WEYL-EINSTEIN STRUCTURES ON K-CONTACT MANIFOLDS

PAUL GAUDUCHON AND ANDREI MOROIANU

ABSTRACT. We show that a compact K-contact manifold (M, g, ξ) has a closed Weyl-Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki-Einstein.

1. Introduction

K-contact structures — see the definition in Section 3 — can be viewed as the odd-dimensional counterparts of almost $K\ddot{a}hler$ structure, in the same way as Sasakian structures are the odd-dimensional counterparts of $K\ddot{a}hler$ structures. It has been shown in [4], cf. also [1], that compact Einstein K-contact structures are actually Sasakian, hence Sasaki-Einstein. In this note, we consider the more general situation of a compact K-contact manifold (M,g,ξ) carrying in addition a Weyl-Einstein connection D compatible with the conformal class [g], already considered by a number of authors, in particular in [9] and [12]. We show — Theorem 3.2 and Corollary 3.1 below — that g is then Einstein and D is the Levi-Civita connection of an Einstein metric g_0 in the conformal class [g], which is actually equal g up to scaling, except if (M, [g]) is the flat conformal sphere. In all cases, the K-contact structure is Sasaki-Einstein.

2. Conformal Killing vector fields

Let (M,c) be a (positive definite) conformal manifold of dimension n. A vector field ξ on M is called conformal Killing with respect to c if it preserves c, meaning that for any metric g in c, the trace-free part $(\mathcal{L}_{\xi}g)_0$ of the Lie derivative $\mathcal{L}_{\xi}g$ of g along ξ is identically zero, hence that $\mathcal{L}_{\xi}g = f g$, for some function f, depending on ξ and g, and it is then easily checked that $f = -\frac{2\delta^g \eta_g}{n}$, where η_g denotes the 1-form dual to ξ and $\delta^g \eta_g$ the co-differential of η_g with respect to g. In particular, a conformal Killing vector field ξ on M is Killing with respect to some metric g in c if and only if $\delta^g \eta_g = 0$. In this section, we present a number of facts concerning conformal Killing vector fields for further use in this note.

Proposition 2.1. Let (M,g) be a connected compact oriented Riemannian manifold of dimension $n, n \geq 2$, carrying a non-trivial parallel vector field T. Let ξ be any conformal Killing vector field on M with respect to the conformal class [g] of g. Then, ξ is Killing with respect to g; moreover, it commutes with T and the inner product $a := g(\xi, T)$ is constant.

Proof. Denote by $\eta = \xi^{\flat}$ the 1-form dual to ξ and by $\delta \eta$ the co-differential of η with respect to g; then, ξ is Killing if and only if $\delta \eta = 0$. Denote by ∇ the Levi-Civita connection of g

and by \mathcal{L}_T the Lie derivative along T; then, $\nabla_T \xi = [T, \xi] = \mathcal{L}_T \xi$ is conformal Killing, and we have:

(2.1)
$$\delta(\nabla_T \eta) = \delta(\mathcal{L}_T \eta) = \mathcal{L}_T(\delta \eta) = T(\delta \eta).$$

Since T is non-trivial, we may assume $|T| \equiv 1$. Denote $a = g(\xi, T) = \eta(T)$. Since ξ is conformal Killing, $\nabla \xi = A - \frac{\delta \eta}{n}$ Id, where A is skew-symmetric and Id denotes the identity; for any vector field X we then have: $da(X) = g(\nabla_X \xi, T) = -g(\nabla_T \xi, X) - \frac{2\delta \eta}{n} g(X, T)$. We thus get:

(2.2)
$$\nabla_T \eta = -\mathrm{d}a - \frac{2\delta\eta}{n}\,\theta,$$

where $\theta = T^{\flat}$ denotes the 1-form dual to T. By evaluating both members of (2.2) on T, we get:

$$(2.3) \delta \eta = -n \, \mathrm{d}a(T),$$

whereas, by considering their co-differential and by using (2.1), we get:

(2.4)
$$\Delta a = -\frac{(n-2)}{n} T(\delta \eta),$$

where $\Delta a = \delta da$ denotes the Laplacian of a. Denote by v_g the volume form determined by g and the chosen orientation; from (2.3) and (2.4), we then infer:

$$\int_{M} a \, \Delta a \, v_g = -\frac{(n-2)}{n} \int_{M} aT(\delta \eta) \, v_g = \frac{(n-2)}{n} \int_{M} da(T) \, \delta \eta \, v_g = -\frac{(n-2)}{n^2} \int_{M} (\delta \eta)^2 \, v_g,$$

hence

(2.5)
$$\int_{M} |\mathrm{d}a|^{2} v_{g} = \int_{M} a \, \Delta a \, v_{g} = -\frac{(n-2)}{n^{2}} \int_{M} (\delta \eta)^{2} v_{g}.$$

This readily implies that da = 0 and, either by (2.5) if n > 2 or by (2.3) if n = 2, that $\delta \eta = 0$, i.e. that ξ is Killing. Finally, by (2.2) we infer that $\nabla_T \xi = [T, \xi] = 0$.

Remark 2.1. Proposition 2.1 can be viewed as a particular case of a more general statement (Theorem 2.1 in [13]) concerning conformal Killing forms on Riemannian products.

The following well-known Proposition 2.2 was first established by T. Nagano in [14] and T. Nagano–K. Yano in [15] in the more general setting of complete Einstein manifolds. The sketch of proof given here for the convenience of the reader follows M. Obata's treatment in [16], cf. also [17] for a more general discussion.

Proposition 2.2. Assume that (M^n, g) is a compact oriented Einstein manifold carrying a conformal Killing vector field which is not Killing. Then (M, g) is, up to constant rescaling, isometric to the round sphere \mathbb{S}^n .

Proof. We first recall the following lemma, due to A. Lichnerowicz [11, §85], cf. also Theorems 3 and 4 in [16].

Lemma 2.1. Let (M, g) be a connected compact Einstein manifold of dimension $n \geq 2$ of positive scalar curvature Scal (recall that Scal is automatically constant for $n \geq 3$ and constant by convention for n = 2). Denote by λ_1 the smallest positive eigenvalue of the Riemannian Laplacian acting on functions. Then,

(2.6)
$$\lambda_1 \ge \frac{\operatorname{Scal}}{(n-1)},$$

with equality if and only if $\operatorname{grad}_g f$, the gradient of f with respect to g, is a conformal Killing vector field for each function f in the eigenspace of λ_1 .

Proof. As before denote by ∇ the Levi-Civita connection of the metric g and denote by Ric the Ricci tensor of g. For any 1-form η on M, denote by $\xi := \eta^{\sharp}$ the vector field dual to η with respect to g. The covariant derivative $\nabla \eta$ of η then splits as follows:

(2.7)
$$\nabla \eta = \frac{1}{2} \left(\mathcal{L}_{\xi} g \right)_0 + \frac{1}{2} d\eta - \frac{\delta \eta}{n} g,$$

where $(\mathcal{L}_{\xi}g)_0$ denotes the trace-free part of $\mathcal{L}_{\xi}g$. By using (2.7) the Bochner identity

(2.8)
$$\Delta \eta = \delta \nabla \eta + \text{Ric}(\xi)$$

can be rewritten as

(2.9)
$$\operatorname{Ric}(\xi) = -\frac{1}{2}\delta \left(\mathcal{L}_{\xi}g\right)_{0} + \frac{(n-1)}{n}\,\mathrm{d}\delta\eta + \frac{1}{2}\delta\mathrm{d}\eta.$$

Let λ be any positive eigenvalue of Δ and f any non-zero element of the corresponding eigenspace, so that $\Delta f = \lambda f$. By choosing $\eta := \mathrm{d}f$, so that $\xi = \mathrm{grad}_g f$, and substituting $\mathrm{Ric} = \frac{\mathrm{Scal}}{n} g$ in (2.9), we get

(2.10)
$$\lambda \, \mathrm{d}f = \Delta \mathrm{d}f = \frac{\mathrm{Scal}}{(n-1)} \, \mathrm{d}f + \frac{n}{2(n-1)} \, \delta \left(\mathcal{L}_{\xi} g \right)_{0}.$$

By contracting with df and integrating over M, we obtain

(2.11)
$$\left(\lambda - \frac{\operatorname{Scal}}{(n-1)}\right) \int_{M} |\mathrm{d}f|^{2} v_{g} = \frac{n}{4(n-1)} \int_{M} |\left(\mathcal{L}_{\xi}g\right)_{0}|^{2} v_{g} \ge 0,$$

so that $\lambda \geq \frac{\text{Scal}}{(n-1)}$, with equality if and only if $(\mathcal{L}_{\xi}g)_0 = 0$, hence if and only if $\xi = \text{grad}_g f$ is conformal Killing.

The proof of Proposition 2.2 goes as follows. First observe that we may assume Scal > 0, as any conformal Killing vector field is zero if Scal < 0 or parallel, hence Killing, if Scal = 0. Let ξ be any conformal Killing vector field on M, with dual 1-form η . From (2.9), we get:

(2.12)
$$\operatorname{Ric}(\xi) = \frac{\operatorname{Scal}}{n} \eta = \frac{(n-1)}{n} d\delta \eta + \frac{1}{2} \delta d\eta,$$

hence

(2.13)
$$\Delta(\delta \eta) = \frac{\operatorname{Scal}}{(n-1)} \, \delta \eta.$$

From Lemma 2.1, we then infer that $\operatorname{grad}_g(\delta\eta)$ is conformal Killing. By Theorem 5 in [17], this implies that $\delta\eta$ is constant, hence identically zero, unless (M,g) is isometric to the standard sphere \mathbb{S}^n . If $(M,g) \neq \mathbb{S}^n$, we then have $\delta\eta = 0$, meaning that ξ is Killing. \square

3. Weyl-Einstein connections on K-contact manifolds

Definition 3.1. A K-contact manifold is an oriented Riemannian manifold (M, g) of odd dimension n = 2m+1, endowed with a unit Killing vector field ξ whose covariant derivative $\varphi := \nabla \xi$ satisfies

$$(3.1) \varphi^2 = -\mathrm{Id} + \eta \otimes \xi,$$

where η is the metric dual 1-form of ξ .

Since ξ is Killing, we have $d\eta(X,Y) = 2g(\varphi(X),Y)$ for all vector fields X and Y. The kernel of the 2-form $d\eta$, equal to that of φ , is then spanned by ξ :

(3.2)
$$\ker(\mathrm{d}\eta) = \ker(\varphi) = \mathbb{R}\xi.$$

It follows that the restriction of $d\eta$ to $\mathcal{D} := \ker(\eta)$ is non-degenerate, hence that \mathcal{D} is a contact distribution on M. Moreover, since $\eta(\xi) = 1$ and $\xi d\eta = 0$, ξ is the Reeb vector field of the contact 1-form η .

Denote by R the Riemannian curvature tensor defined by $R_{X,Y} := \nabla_{[X,Y]} - [\nabla_X, \nabla_Y]$. From (3.1) we easily infer:

Lemma 3.1. For any K-contact structure, we have:

(3.3)
$$R_{\xi,X}\xi = X - g(\xi,X)\xi,$$

for any vector field X.

Proof. We first recall the general Kostant formula:

(3.4)
$$\nabla_X(\nabla \xi) = \mathbf{R}_{\xi,X},$$

for any vector field X and any Killing vector field ξ , on any Riemannian manifold, cf. [10]. In the current situation, we thus have

$$(3.5) \nabla_X \varphi = \mathbf{R}_{\xi,X},$$

for any vector field X. Since ξ is of norm 1, we infer: $\mathbf{R}_{\xi,X}\xi = \nabla_X(\nabla_\xi\xi) - \nabla_{\nabla_X\xi}\xi = -\nabla_{\nabla_X\xi}\xi = -\varphi^2(X) = X - g(\xi,X)\,\xi$.

Remark 3.1. A K-contact structure (g, ξ) is called a Sasaki structure if

$$(3.6) \qquad (\nabla_X \varphi)(Y) = \eta(Y)X - q(X, Y)\xi,$$

for any vector fields X, Y, or, equivalently in view of (3.5), if

(where the curvature R is viewed as a map from $\Lambda^2 TM$ to itself).

Lemma 3.2 (cf. [3]). Viewed as endomorphism of the tangent bundle via the metric g, the Ricci tensor of any K-contact manifold satisfies

(3.8)
$$\operatorname{Ric}(\xi) = 2m\,\xi.$$

Proof. From (3.5) we get:

$$(3.9) \nabla_{\xi} \varphi = 0,$$

and

(3.10)
$$\delta \varphi = \operatorname{Ric}(\xi)$$

— here $\delta \varphi$ denotes the co-differential of the endomorphism φ and Ric is regarded as a field of endomorphisms of TM — whereas, from (3.1) we readily infer

(3.11)
$$\nabla_X \varphi \circ \varphi + \varphi \circ \nabla_X \varphi = \frac{1}{2} X \, \exists d \eta \otimes \xi + \eta \otimes \varphi(X),$$

hence

(3.12)
$$(\nabla_X \varphi)(\xi) = \mathbf{R}_{\xi, X} \xi = X - \eta(X) \xi,$$

for any vector field X, from which we get

(3.13)
$$Ric(\xi, \xi) = n - 1 = 2m.$$

In view of (3.13) and (3.2), to prove Lemma 3.2 it is sufficient to check that $\varphi(\text{Ric}(\xi)) = 0$, or else, by (3.10), that $\varphi(\delta\varphi) = 0$. In view of (3.9), we have

(3.14)
$$\delta \varphi = -\sum_{i=1}^{2m} (\nabla_{e_i} \varphi)(e_i),$$

for any auxiliary (local) orthonormal frame of \mathcal{D} ; from (3.11) we thus get

(3.15)
$$\varphi(\delta\varphi) = \sum_{i=1}^{2m} (\nabla_{e_i}\varphi)(\varphi(e_i)).$$

Since φ is associated to the *closed* 2-form $d\eta$, for any vector field X we have:

$$g\left(\sum_{i=1}^{2m} (\nabla_{e_i}\varphi)\Big(\varphi(e_i)\Big), X\right) = -\frac{1}{2}\sum_{i=1}^{2m} g\Big((\nabla_X\varphi)(e_i), \varphi(e_i)\Big) = -g(\nabla_X\varphi, \varphi),$$

which is equal to zero since the norm of φ is constant.

In the following statement, we denote by (\mathbb{S}^{2m+1}, c_0) the (2m+1)-dimensional sphere, equipped with the standard flat conformal structure c_0 .

Proposition 3.1. Let (g, ξ) be any K-contact structure on (\mathbb{S}^{2m+1}, c_0) , such that g belongs to the conformal class c_0 . Then, g has constant sectional curvature equal to 1 and the K-contact structure is then isomorphic to the standard Sasaki-Einstein structure.

Proof. Since c_0 is flat, the curvature R of g is of the form

$$(3.16) R_{X,Y} = S(X) \wedge Y + X \wedge S(Y),$$

where, in general, for any n-dimensional Riemannian manifold (M, g), the normalized Ricci tensor (or Schouten tensor) S is defined by

(3.17)
$$S = \frac{1}{(n-2)} \left(\text{Ric} - \frac{\text{Scal}}{2(n-1)} \text{Id} \right).$$

It then follows from (3.3), (3.8), and (3.16) that

(3.18)
$$S(X) = \frac{1}{(n-2)} \left[\left(\frac{\text{Scal}}{2(n-1)} - 1 \right) X + \left(n - \frac{\text{Scal}}{(n-1)} \right) g(\xi, X) \xi \right]$$

with n = 2m + 1 (as in (3.8), in (3.18) and in the sequel of the proof, Ric and S are regarded as endomorphisms of the tangent bundle via the metric g). In terms of the normalized Ricci tensor S, the contracted Bianchi identity $\delta \text{Ric} + \frac{\text{d Scal}}{2} = 0$, reads

$$\delta S + \frac{d Scal}{2(n-1)} = 0.$$

By using (3.19), we readily infer from (3.18) that Scal is constant, so that

(3.20)
$$(\nabla_X S)(Y) = \kappa \left(g(\nabla_X \xi, Y) \xi + g(\xi, Y) \nabla_X \xi \right),$$

for any vector fields X, Y, by setting:

(3.21)
$$\kappa := \frac{1}{(n-2)} \left(n - \frac{\operatorname{Scal}}{(n-1)} \right).$$

Since the conformal structure is flat, the general Bianchi identity (cf. e.g. [6])

(3.22)
$$\delta W_Z(X,Y) = (n-3) g(Z, (\nabla_X S)(Y) - (\nabla_Y S)(X)),$$

where W denotes the Weyl tensor of g, implies that $(\nabla_X S)(Y)$ is symmetric in X, Y, while, by (3.20), $g((\nabla_X S)Y, \xi) = \kappa g(\nabla_X \xi, Y)$, which is anti-symmetric, as ξ is Killing; we thus get $\kappa = 0$, hence by (3.21), Scal = n(n-1). By (3.18), this implies $S = \frac{1}{2}Id$, so (3.16) shows that g is a metric of constant sectional curvature equal to 1.

Finally, (3.5) shows that $\nabla_X \varphi = \xi \wedge X$ for every tangent vector X, meaning that the K-contact structure is Sasaki-Einstein, and it is well known that the isometry group of \mathbb{S}^{2m+1} acts transitively on the set of Sasaki-Einstein structures on the sphere.

Definition 3.2. A Weyl connection on a conformal manifold (M, c) is a torsion-free linear connection D which preserves the conformal class c.

The latter condition means that for any metric g in the conformal class c, there exists a real 1-form, θ^g , called the *Lee form* of D with respect to g, such that $Dg = -2\theta^g \otimes g$, and D is then related to the Levi-Civita connection, ∇^g , of g by

(3.23)
$$D_X Y = \nabla_X^g Y + \theta^g(X) Y + \theta^g(Y) X - g(X, Y) (\theta^g)^{\sharp_g},$$

cf. e.g. [5]. A Weyl connection D is said to be *closed* if it is locally the Levi-Civita connection of a (local) metric in c, exact if it is the Levi-Civita connection of a (globally

defined) metric in c; equivalently, D is closed, respectively exact, if its Lee form is closed, respectively exact, with respect to one, hence any, metric in c.

If M is compact, for any Weyl connection on (M, c) there exists a distinguished metric, say g_0 , in c, usually called the *Gauduchon metric* of D, unique up to scaling, whose Lee form θ^{g_0} is co-closed with respect to g_0 , [7]. If D is closed, θ^{g_0} is then g_0 -harmonic, identically zero if D is exact.

The *Ricci tensor*, Ric^D , of a Weyl connection D is the bilinear defined by $\operatorname{Ric}(X,Y) = \operatorname{trace}\{Z \mapsto \operatorname{R}_{X,Z}^DY\} = \sum_{i=1}^n g(\operatorname{R}_{X,e_i}^DY,e_i)$, for any metric g in c and any g-orthonormal basis $\{e_i\}_{i=1}^n$. The Ricci tensor Ric^D defined that way is symmetric if and only if D is closed.

A Weyl connection D is called Weyl-Einstein if the trace-free component of the symmetric part of Ric^D is identically zero. A closed Weyl-Einstein connection is locally the Levi-Civita connection of a (local) Einstein metric in c; an exact Weyl-Einstein connection is the Levi-Civita connection of a (globally defined) Einstein metric.

We here recall the following well-known fact, first observed in [18], cf. also [8].

Theorem 3.1. Let D be a Weyl-Einstein connection defined on a compact connected oriented conformal manifold (M,c) and denote by g_0 its Gauduchon metric. Then the vector field T on M dual to the Lee form θ^{g_0} is Killing with respect to g_0 . If D is closed, T is parallel with respect to g_0 , identically zero if and only if D is exact, and D is then the Levi-Civita connection of g_0 .

The aim of this section is to prove the following:

Theorem 3.2. Let (M, g, ξ) be a compact K-contact manifold of dimension n = 2m + 1, $m \ge 1$, carrying a closed Weyl-Einstein structure D compatible with the conformal class c = [g]. Then g is Einstein and D is the Levi-Civita connection of an Einstein metric g_0 in c, which is equal to g, up to scaling, except if (M, c) is the flat conformal sphere (\mathbb{S}^{2m+1}, c_0) ; in the latter case, the K-contact structure is isomorphic to the standard Sasaki-Einstein structure of \mathbb{S}^{2m+1} .

Proof. In view of Proposition 3.1, we may assume that (M,c) is not isomorphic to the flat conformal sphere (\mathbb{S}^{2m+1},c_0) . Let $g_0 := e^{2f}g$ denote the Gauduchon metric of D and let T denote the g_0 -dual of the Lee form of D with respect to g_0 . According to Theorem 3.1, T is ∇^{g_0} -parallel. We first show that $T \equiv 0$, i.e. that the closed Weyl-Einstein connection D is actually exact.

Assume, for a contradiction, that T is non-zero. By rescaling the Gauduchon metric g_0 if necessary, we may assume that $g_0(T,T)=1$. Denote by η , resp. η_0 , the 1-form dual to ξ with respect to g, resp. g_0 . Both η and η_0 are contact 1-forms for the contact distribution \mathcal{D} , and, as already noticed, ξ is the Reeb vector field of η . According to Proposition 2.1, ξ , which is Killing with respect to g, hence conformal Killing with respect to g_0 , is actually Killing with respect to g_0 as well, commutes with T, and the inner product g_0 is actually Killing with respect to g_0 as well, commutes with T, and the inner product g_0 is constant; we then have: $\mathcal{L}_T \eta_0 = 0$, hence that $T \Box d\eta_0 = \mathcal{L}_T \eta_0 - d(\eta_0(T)) = -da = 0$. Moreover, since $g_0(T) = a$ and $T \Box d\eta_0 = 0$, $g_0(T) = a$ cannot be zero

— otherwise, η_0 would not be a contact 1-form — and $\xi_0 := a^{-1} T$ is then the Reeb vector field of η_0 . Since $\eta_0 = e^{2f} \eta$, the Reeb vector fields ξ_0 and ξ are related by

$$\xi_0 = e^{-2f} \, \xi + Z_f,$$

where Z_f is the section of \mathcal{D} defined by

$$(3.25) (Z_f d\eta)_{|\mathcal{D}} = 2e^{-2f} df_{|\mathcal{D}}.$$

Since M is compact, f has critical points and for each of them, say x, it follows from (3.25) that $Z_f(x) = 0$, hence $\xi_0(x) = a^{-1} T(x) = e^{-2f(x)} \xi(x)$. Since, $g_0(T(x), T(x)) = 1$ and $g_0(\xi(x), T(x)) = a$ for any x, we infer that $e^{2f(x)} = a^2$ for any critical point x of f, in particular for points where f takes its minimal or its maximal value. It follows that f is constant, with $e^{2f} \equiv a^2$, that $g_0 = a^2 g$ and $\xi = a T$. In particular, η and $\eta_0 = a^2 \eta$ are parallel, with respect to g and g_0 , hence closed. This contradicts the fact that they are contact 1-forms.

In view of the above, T must be identically zero. This means that D is the Levi-Civita connection of the Gauduchon metric g_0 , which is thus Einstein. Since ξ with respect to g, hence conformal Killing with respect to $g_0 = e^{2f}g$, and (M, c) is not isomorphic to the flat conformal sphere (\mathbb{S}^{2m+1}, c_0), it follows from Proposition 2.2 that ξ is Killing with respect to g_0 as well. We thus have $\mathrm{d}f(\xi) = 0$, hence

$$(3.26) g(\xi, \operatorname{grad}_g f) = 0.$$

Let λ denote the Einstein constant of (M, g_0) , so that $\mathrm{Ric}^0 = \lambda g_0 = e^{2f} \lambda g$. The classical formula relating the Ricci tensors Ric and Ric⁰ of g and g_0 reads (cf. [2], p. 59):

Contracting (3.27) with ξ and using Proposition 3.2 we get

$$\lambda e^{2f} \eta = 2m\eta - (2m-1)\nabla_{\xi}^g df + (\Delta^g f - (2m-1)|df|_g^2)\eta.$$

Taking the metric duals with respect to g this equation reads (3.28)

$$\nabla_{\xi}^{g}(\operatorname{grad}_{g}f) = h\xi, \quad \text{with} \quad h := \frac{1}{2m-1} \left(\Delta^{g}f - (2m-1)|\mathrm{d}f|_{g}^{2} + 2m - \lambda e^{2f} \right).$$

On the other hand, we have $0 = d\mathcal{L}_{\xi} f = \mathcal{L}_{\xi} df$, thus $\mathcal{L}_{\xi}(\operatorname{grad}_{a} f) = 0$ and therefore

$$\nabla^g_{\xi}(\operatorname{grad}_g f) = \nabla^g_{\operatorname{grad}_g f} \xi = \varphi(\operatorname{grad}_g f).$$

Since the image of φ is orthogonal to ξ , (3.28) implies that $\varphi(\operatorname{grad}_g f) = 0$, thus by (3.2), $\operatorname{grad}_g f$ is proportional to ξ . From (3.26) we thus get $\operatorname{grad}_g f = 0$, so f is constant and D is the Levi-Civita connection of g, and hence g is Einstein.

As a direct corollary of Theorem 3.2 above together with Theorem 1.1 in [1] (see also [4]), we obtain the following result:

Corollary 3.1. If (M^{2m+1}, g, ξ) is a compact K-contact manifold carrying a closed Weyl-Einstein structure compatible with g, then M is Sasaki-Einstein.

Remark 3.2. In [12] it is claimed that if (M^{2m+1}, g, ξ) is a compact K-contact manifold carrying a compatible closed Weyl-Einstein structure, then M is Sasakian if and only if it is η -Einstein. Our above result show that the hypotheses in [12] already imply both conditions.

References

- [1] V. Apostolov, T. Draghici, A. Moroianu, The odd-dimensional Goldberg conjecture, Math. Nachr. 279 (2006), 948–952.
- [2] A. L. Besse, *Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete **10**, Springer Verlag (1987).
- [3] D. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, 2002.
- [4] C. Boyer, K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430.
- [5] D. M. J. Calderbank, H. Pedersen, Einstein-Weyl geometry. Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA (1999), 387–423.
- [6] A. Derdziński, On compact Riemannian manifolds with harmonic curvature, Math. Ann. 259 (1982), 145–152
- [7] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495–518.
- [8] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$, J. reine angew. Math. **469** (1995), 1–50.
- [9] A. Ghosh, Einstein-Weyl structures on contact metric manifolds, Ann. Global Anal. Geom. **35** (2009), 431–441.
- [10] B. Kostant, Holonomy and the Lie algebra of infinitesimal motions of a Riemann manifold, Trans. Amer. Math. Soc. 80 (1955), 528–542.
- [11] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod (1958).
- [12] P. Matzeu, Closed Einstein-Weyl structures on compact Sasakian and cosymplectic manifolds, Proc. Edinb. Math. Soc. **54** (2011), 149–160.
- [13] A. Moroianu, U. Semmelmann, Twistor forms on Riemannian products, J. Geom. Phys. **58** (2008), 134–1345.
- [14] T. Nagano, The conformal transformation on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959), 10–14.
- [15] T. Nagano, K. Yano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. **69** (1959), 451–461.
- [16] M. Obata, Certain conditions for a Riemnannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333–340.
- [17] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differ. Geom. 6 (72) (1971), 247–258.
- [18] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. (2) 45 (1992), 341–351.
- [19] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003) 503-527.

PAUL GAUDUCHON, CMLS, ÉCOLE POLYTECHNIQUE, CNRS, UNIVERSITÉ PARIS-SACLAY, 91128 PALAISEAU, FRANCE

Email address: paul.gauduchon@polytechnique.edu

Andrei Moroianu, Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

Email address: andrei.moroianu@math.cnrs.fr