COMPACT LCK MANIFOLDS WITH PARALLEL VECTOR FIELDS

ANDREI MOROIANU

ABSTRACT. We show that for n > 2 a compact locally conformally Kéhler manifold
(M?",g,J) carrying a non-trivial parallel vector field is either Vaisman, or globally
conformally K&hler, determined in an explicit way by a compact Kahler manifold of
dimension 2n — 2 and a real function.

1. INTRODUCTION

A locally conformally Kéhler (IcK) manifold is a Hermitian manifold (M, g, J) of
real dimension 2n > 4 such that around each point, g is conformal to a Kéhler metric
relative to J, cf. [3].

The differentials of the (logarithms of the) conformal factors glue up to a well-defined
closed 1-form on M — called the Lee form of the lcK structure — which is exact if and
only if (M, g, J) is globally conformally Kéhler.

Many complex manifolds which for topological reasons do no carry any Kahler met-
ric, have compatible lcK metrics. For example the product metric on the Hopf manifold
St x §?~1 (with odd first Betti number) is lcK with respect to the complex structure
induced from the identification

S x 82" ~ (R/Z x §* 1) ~ (R x §*" 1) /Z ~ (C™\ {0})/Z.

The Lee form of this structure is easily computed to be the length element of S!, and is
therefore parallel. Compact lcK manifolds with parallel Lee form are called Vaisman
8], and their structure is well-understood: they are mapping tori of automorphisms
of Sasakian manifolds cf. [7]. Moreover, it was recently proved that every compact
homogeneous 1cK manifold is Vaisman [4].

In real dimension 4 it is well known that a compact complex manifold carries a
compatible Kéhler metric if and only if its first Betti number is even [2], [6]. It
was generally believed that every complex surface with odd first Betti number would
carry a compatible lcK structure, until Belgun has shown that some Inoue surfaces
do not carry any lcK structure [1]. He also showed that every Hopf surface admits a
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compatible lcK metric — for primary Hopf surfaces this had been previously proved by
Gauduchon and Ornea [5] —, and classified all Vaisman complex surfaces.

In this paper we address the following question: Are there non-Vaisman compact
lcK manifolds which carry a non-trivial parallel 1-form? It turns out that the answer
to this question is positive, and moreover, one can describe the lcK structure of such
manifolds in a very explicit way in all dimensions greater than 4 (cf. Theorem 3.5
below). These manifolds are globally conformally Kéhler, but the metric is not Kéhler
in general. In dimension 4 this construction still gives examples of non-Vaisman lcK
manifolds carrying a parallel 1-form (cf. Example 3.6), but we do not know whether
these are the only examples.

A more general problem, which however will not be considered here, would be to
describe all compact 1cK manifolds with special holonomy (e.g. with reducible holo-
nomy, or whose holonomy group belongs to the Berger list). Note that unlike Kéhler
manifolds, the Riemannian product of IcK manifolds is no longer IcK (at least not in a
canonical way). This somehow indicates that the holonomy reduction of a IcK metric
is a strong condition, which might lead in general to classification results in the vein
of Theorem 3.5.

2. SOME PRELIMINARIES ON LCK MANIFOLDS

As explained in the introduction, a 1cK manifold is a Hermitian manifold (M, g, J)
of real dimension 2n > 4 carrying an open cover U, and real maps f, : U, — R such
that (U, e?/>g, J) are Kihler manifolds. Denoting Q(,-) := g(J-,-) the fundamental
form of M, the above condition yields
(2.1) 0 =d(e Q) = e7¥o(=2df, A Q +dQ).

Since the linear map A'M — A3M defined by o — o A Q is injective, (2.1) shows
that df, = dfg on U, N Upg, so the 1-forms df, glue together to a closed form 6 on
M — called the Lee form — such that 0|y, = df, for all a. The Levi-Civita covariant
derivatives V and V¢ of the conformal metrics g and e~?/2g on U, are related by the
well known formula

VxY =VLY +0(X)Y + (V)X — #*g(X,Y),

where 0" is the vector field dual to @ via the metric g. Using the fact that V*J = 0 on
U,, we thus obtain:

(Vx)(Y) = Vx(JY)—J(VxY)
= VLJY)+0(X)JY +0(JY)X — 0%g(X,JY)
—J (VXY +0(X)Y +0(Y)X — 0*g(X,Y))
= (JY)X — 0 g(X,JY) = 0(Y)JX + JO'g(X,Y).
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Identifying 1-forms with vectors using the metric g =: (-, ), this relation can be equiv-
alently written as

(2.2) (Vx)Y = (X, Y)YJO+0(JY)X + (JX, V)0 —0(Y)JX VX,Y € TM,
or else
(2.3) VxQ=XANJO+JX N0 VX e TM.

If ¢; denotes a local orthonormal basis of TM we have Q = 13" ¢; A Je;, so by (2.3)
we immediately get

(2.4) dQ=> e, AV, Q=20AQ,
which also follows from (2.1).

3. PARALLEL VECTOR FIELDS ON LCK MANIFOLDS

Assume throughout this section that that the dimension of M is strictly larger than
4 and that V is a non-trivial parallel vector field on M. We can of course rescale V'
such that it has unit length. Consider the components of # along V and JV':

(3.1) a:=0(V), b:=0(JV).

Since VV = 0 we have Vx(JV) = (VxJ)V, so using (2.3) we get

(3.2) Vx(JV)=(X,V)JO+bX + (JX, V)0 —aJX VX ecTM.
In particular we have

(3.3) Vy(JV)=J0+bV —aJV.

We also infer from (3.2)

(3.4) d(JV)=e; AV, (JV)=V ANJI—JV ANO — 242,

whence using (2.4) and (3.4):
0 = d*(JV)=-VAdJI) —d(JV)AE—2da A Q — 4ab A Q
—VAdJO) =V ANJONO+2a2 N0 —2da A Q2 — 4ab A Q
= —VA(d(JO) +JOAO)—2(da+ ab) ACQ.
Taking the exterior product with V' in this relation yields
V A (da+ab) A2 =0.

The assumption n > 2 implies that V' A (da + af) = 0, so there exists some function f
on M such that

(3.5) da +ab = fV.
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Since 6 is closed and V' is parallel, the Cartan formula yields

(3.6) Vvl =Lyl =d(Vil) =da= fV —ab,

and a direct computation using (2.2) gives

(3.7) Vv(JO) =0+ (f —|0]*) JV.

Since V' is parallel we have Ry, x = 0 for every vector field X, where Rxy := [Vx, Vy]—

Vix,y] denotes the curvature tensor of V. Consequently, taking X to be V-parallel at
some point x € M, we obtain

(38) VVVXQ—V)(V\/Q:RV,XQ: [R,V7x,Q] :0

at x, where the bracket in the last formula means the commutator of endomorphisms
of TM. Using (2.2), (2.3), (3.6) and (3.7) we compute at x:

ViVxQ = Vy(XAJO+IJXANO)=XAVy(J0)+ X AVy0+ (VyJ)X NG
= XABO+ (f—10]) JV) +JX A(fV — ab)
+((V, X)JO+0(JX)V + (JV, X)) —0(X)JV)NO

and

VxVyQ = Vx(VAJO+ IV AN =V AVx(JO)+JVAVxO+ (VxJ)V NG

= VAVx(JO)+ JVAVx0+ (X, V)JO+bX + (JX, V)0 —aJX) N0
After straightforward simplifications we get from (3.8):
0 = VyVxQ—-VxVyQ)
= (Vx(JO)+ fIX —0(JX)O) AV + (Vx0+ (f —|0]*) X +6(X)0) A JV.

This relation is tensorial in X, so it actually holds at every point of M.

Remark now that if AAV + B A JV = 0 for some vectors A and B, then both
vectors belong to the plane generated by V and JV. The previous relation thus shows
that there exist some 1-forms p and v such that

(3.9) Vx0+ (f—107) X +0(X)0 = puX)V +v(X)JV, VX eTM.

We take the exterior product with X in this relation and sum over some local or-
thonormal basis X =e;. Asdf =0, we get u AV +v A JV =0, hence by the previous
remark there exist smooth functions «, 5, v on M such that g = aV — yJV and
v =~V 4 JV. Taking X =V in Equation (3.9) and using (3.6) yields

fV—ab+ (f—10P)V+abl =aV +~JV,
whence v = 0 and

(3.10) a=2f— 0]
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Equation (3.9) thus becomes
(3.11)  VxO=(f—a)X —0(X)0+a(X,V)V +B(X,JV)JV, VX e TM.
Using this relation together with (2.2) we readily obtain
(3.12)  Vx(JO) = —fJX +0(JX)0 + (X, VVIV — B(X,JV)V, VX € TM.

In particular the exterior derivative of J6 reads

(3.13) d(J0) = e; AV, (JO) = =2fQ+0 AN JO+ (a+ B)V A JV.
We now take the scalar product with V' in (3.12) and obtain
(3.14) (Vx(JO), V)= f(X,JV)+abd(JX) — B(X, V), VX € TM.

On the other hand
(Vx(J0),V) =Vx(JO,V) = -X(b),
so from (3.14) we obtain
(3.15) db= (B— f)JV +aJb.
Taking the exterior derivative in this equation and using (3.4), (3.5) and (3.13) yields
0 = &b=dB—-F NIV +(B-FHVAJOI—JTV AO—2aQ)
+(fV=—ad)ANJO+a(=2fQ+O0ANJO+ (a+ L)V AJV)
= dB—=fH)ANJIJV+BVAIO—(B—[)IJVAOI+ala+ B)V AJV —2ap9.
This shows in particular that V A JV A (af$2) = 0, whence
(3.16) af = 0.
Reinjecting in the previous equation gives
(3.17) dB—=fINIV+BVNANIO—(B—f)JVAO+aaV NJV =0.
We now use (3.13) together with (2.4) and (3.4):
0 = d*(J0) = —2df ANQ—4fONQ—ON(=2fQ+ONJO+ (a+ B)V AJV)
+d(a+B)AVAIJV —(a+ B)V AV ANJOI—JV NI —2a2)
= 2(=df = f0+ala+B)V)ANQ+d(a+B) AV ANJV.
As n > 2, this shows that
(3.18) df + f0 = aaV.
Using this relation together with (3.17) yields
(dp+ B8O) N JV + BV A JO = 0.
We take the interior product with V' in this relation and obtain

V(8)JV + BJO + bBV = 0.
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Since by (3.16), JV is orthogonal to S(J0 + bV'), this implies that V() = 0 and
B(JO+bV) =0.

We now use (3.11) in order to express the differential of the square norm |6]%. For
every tangent vector X we have

X(|0)?) = 2(Vx0,0) =2((f —a) X —0(X)0 + (X, V)V + B(X, JV)JV, )
= 24X, (f — )0 —|0]*0 + aaV + b3JV),
so from (3.10) we get
A6 =2 ((f — )0 — |60 + aaV + bBIV) = 2(—f0 + aaV + bBJV),
whence using (3.18):
(319)  da=d(2f —|6]°) =2(aaV — f0) — 2(—f0 + aaV + b3JV) = —2bBJ V.

We are now ready to prove the key result of this section

Lemma 3.1. If M is compact, the Lee form 0 of the lcK structure belongs to the space
generated by V and JV . Equivalently,

(3.20) 0 =aV +bJV.

Proof. Let du, denote the volume form of M. Taking the trace in (3.2) we get

(3.21) I(JV)=(2—=n)b

and from (3.11) together with (3.10) we readily compute

(3.22) S0=nla—f)+10*—a—-B=n-2)(a—f) -5

Moreover, taking the scalar product with V' in (3.12) and choosing X = JV gives
—JV(b) = (Vv JO,V) = f —a* = B,

which together with (3.5) yields § = JV(b) + V(a). Using the Stokes Theorem several
times we obtain

[ gan= [ s ayan = [ @V rayan = [ ca,

and from (3.21)—(3.22)
[a=pin, = 5 [ @ranan - [ sa,
- - ! : /M (V(a) + JV(b)) dpy = % /M (a8V + b5(JV))dp,
1

- 2 — m)b2dp, = — | b
n_Q\ZW( n) /'Lg \/]w ng
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so finally

/|0—aV—bJV|2d,ug = /(|6’|2—a2—62)dug:/(2f—a—a2—62)dug
M M M

= [ G—a (- a) = #)du, =0,

From now on M will be assumed compact.

Lemma 3.2. The following relations hold: ab =0, f = a?, o = a® — b,

Proof. Taking the covariant derivative in (3.20) with respect to some arbitrary vector
X and using (3.2), (3.5) and (3.15) yields:

Vx0 = X(a)V+ X(b)JV +bVxJV
= f(X,V)V —a(X,aV +0JV)V + (B — fUX,JV)JV +a(X,aJV —bV)JV
+o (X, V)(aJV = bV) +bX + (JX,V)(aV +bJV) —aJX)
= VX —abJX + (f —a® = b°) (X, V)V — 2ab(X, JV)V
+(B—f+a® =) (X, JV)JV.
Comparing with (3.11) we thus get:
Vx0 = (f—a)X —0(X)0+ (X, V)V + (X, JV)JV
= (f—a) X+ (X,aV+bJV)(aV +bJV) + (X, V)V + (X, JV)JV
and identifying the corresponding terms yields the result. 0

Using Lemma 3.2 we now get from (3.5):
da=fV—-ab=fV—-a?V—-abJV =0,
thus showing that a is constant on M. We distinguish two cases:

Case 1: a # 0. From Lemma 3.2 we must have b = 0, whence 6 = aV is parallel,
so (M, g,J) is Vaisman and the parallel vector field V' is proportional to the Lee form.

Case 2: a = 0. From Lemma 3.2 again we get f = 0, « = —b?> and 0 = bJV.
Equation (3.2) now reads

(3.23) Vx(JV) =b(X — (X, V)V — (X, JV)JV) VX € TM.

Remark that M is never Vaisman in this case (unless it is Kéhler). Indeed, from (3.15)
we see that X (b) = 0 for all X orthogonal to V' and JV. If § were parallel, we would
have by (3.23): 0 = Vx0 = nVxJV = b>X for every vector X orthogonal to V and
JV, and thus b = 0, so # = 0.
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By symmetrization (3.23) gives:
(3.24) Lvg=2b(g—V' @V’ = JV’ @ JV).
This relation allows us to make more explicit the metric structure of M:

Lemma 3.3. The universal cover (M, §,Q) of (M, g,Q) is (holomorphically) isometric
to R? x (N, gn, Qn) endowed with the metric ds? + dt? + > gy and the Kihler form
ds A dt 4 e2DQy, for some complete simply connected Kdihler manifold (N, gn, Qn)
of real dimension 2n — 2 and some smooth real function c.

Proof. The tangent bundle of M is the direct sum of three orthogonal distributions:
TM = (V) ® (JV) @& D, where D := (V,JV)*. Since dV = 0 (as V is parallel) and
d(JV) = 0 by (3.23), the distribution D is involutive. From (3.23) again we easily
check that [V, JV] =0, [V, D] C D and [JV, D] C D. The Frobenius theorem shows
that there exist local coordinates (s,t,z) € R x R x R"2 around each point of M,
such that V' = 9,, JV = 0; and the metric g has the form g = ds? + dt* + h(s, t), for
some family of metrics h(s,t) on R"2.

We first note that for each s,t the metric h(s,t) is Kéhler. Indeed, J defines by
restriction to D an integrable complex structure on each local leaf R" 2, whose Kéahler
form (s, ) is just the restriction of 2. Consequently, d€2(s,t) is the restriction to the
leaves of dQ2 = 6 A €2, which vanishes since 6|p = 0.

Now, since V' is parallel on M, its flow preserves g, whence h(s,t) = h(t) is inde-
pendent on s. From (3.15) we see that b = b(t) depends on ¢ alone. Moreover, (3.24)
yields

oh
— =2b(t)h
at ( ) Y

whence
h(s,t) = el 2297 ().
This proves the local version of the lemma, by defining ¢(t) := fg b(r)dr and gy :=

h(0). The global statement follows from the Frobenius theorem applied to the universal
cover of M. 0

The fundamental group of M induces a co-compact group of isometries of the globally
conformally Kihler manifold (M, §) := (R? x N,ds? + dt> + e*®gy). Our next aim
is to show that the Lee form of M is exact. Note that the Kéhler form of M is
Q =ds Adt + e20Q ~, which satisfies

dQ = 2¢ (t)dt A >y = 27 (1)dt AQ = 2de A Q,

showing that the Lee form of M is § = dc. It suffices to check that the function c is
[-invariant. This follows from a more general statement:
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Lemma 3.4. Assume that (N9, gy) is a complete simply connected Riemannian man-
ifold of dimension d > 1, ¢ : R — R is a smooth function and I' is a co-compact
group acting totally discontinuously by isometries on the Riemannian manifold (R? x
N, ds? +dt? + e*®gy). Assume moreover that T preserves the vector fields 0, and 0.
Then the function c is invariant by T'.

Proof. The last assumption shows that every element v € I' has the form (s, t,x) =
(s+sy,t+t,,10,(x)), where s, and ¢, are real numbers and v, is a diffeomorphism of
N. The condition that ~ is an isometry of the metric ds? + dt? + e*®) gy reads

Wy (X,Y) = gy ((1).(X), (¥1).(Y)),  VieR, X,Y € TN.
Thus 1., is a homothety of (N, gn) with ratio
(3.25) Py 1= e —elt+ty)
(note that, in particular, this expression does not depend on t).

Assume, for a contradiction, that ¢ is not I-invariant. By (3.25), there exists 7o € T’
such that p,, < 1. The map ., is a contraction of the complete metric space (N, dy),
where dy is the distance induced by gn. By the Banach fixed point theorem, 1., has
a unique fixed point zg € N and

(3.26) lim ¥ (z) =z, VaeN.

k—oo

Let v be any element of I'. For every integer £ € N we have

Yk = ('7(1; O'YO'VO_k)(OaOaxO) = (8’77t77¢§o(¢’7(l‘0))>a

so by (3.26), the sequence {y;} converges to (s,,t,, o) =: yo. Since the action of
I' is totally discontinuous, this implies that yr = o for k£ sufficiently large, whence
s (z0) = xo for every v € I.

Consider now the continuous map f : R? x N — R, defined by f(s,t,2) =
e“Ddy(z,20). Using (3.25) an immediate induction shows that

c(nty,) = ¢(0) = nin(p,,), VneZ,
thus showing that ¢ is onto on R. In particular, f is onto on R, .

For every v € I we have using (3.25):

(Y (s t,z) = f(s+sy,t+t,10,(x)) = ec(t+t”)dN(1/17(x), o)
= ey (4 (), 4 (20)) = pre T dy (2, 0) = ey (2, o)
= f(s,t,x).

Thus f is T-invariant and induces a continuous map f : I'\(R? x N) — R. Since
f is onto, f is also onto, contradicting the fact that the action of I' on R? x N is
co-compact. [
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Summarizing, we have proved:

Theorem 3.5. Let (M, g, J,0) be a compact lcK manifold of complex dimension n > 2
admitting a non-trivial parallel vector field V.. Then the following (exclusive) possibil-
1ties occur:

(i) The Lee form 0 is a (non-zero) constant multiple of V°, so M is a Vaisman
leK manifold.

(ii) (M, g,Q,0) is globally conformally Kdhler and there exists a complete simply
connected Kdhler manifold (N, gn,Qn) of real dimension 2n — 2, a smooth
real function ¢ : R — R and a discrete co-compact group I acting freely and
totally discontinuously on R? x N, preserving the metric ds® + dt® + e* gy,
the Hermitian 2-form ds A dt + 2Oy and the vector fields Os and Oy, such
that M is diffeomorphic to T\(R? x N), and the structure (g,$2,0) corresponds
to (ds? + dt? + e*Wgy, ds A dt + €2y, dc) through this diffeomorphism.

Ezample 3.6. Typically, one can obtain examples of type (ii) by taking (N, gn, Q)
to be any compact Kéhler manifold, ¢ any T-periodic function, and I' the group of
isometries of (R? x N,ds? + dt? + ¢*®gy) generated by the maps v, : (s,t,2)
(s+ 1,t,x) and vo : (s,t,x) — (s,t + T, x).
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