COMPACT HOMOGENEOUS LCK MANIFOLDS ARE
VAISMAN
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ABSTRACT. We prove that any compact homogeneous locally con-
formally Kéhler manifold has parallel Lee form.

Theorem 1 below has been claimed by K. Hasegawa and Y. Kamishima
in [1] and [2] and a partial result also appeared in [3]. At the time of
writing, it is not clear to us that the arguments presented in [1] and [2]
are complete. We here present a complete simple proof of this result.

A Hermitian manifold (M, g, J) is called locally conformally Kdhler
— IcK for short — if, in some neighbourhood of any point of M, the
Hermitian structure can be made Kéahler by some conformal change of
the metric. Equivalently, (M, g, J) is lcK if there exists a closed real
1-form 6, called the Lee form of the Hermitian structure, such that the
Kabhler form w := g(J-,-) satisfies:

(1) dw =0 N\ w.

A IcK Hermitian structure is called strictly 1cK if the Lee form @ is not
identically zero, and Vaisman if 6 is a non-zero parallel 1-form with
respect to the Levi-Civita connection of the metric g. Equivalently,
since 6 is closed, a strictly 1cK manifold is Vaisman if the Lee vector
field € = 6% is Killing, i.e. L¢g = 0, where Lx denote the Lie derivative
along a vector field X. In general, the Lee vector field £ and the vector
field J¢ (sometimes called the Reeb vector field of the lcK structure)
are neither Killing, nor holomorphic (meaning that £¢J = 0), but we
always have £ jew = 0, since Ljew = —df +0(J§)w+ 0 NI =0.

By a compact homogeneous lcK manifold we mean a compact, con-
nected, strictly lcK manifold (M, g, J,w), equipped with a transitive
and effective left-action of a (compact, connected) Lie group G, which
preserves the whole Hermitian structure, i.e. the Riemannian metric g,
the (integrable) complex structure J and the 2-form w. We then have:

Theorem 1. Any compact homogeneous lcK manifold (M, g, J,w) is
Vaisman.
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Before starting the proof of Theorem 1, we recall a number of general,
well-known facts, concerning a compact homogeneous manifold (M, g),
equipped with a left-action, effective and transitive, of a (connected)
compact Lie group GG. Without loss of generality, we assume that the
stabilizer GG, of any point x of M in G is connected. We denote by g
the Lie algebra of G and we fix an Adg-invariant positive definite inner
product, B, on g. The induced (infinitesimal) action of g is an injective
linear map o : a — a from g to the space, Vect(M), of (smooth) vector
fields on M, defined by:

(2) a exp(ta) -z,

(@) =T | o

for any a in g and any z in M, where exp : g — G denotes the
exponential map and - the action of G on M. Since the G-action on M
is a left-action, o is an anti-isomorphism fro/rri g to g, equipped with
the usual bracket of vector fields: [a,b] = —[a, b].

We denote by Inv the space of G-invariant vector fields on M, which
is a Lie subalgebra of Vect(M). Any element Z of Inv commutes with
all elements of g. In particular

(3) Invng=c¢,
where ¢ denotes the image in g of the center, ¢, of g.

For any = in M, we denote by o, the map a — a(z), from g to
the tangent space T, M of M at z, and by o} its metric adjoint, from
(T.M, g.) to (g, B), so that:

(4) B(0,(X),a) = g.(X, 0.(a)),

for any X in T,M and any a in g. The kernel, g,, of o,, is a Lie
subalgebra of g, namely the Lie algebra of the stabilizer, G, of x in G,
whereas the image of ¢ in g is the B-orthogonal complement, g+, of
.. The Lie algebra g, acts on T,M by a- X = [X,a](z) = (D%a) (z)
for any a in g, and any X in T, M, where X here stands for any local
vector field around x such that X(z) = X and D¢ denotes the Levi-
Civita connection of g. We then have

(5) ogla,b] =a-o.(b),  oi(a-X)=la on(X)],
for any a in g,, any b in g and any X in T, M.

For any chosen point x in M, the evaluation map ev, : Z — ev,(7) :=
Z(x), from Inv to T, M, is injective, and Z(x) belongs to the space, de-
noted by (T, M)%, of those X in T, M such that a- X = 0 for any a
in g,; conversely, any X in (T,M)% is equal to Z(x) for a unique Z
in Inv. Then, ev, is a linear isomorphism from Inv to (T, M )% whose
inverse is denoted by ev,!. On the other hand, for any X in (7,M )%=,

we have X = B(x) for some b in g, which is uniquely defined up to
the addition of an element of g, and is such that [a, b] belongs to g,
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for any a in g,, meaning that b belongs to the normalizer, Ny(g,), of
g, in g; conversely, for any b in Ny(g,), b(x) is the value at z of a
(unique) element of Inv. For any chosen x in M, we thus get a linear
isomorphism

(6) Inv = Ng(gx)/g:m

according to which b mod g, is identified with ev,_!(o.(b)), for any b
in Ny(g;). This isomorphism is actually a Lie algebra isomorphism.

In general, the rank, rkl, of a Lie algebra [ of compact type (= the
Lie algebra of a compact Lie group) can be defined as the dimension of
a maximal abelian Lie subalgebra. In particular, rk Ny(g,) < rkg and
it then follows from (6) that

(7) rkinv <rkg —rkg,.

Proof of Theorem 1. We now assume that the homogeneous Riemann-
ian manifold (M, g) is equipped with a compatible G-invariant lcK Her-
mitian structure as explained above. In particular, Inv is J-invariant,
since J is G-invariant, and contains the Lee vector field £ and J¢ (no-
tice however that Inv is not a priori a complex Lie algebra, as J is not
preserved in general by the elements of Inv). Since the G-action on M
preserves the Kéhler form w, it preserves dw as well, hence also the
Lee form 6. Since, moreover, df = 0, it follows that 6(a) is constant
and that 0([a, B]) = 0, for any 4,b in §. Alternatively, 6 determines an
element, 0, of g*, defined by 6(a) := 6(), which vanishes on the derived
Lie subalgebra [g, g]. Being of compact type, g splits as g = ¢®s, where
s = g, g] is the semi-simple part of g. We infer the existence of t in ¢
such that 6(t) = 1, whose image in ¢ = Inv N g will be denoted by T,
instead of t; we then have §(T) = 1. Since @ is closed, the kernel, g, of
6 in g is a Lie subalgebra of g and we get the following B-orthogonal
decomposition

(8) g = (t) ©do,

where (t) denotes the 1-dimensional subspace of g generated by t. The
1-form v defined by

(9) V= —Lpw,

is G-invariant, in particular £7¢ = 0, from which we infer, by using
(1): dip = tpdw = 0(T) w + 6 A1, hence

(10) w=dp—0AN1.

Notice that (10) implies that 6 A1) # 0 at each point of M, since w is

everywhere non-degenerate, whereas tpdiy = 0; it follows that the G-
invariant vector fields T, J¢ are independent at each point of M. Since
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[T, JE] = Lp(JE) =0, T and JE generate a 2-dimensional abelian Lie
subalgebra of Inv, so that

(11) rk Inv > 2.

From (10), we readily infer that ¢ is either 1-dimensional, generated
by T, or 2-dimensional, generated by 7" and by J¢, which is then an
element of ¢ = Inv N g. Indeed, suppose that ¢ is of dimension greater
than 1. There then exists v # 0 in ¢ such that §(v) = 0. Again, we
denote by V its image in ¢ = InvNg, instead of v. Since v is G-invariant,
we have Ly1 = 0, so that, by (10), tyw = (V) 6. This implies that
V' is then equal to a (non-zero) multiple of J¢.

Choose any x in M and denote by w, the element of g defined by
(12) w, = o3 ((JT)(x)),

so that B(wg,a) = g.(JT,0.(a)) = —(0.(a)) = —1(a(x)), for any a
in g, where ¢ is the G-invariant 1-form defined by (9). In particular,
w, sits in gg, since ¢(7T') = 0, and is B-orthogonal to g,. Denote by
Cyo(w,) the commutator of w, in gy and pick any a in go. Then, a
belongs to Cy, (w,) if and only if B([w,,a],b) = 0 for any b in g¢. Since
B([w,,a],b) = B(w,, [a,b]) = ¥([a,b](z)) = di(4(x), b(x)), this occurs
if and only if t5;)dyy = 0, if and only if tayw — ¥(a(x)) O(x) = 0 (by
using (10) and 6(a) = 0). We eventually get that a belongs to Cy,(w,,)
if and only if a(z) = —¢(a(z)) (J€)(x) = B(wg,a) (JE)(z). We infer
that o,(w,) = B(w,, w,) J{() and that

(13) Coo(Wz) = (Wa) © @a

where the sum is B-orthogonal. Since w, is contained in a maximal
abelian Lie subalgebra of gy, which is contained in Cy,(w,), we have:
rk Cy,(Wy) = rkgo = rkg — 1. It then follows from (13) that

(14) rkg, =rkg — 2.
By using (7), we infer rk Inv < 2, hence, by (11):
(15) rkInv = 2.

Being a Lie algebra of compact type of rank 2, with non-trivial center
(since it contains T'), Inv is isomorphic either to the abelian Lie algebra
R@R or to the unitary Lie algebra us = R@su,y. Notice that the latter
case can only occur if ¢ = (t), since ¢ = ¢ is contained in Inv, whereas
the center of us is of dimension 1.

Case 1. If Inv Z R® R, it is generated by T and J&, which, as already
observed, are independent at each point of M. Since JT belongs to
Inv, we thus have

(16) JT =aT +bJE,
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for some real numbers a, b, with b £ 0. Now, T preserves w and J, as do
any vector field in g, so JT preserves J, since J is integrable. It follows
that J¢ = $(JT — aT) preserves J as well. We already observed that
JE preserves w for any 1cK structure: J¢ is then a Killing vector field
with respect to g. It then follows from (16) that J7 is a Killing vector
field. Finally, £ = %(T + a JT) is also a Killing vector field, meaning
that the lcK structure is Vaisman.

Case 2. It remains to deal with the case when ¢ = (t) is 1-dimensional
and Inv =2 uy, = R @ su,. For convenience, we normalize B so that
B(t,t) =1 and B(w,,w,) = 1, where w, has been defined by (12), so
that o,(w,) = (J€)(z) (where z is any chosen point in M). Denote
by eg a generator of the center R of uy, and by eq,eq,e3 a triple of
generators of suy, such that [es, e3] = ey, [e2, e3] = ey, [e3, 1] = €. Via
(6), we may identify eq with t mod g, and e;, say, with w, mod g,,
in order that the restriction of w — given by (10) — to Ny(g.)/9.
coincide with the standard form wy = eg A e1 4 e A es; we here identify
€o, €1, €2, €3 with their B-duals in g*, so that § = e, ¥(z) = —e; and
(d)(x) = ea Aeg (by identifying 0 with 6 and, similarly, ¢(z) with a —
(a(z)) in (g/g.)"). It remains to determine the complex structure J
of Inv in terms of the generators eq, e1, €5, e3. Without loss of generality,
the generators X, Y of the corresponding 2-dimensional complex space
@f]()’l) of elements of type (0,1) in Inv@C = CegdCe; ®C ey ®C e can
be chosen of the form X = €0+Z?:1 aje;, Y = Z?:l b; e;, where a;, b;
are complex numbers, which must satisfy the following three conditions:
(i) @9)’1) is w-Lagrangian, i.e. w(X,Y) = 0, where w is extended
to a C-bilinear form on (R & su,) ® C;
(ii) @SOJ) is involutive, meaning that [X,Y] = A X 4 p Y, for some
complex numbers A, y;
(iii) g := wo(+, J+) must be positive definite on R@su,, meaning that
iw(Z,7) >0, for any Z in @L(]O’l).
It is easily checked that the first condition (i) is expressed by
(17) b1 + ag b3 — as bg = 0,
whereas the integrability condition (ii) implies A = 0 and is then equiv-
alent to the system
—,ubl —a3b2+a263 = 0,
(18) agby — pby —ay by =0,
(llbg —(lgbl —Mbg =0.
If by # 0, we infer from (17) that u = —1, so that, the system (18) has

a non-trivial solution in by, by, b3 if and only if aq, as, az are related by

Zf’zl a?+1 = 0, the solution then being by = a; a3 —as, by = agaz+ay,

by = a3 + 1. We thus get Y = a3 Z?Zlaiei —ase; +ajey + ey =
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—asgeg—ase;+apea+e3 mod X. It follows that @f,o’l) meets the first
two conditions (i) and (ii), with b; # 0, if and only it is generated by
X,Y of the form X = 60+Z?:1 a;e;, Y = —aszey—ase; +ajes+es,
with Z?:1 a? +1 = 0. As for the positivity condition (iii), we easily
compute wo(X, X) = @y — a; + ay az — @y az = —wo(Y,Y), which shows
that (iii) is actually never satisfied if b; # 0. We thus have b; = 0,
which, by (17), implies asbs — agby = 0, so that Y = byey + bzes,
whereas X = eg+a; e; mod Y; by changing the notation, @f,o’l) is then
generated by X := eg+ aj;e; and Y = byes + by es. Moreover, since
[X,Y] = ay (—bsea + by e3), the integrability condition (ii) is satisfied

if and only if by = kbs and b3 = —k by, for some complex number k,
which must be equal to +i. If k = ¢, we have Y = e; — te3, hence
iwo(Y,Y) = —2, which is negative. We thus have k& = —i, hence

Y = ey +ies, whereas i wo(X, X) = 2JIm(a), by setting a; = a, so that
Jm(a) > 0. The only suitable complex structures J on R & suy are
therefore of the form

Jey = %e(a)e + ’a‘Q e Jeq = — ! ey — %e(a)e
(19) 7 Ima) " Jm(a) YT m(e) ? Jm(a)
J62 = €3, J€3 = —é€y,

with Jm(a) > 0. Since ¢g =t mod g, and e; = w, mod g, represent
T and J¢ respectively in Inv, via (6), it follows that (16) is again
31:51) > 0; we then conclude as before that &

is Killing, i.e. that the lcK structure is Vaisman. |

satisfied in Inv, with b =
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