dϕ of (M, g, J). Up to a constant factor, we
thus have

g̃ = e2ϕg = e−2c(t)g = e−2c(t)(ds2 + dt2) + gN ,

so both g and g̃ have reducible holonomy. This contradicts the fact that (M, g̃) is of type
K, and thus has irreducible holonomy. By symmetry, the same argument applies if (M, g)
is of type K.

If g and g̃ are of type P, there is nothing to prove.
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If g and g̃ are of type E, then they are both Einstein and not locally isometric to the
round sphere (since Hol(Sn) = SO(n)). By Corollary 3.2, g and g̃ are homothetic, which
contradicts our assumption.

By symmetry, it remains to study one last case: g is of type P and g̃ is of type E. Lemma
2.3 (iii) shows that, after replacing M with a finite covering if necessary, we may assume
that (M, g) is oriented, and the tangent bundle of M has non-trivial decomposition TM =
T1 ⊕ T2 where T1 and T2 are oriented, mutually orthogonal, and ∇g-parallel distributions.

Lemma 5.2. The ranks of T1 and T2 are larger than 1.

Proof. Assume for instance that rk(T1) = 1. Then T1 is a trivial line bundle (being ori-
ented), and thus has a section ξ of unit length. Since T1 is preserved by ∇g, we have
∇gξ = 0, so Lemma 3.3 shows that the conformal factor e2ϕ must be constant, which
contradicts the assumption that the metrics g and g̃ are non-homothetic. �

Lemma 5.3. The conformal factor ϕ is constant along T1 or T2.

Proof. Let (M̂, ĝ) be the universal cover of (M, g). The de Rham decomposition theorem

shows that the universal cover (M̂, ĝ) of (M, g) is isometric to a product of complete

Riemannian manifolds (M̂1, ĝ1) × (M̂2, ĝ2) such that the lift of Ti to M̂ is equal to the

pull-back of TM̂i to M̂ . By assumption, the pull-back ϕ̂ of ϕ to M̂ is bounded, and
e2ϕ̂ĝ is Einstein. Using [5, Thm. 2] (cf. also [8, Corollary 3.6]) we deduce that either ϕ̂

only depends on one factor, or (M̂i, ĝi) are isometric to Euclidean spaces and e−ϕ̂(x,y) =
‖x‖2 + ‖y‖2 + c for some positive constant c. This last case, however, is impossible since
ϕ̂ is bounded.

�

We may thus assume from now on that X(ϕ) = 0 for every vector X tangent to T2. This
is equivalent to

(14) dϕ ∧ ω1 = 0,

where ω1 denotes the volume form of the distribution T1. Since ω1 is ∇g-parallel, Lemma
4.2 shows that ω̃1 := e(p+1)ϕω1 is a conformal Killing p-form on (M, g̃), where p denotes
the rank of T1. Moreover, by (14)

dω̃1 = (p+ 1)e(p+1)ϕdϕ ∧ ω1 = 0.

Consequently, if ∗g̃ denotes the Hodge operator on (M, g̃), we deduce that ω̃2 := ∗g̃ω̃1 is a
Killing form on (M, g̃). Moreover, by Lemma 5.2, we have deg(ω̃2) ≥ 2.

We claim that ω̃2 is ∇g̃-parallel. Since (M, g̃) is of type E, we distinguish the following
cases:

• If Hol0(M, g̃) is conjugated to SU(n/2) for n even, or to Sp(n/4) for n multiple
of 4, then (M, g̃) is irreducible Ricci-flat, so the Cheeger-Gromoll theorem [4, Cor.
6.67] shows that a finite covering of (M, g̃) is Kähler, and the claim follows from
Proposition 4.3 (i).
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• If Hol0(M, g̃) is conjugated to G2 for n = 7 or to Spin(7) for n = 8, then (M, g̃)
is irreducible Ricci-flat, so the Cheeger-Gromoll theorem again shows that a finite
covering of (M, g̃) has full holonomy G2 or Spin(7) and the claim follows from
Proposition 4.3 (iii).
• If Hol0(M, g̃) is conjugated to Sp(n/4)Sp(1) for n ≥ 8 and multiple of 4, then

Lemma 2.3 (ii) shows that either (M, g̃), or a double covering of it, is quaternion-
Kähler, so the claim follows from from Proposition 4.3 (ii).
• If (M, g̃) is locally symmetric, irreducible, with non-constant sectional curvature,

then the claim follows from from Proposition 4.3 (iv).

We thus have shown that ω̃2 is ∇g̃-parallel. By Hodge duality, ω̃1 is also ∇g̃-parallel, in
particular |ω̃1|g̃ =: c is constant. On the other hand, ω1 has norm 1 with respect to g,
whence

c = |ω̃1|g̃ = e−pϕ|ω̃1|g = e−pϕ|e(p+1)ϕω1|g = eϕ|ω1|g = eϕ,

thus showing that ϕ is constant, contradicting the fact that g and g̃ are non-homothetic.
This concludes the proof of the theorem. �

6. Triple warped products

In this last section we treat the case, left open in Theorem 5.1, of conformally related non-
homothetic metrics with reducible holonomy. With start with some necessary definitions.

Definition 6.1. Let (Mi, gi), i ∈ {1, 2, 3} be three connected Riemannian manifolds of
positive dimension and ϕ a (non-constant) function on M2. The triple warped product
associated to this data is the Riemannian manifold M := M1×M2×M3 endowed with the
metric g := g1 + g2 + e−2ϕg3. The function ϕ is called warping function.

A triple warped product manifold is thus a Riemannian product, with one factor being
itself a warped product. The nice feature of triple warped product metrics is, as noticed
in the introduction, that in their conformal class there is a second (non-homothetic) triple
warped product metric:

g̃ := e2ϕg = e2ϕ(g1 + g2) + g3 = g3 + e2ϕg2 + e2ϕg1,

which is the triple warped product metric associated to the Riemannian manifolds (M3, g3),
(M2, e

2ϕg2), (M1, g1), and to the warping function −ϕ.

By an abuse of language, we will use the same terminology for the following slightly
more general notion:

Definition 6.2. A Riemannian metric g on a manifold M is called a triple warped product
metric if there exist:

• a Riemannian metric g′ on M ;
• a decomposition of TM = T1 ⊕ T2 ⊕ T3 as a direct sum of three distributions which

are mutually orthogonal with respect to g′ and ∇g′-parallel;
• a non-constant function ϕ on M whose differential dϕ vanishes on T1 ⊕ T3 such

that g = g1 + g2 + e−2ϕg3, where gi denotes the restriction of g′ to Ti.
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By the de Rham decomposition theorem, a Riemannian metric g on a manifold M is a
triple warped product metric if and only if the universal cover (M̂, ĝ) is a triple warped
product with warping function invariant by π1(M). By the above remarks, each conformal
class of triple warped product metric contains two reducible Riemannian metrics. The aim
of this section is to show that up to finite coverings, the converse is true in the compact
case:

Theorem 6.3. Let M be a compact manifold carrying two conformally related non-homo-
thetic Riemannian metrics g and g̃ := e2ϕg which have both reducible holonomy. Then up
to a finite covering, g is a triple warped product on M with warping function ϕ.

Proof. Lemma 2.3 (iii) shows that by replacing M with a finite covering if necessary,
there exists a g-orthogonal ∇g-parallel decomposition TM = T1 ⊕ T23 and a g̃-orthogonal
∇g̃-parallel decomposition TM = T12 ⊕ T3 (the notations will start making sense later
on). Moreover, up to a change in notations, we may assume that rk(T1) ≤ rk(T12) and
rk(T1) ≤ rk(T3).

For the moment being, we have no information about the relative position of these
distributions in TM . However, using again the theory of conformal Killing forms, we will
show that in fact T1 is contained either in T12 or in T3.

To see this, let us denote by p the rank of T1, and consider the volume form ψ of T1
defined by g. Since ψ is parallel on (M, g), Lemma 4.2 shows that ψ̃ := e(p+1)ϕψ is a

conformal Killing p-form on the reducible manifold (M, g̃). By Proposition 4.4, ψ̃ can be

written as a sum ψ̃ = ψ̃1 + ψ̃2 + ψ̃3 + ψ̃4 + ψ̃5, where:

• ψ̃1 is a parallel p-form on (M, g̃).

• ψ̃2 is a Killing p-form on (M, g̃) which is basic with respect to T12 and ψ̃3 is a Killing
p-form on (M, g̃) which is basic with respect to T3.

• ψ̃4 is the Hodge dual on (M, g̃) of a Killing (n − p)-form on (M, g̃) which is basic

with respect to T12 and ψ̃5 is the Hodge dual on (M, g̃) of a Killing (n− p)-form on
(M, g̃) which is basic with respect to T3.

From our dimensional assumption, n− p ≥ rk(T12) and n− p ≥ rk(T3), and since every
basic Killing form of maximal degree is automatically closed, thus parallel, we deduce that
ψ̃4 and ψ̃5 are parallel (or vanish identically if the inequalities are strict), so finally ψ̃ is the
sum of parallel and Killing forms on (M, g̃), in particular it is co-closed (i.e. in the kernel
of δg̃).

Using the general formula (12) relating the co-differentials of g and g̃, and the fact that
ψ is parallel on (M, g), we deduce that (gradgϕ)yψ = 0, thus showing that dϕ(X) = 0 for
every X ∈ T1.

Consider now the volume form ω̃ of the distribution T3 with respect to g̃. We denote
by q the rank of T3. Since ω̃ is parallel on (M, g̃), Lemma 4.2 shows that ω := e−(q+1)ϕω̃
is conformal Killing on (M, g). By Proposition 4.4 again, ω can be written as a sum
ω = ω1 + ω2 + ω3 + ω4 + ω5, where:
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• ω1 is a parallel q-form on (M, g).
• ω2 is a Killing q-form on (M, g) which is basic with respect to T1, and ω3 is a Killing
q-form on (M, g) which is basic with respect to T23
• ω4 is the Hodge dual on (M, g) of a Killing (n − q)-form on (M, g) which is basic

with respect to T1, and ω5 is the Hodge dual on (M, g) of a Killing (n− q)-form on
(M, g) which is basic with respect to T23.

Like before, the dimensional assumption p ≤ q and p ≤ n − q show that ω2 and ω4 are
parallel (or vanish identically if the inequalities are strict). We deduce that δgω = δgω5.
Let ω6 be the Killing form on (M, g) which is basic with respect to T23 such that ω5 = ∗gω6.
From (13) we get δgω5 = ω7 ∧ψ, where ω7 is basic with respect to T23 (recall that ψ is the
volume form of T1 with respect to g). On the other hand, from (12) and the fact that ω̃ is
parallel (thus co-closed) on (M, g̃), we get δgω = (n− q + 1)(gradgϕ)yω, so finally

(15) ω7 ∧ ψ = (n− q + 1)(gradgϕ)yω.

Repeating this argument, this time starting with the volume form σ̃ of T12 with respect
to g̃, and denoting by σ := e−(n−q+1)ϕσ̃, we obtain the existence of a form σ7 which is basic
with respect to T23 such that

(16) σ7 ∧ ψ = (q + 1)(gradgϕ)yσ.

We now consider the following closed subsets of M :

M1 := {x ∈M | (gradgϕ)x ∈ T3}, M2 := {x ∈M | (gradgϕ)x ∈ T12},

and

C1 := {x ∈M | (T1)x ⊂ (T3)x}, C2 := {x ∈M | (T1)x ⊂ (T12)x}.

Since (gradgϕ)yω ∈ Λq−1T ∗3 , (gradgϕ)yσ ∈ Λn−q−1T ∗12, and their exterior product van-
ishes by (15) and (16), we deduce that at each point of x ∈ M , either (gradgϕ)xyωx = 0
(i.e. (gradgϕ)x ∈ T12), or (gradgϕ)xyσx = 0 (i.e. (gradgϕ)x ∈ T3). This just means that
M1 ∪M2 = M .

For every x ∈M1 \M2 we have (gradgϕ)x ∈ T3 \ {0}. Using (15) we can write at x:

ω =
dϕ

dϕ(gradgϕ)
∧ (gradgϕ)yω =

dϕ

(n− q + 1)dϕ(gradgϕ)
∧ ω7 ∧ ψ.

As ω is a volume form of T3 and ψ is a volume form of T1, this shows that (T1)x ⊂ (T3)x,
whence M1 \M2 ⊂ C1. Since C1 is closed, we also have

(17) M1 \M2 ⊂ C1.

Similarly, we obtain using (16) that

(18) M2 \M1 ⊂ C2.

Lemma 6.4. The interior of M1 ∩M2 is contained in C1 ∪ C2.
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Proof. For every x ∈ Int(M1 ∩M2) there exists a smooth path c : [0, 1] → M such that
c(0) = x, c([0, 1)) ⊂ Int(M1 ∩M2) and

y := c(1) ∈ (M1 ∩M2) \ Int(M1 ∩M2) ⊂ (M1 \M2) ∪ (M2 \M1) ⊂ C1 ∪ C2.

Now, since dϕ = 0 on M1 ∩M2, the Levi-Civita connections of g and g̃ are the same on
M1 ∩M2, so the parallel transport along c with respect to ∇g coincides with the parallel
transport with respect to ∇g̃. If y ∈ C1, we have by definition (T1)y ⊂ (T3)y and since T1 is
∇g-parallel and T3 is ∇g̃-parallel, we obtain that T1 ⊂ T3 at each point c(t), in particular
for t = 0 which shows that x ∈ C1. Similarly, if y ∈ C2 we obtain x ∈ C2, thus proving the
lemma. �

As a consequence of the fact that C1 and C2 are closed, we thus obtain:

(19) Int(M1 ∩M2) ⊂ C1 ∪ C2.

Now, for every closed sets M1 and M2 with M1 ∪M2 = M one has

(M1 \M2) ∪ (M2 \M1) ∪ (Int(M1 ∩M2)) = M.

From (17), (18) and (19) we get C1 ∪C2 = M . On the other hand, C1 is obviously disjoint
from C2, so by the connectedness of M we have C1 = M or C2 = M . Up to a switch
of notations between T3 and T12, we can therefore assume that C1 = ∅ and C2 = M , i.e.
T1 and T3 are orthogonal at each point of M . Moreover, from (17) we get M1 ⊂ M2, i.e.
M2 = M , thus showing that dϕ(X) = 0 for every X ∈ T3.

We now define T2 as the orthogonal complement with respect to g (or g̃) of T1⊕T3. Since
T2 = T⊥1 ∩ T⊥3 is the intersection of two integrable distributions, it is integrable. We have
thus shown that the tangent bundle of M decomposes in a direct sum TM = T1⊕ T2⊕ T3
of integrable, mutually orthogonal distributions, and that the differential of the conformal
factor ϕ vanishes on T1 and T3.

Since T1 and T23 are ∇g-parallel orthogonal distributions, the restrictions g1 and g23 of g
to T1 and T23 are basic with respect to T1 and T23 respectively, and g = g1 + g23. Similarly,
one can write e2ϕg = g̃ = g12 + g3, where g12 and g3 are basic symmetric bilinear forms on
T12 and T3 respectively. We thus get g1 + g23 = e−2ϕ(g12 + g3), which also reads:

g23 − e−2ϕg3 = e−2ϕg12 − g1.
Since the left hand side vanishes on T1 and the right hand side vanishes on T3, we see that
the symmetric tensor g2 := g23 − e−2ϕg3 = e−2ϕg12 − g1 vanishes on T1 ⊕ T3. We thus have
g23 = e−2ϕg3 + g2, whence

(20) g = g1 + g2 + e−2ϕg3,

and in particular gi is a positive definite symmetric bilinear form on Ti for i = 1, 2, 3.

Moreover, the expression g2 = g23 − e−2ϕg3 shows that g2 is constant in the directions
of T1 (in the sense that the Lie derivative of g2 in the direction of vector fields tangent
to T1 vanishes). Similarly, the formula g2 = e−2ϕg12 − g1 shows that g2 is constant in the
directions of T3. Consequently, g2 is basic with respect to T2 and the theorem is proved. �
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