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Abstract. We show that for n > 2 a compact locally conformally Kähler manifold

(M2n, g, J) carrying a non-trivial parallel vector field is either Vaisman, or globally

conformally Kähler, determined in an explicit way by a compact Kähler manifold of

dimension 2n− 2 and a real function.

1. Introduction

A locally conformally Kähler (lcK) manifold is a Hermitian manifold (M, g, J) of

real dimension 2n ≥ 4 such that around each point, g is conformal to a Kähler metric

relative to J , cf. [3].

The differentials of the (logarithms of the) conformal factors glue up to a well-defined

closed 1-form on M – called the Lee form of the lcK structure – which is exact if and

only if (M, g, J) is globally conformally Kähler.

Many complex manifolds which for topological reasons do no carry any Kähler met-

ric, have compatible lcK metrics. For example the product metric on the Hopf manifold

S1 × S2n−1 (with odd first Betti number) is lcK with respect to the complex structure

induced from the identification

S1 × S2n−1 ' (R/Z× S2n−1) ' (R× S2n−1)/Z ' (Cn \ {0})/Z.

The Lee form of this structure is easily computed to be the length element of S1, and is

therefore parallel. Compact lcK manifolds with parallel Lee form are called Vaisman

[8], and their structure is well-understood: they are mapping tori of automorphisms

of Sasakian manifolds cf. [7]. Moreover, it was recently proved that every compact

homogeneous lcK manifold is Vaisman [4].

In real dimension 4 it is well known that a compact complex manifold carries a

compatible Kähler metric if and only if its first Betti number is even [2], [6]. It

was generally believed that every complex surface with odd first Betti number would

carry a compatible lcK structure, until Belgun has shown that some Inoue surfaces

do not carry any lcK structure [1]. He also showed that every Hopf surface admits a
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compatible lcK metric – for primary Hopf surfaces this had been previously proved by

Gauduchon and Ornea [5] –, and classified all Vaisman complex surfaces.

In this paper we address the following question: Are there non-Vaisman compact

lcK manifolds which carry a non-trivial parallel 1-form? It turns out that the answer

to this question is positive, and moreover, one can describe the lcK structure of such

manifolds in a very explicit way in all dimensions greater than 4 (cf. Theorem 3.5

below). These manifolds are globally conformally Kähler, but the metric is not Kähler

in general. In dimension 4 this construction still gives examples of non-Vaisman lcK

manifolds carrying a parallel 1-form (cf. Example 3.6), but we do not know whether

these are the only examples.

A more general problem, which however will not be considered here, would be to

describe all compact lcK manifolds with special holonomy (e.g. with reducible holo-

nomy, or whose holonomy group belongs to the Berger list). Note that unlike Kähler

manifolds, the Riemannian product of lcK manifolds is no longer lcK (at least not in a

canonical way). This somehow indicates that the holonomy reduction of a lcK metric

is a strong condition, which might lead in general to classification results in the vein

of Theorem 3.5.

2. Some preliminaries on lcK manifolds

As explained in the introduction, a lcK manifold is a Hermitian manifold (M, g, J)

of real dimension 2n ≥ 4 carrying an open cover Uα and real maps fα : Uα → R such

that (Uα, e
−2fαg, J) are Kähler manifolds. Denoting Ω(·, ·) := g(J ·, ·) the fundamental

form of M , the above condition yields

(2.1) 0 = d(e−2fαΩ) = e−2fα(−2dfα ∧ Ω + dΩ).

Since the linear map Λ1M → Λ3M defined by σ 7→ σ ∧ Ω is injective, (2.1) shows

that dfα = dfβ on Uα ∩ Uβ, so the 1-forms dfα glue together to a closed form θ on

M – called the Lee form – such that θ|Uα = dfα for all α. The Levi-Civita covariant

derivatives ∇ and ∇α of the conformal metrics g and e−2fαg on Uα are related by the

well known formula

∇XY = ∇α
XY + θ(X)Y + θ(Y )X − θ]g(X, Y ),

where θ] is the vector field dual to θ via the metric g. Using the fact that ∇αJ = 0 on

Uα, we thus obtain:

(∇XJ)(Y ) = ∇X(JY )− J(∇XY )

= ∇α
X(JY ) + θ(X)JY + θ(JY )X − θ]g(X, JY )

−J
(
∇α
XY + θ(X)Y + θ(Y )X − θ]g(X, Y )

)
= θ(JY )X − θ]g(X, JY )− θ(Y )JX + Jθ]g(X, Y ).
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Identifying 1-forms with vectors using the metric g =: 〈·, ·〉, this relation can be equiv-

alently written as

(2.2) (∇XJ)Y = 〈X, Y 〉Jθ + θ(JY )X + 〈JX, Y 〉θ − θ(Y )JX ∀X, Y ∈ TM,

or else

(2.3) ∇XΩ = X ∧ Jθ + JX ∧ θ ∀X ∈ TM.

If ei denotes a local orthonormal basis of TM we have Ω = 1
2

∑
i ei ∧ Jei, so by (2.3)

we immediately get

(2.4) dΩ =
∑
i

ei ∧∇eiΩ = 2θ ∧ Ω,

which also follows from (2.1).

3. Parallel vector fields on lcK manifolds

Assume throughout this section that that the dimension of M is strictly larger than

4 and that V is a non-trivial parallel vector field on M . We can of course rescale V

such that it has unit length. Consider the components of θ along V and JV :

(3.1) a := θ(V ), b := θ(JV ).

Since ∇V = 0 we have ∇X(JV ) = (∇XJ)V , so using (2.3) we get

(3.2) ∇X(JV ) = 〈X, V 〉Jθ + bX + 〈JX, V 〉θ − aJX ∀X ∈ TM.

In particular we have

(3.3) ∇V (JV ) = Jθ + bV − aJV.

We also infer from (3.2)

(3.4) d(JV ) = ei ∧∇ei(JV ) = V ∧ Jθ − JV ∧ θ − 2aΩ,

whence using (2.4) and (3.4):

0 = d2(JV ) = −V ∧ d(Jθ)− d(JV ) ∧ θ − 2da ∧ Ω− 4aθ ∧ Ω

= −V ∧ d(Jθ)− V ∧ Jθ ∧ θ + 2aΩ ∧ θ − 2da ∧ Ω− 4aθ ∧ Ω

= −V ∧ (d(Jθ) + Jθ ∧ θ)− 2 (da+ aθ) ∧ Ω.

Taking the exterior product with V in this relation yields

V ∧ (da+ aθ) ∧ Ω = 0.

The assumption n > 2 implies that V ∧ (da+ aθ) = 0, so there exists some function f

on M such that

(3.5) da+ aθ = fV.
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Since θ is closed and V is parallel, the Cartan formula yields

(3.6) ∇V θ = LV θ = d(V yθ) = da = fV − aθ,

and a direct computation using (2.2) gives

(3.7) ∇V (Jθ) = θ +
(
f − |θ|2

)
JV.

Since V is parallel we have RV,X = 0 for every vector fieldX, where RX,Y := [∇X ,∇Y ]−
∇[X,Y ] denotes the curvature tensor of ∇. Consequently, taking X to be ∇-parallel at

some point x ∈M , we obtain

(3.8) ∇V∇XΩ−∇X∇V Ω = RV,XΩ = [RV,X ,Ω] = 0

at x, where the bracket in the last formula means the commutator of endomorphisms

of TM . Using (2.2), (2.3), (3.6) and (3.7) we compute at x:

∇V∇XΩ = ∇V (X ∧ Jθ + JX ∧ θ) = X ∧∇V (Jθ) + JX ∧∇V θ + (∇V J)X ∧ θ
= X ∧

(
bθ +

(
f − |θ|2

)
JV
)

+ JX ∧ (fV − aθ)
+ (〈V,X〉Jθ + θ(JX)V + 〈JV,X〉θ − θ(X)JV ) ∧ θ

and

∇X∇V Ω = ∇X(V ∧ Jθ + JV ∧ θ) = V ∧∇X(Jθ) + JV ∧∇Xθ + (∇XJ)V ∧ θ
= V ∧∇X(Jθ) + JV ∧∇Xθ + (〈X, V 〉Jθ + bX + 〈JX, V 〉θ − aJX) ∧ θ

After straightforward simplifications we get from (3.8):

0 = ∇V∇XΩ−∇X∇V Ω

= (∇X(Jθ) + fJX − θ(JX)θ) ∧ V +
(
∇Xθ +

(
f − |θ|2

)
X + θ(X)θ

)
∧ JV.

This relation is tensorial in X, so it actually holds at every point of M .

Remark now that if A ∧ V + B ∧ JV = 0 for some vectors A and B, then both

vectors belong to the plane generated by V and JV . The previous relation thus shows

that there exist some 1-forms µ and ν such that

(3.9) ∇Xθ +
(
f − |θ|2

)
X + θ(X)θ = µ(X)V + ν(X)JV, ∀X ∈ TM.

We take the exterior product with X in this relation and sum over some local or-

thonormal basis X = ei. As dθ = 0, we get µ∧V + ν ∧ JV = 0, hence by the previous

remark there exist smooth functions α, β, γ on M such that µ = αV − γJV and

ν = γV + βJV . Taking X = V in Equation (3.9) and using (3.6) yields

fV − aθ +
(
f − |θ|2

)
V + aθ = αV + γJV,

whence γ = 0 and

(3.10) α = 2f − |θ|2.
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Equation (3.9) thus becomes

(3.11) ∇Xθ = (f − α)X − θ(X)θ + α〈X, V 〉V + β〈X, JV 〉JV, ∀X ∈ TM.

Using this relation together with (2.2) we readily obtain

(3.12) ∇X(Jθ) = −fJX + θ(JX)θ + α〈X, V 〉JV − β〈X, JV 〉V, ∀X ∈ TM.

In particular the exterior derivative of Jθ reads

(3.13) d(Jθ) = ei ∧∇ei(Jθ) = −2fΩ + θ ∧ Jθ + (α + β)V ∧ JV.

We now take the scalar product with V in (3.12) and obtain

(3.14) 〈∇X(Jθ), V 〉 = f〈X, JV 〉+ aθ(JX)− β〈X, JV 〉, ∀X ∈ TM.

On the other hand

〈∇X(Jθ), V 〉 = ∇X〈Jθ, V 〉 = −X(b),

so from (3.14) we obtain

(3.15) db = (β − f)JV + aJθ.

Taking the exterior derivative in this equation and using (3.4), (3.5) and (3.13) yields

0 = d2b = d(β − f) ∧ JV + (β − f)(V ∧ Jθ − JV ∧ θ − 2aΩ)

+ (fV − aθ) ∧ Jθ + a (−2fΩ + θ ∧ Jθ + (α + β)V ∧ JV )

= d(β − f) ∧ JV + βV ∧ Jθ − (β − f)JV ∧ θ + a(α + β)V ∧ JV − 2aβΩ.

This shows in particular that V ∧ JV ∧ (aβΩ) = 0, whence

(3.16) aβ = 0.

Reinjecting in the previous equation gives

(3.17) d(β − f) ∧ JV + βV ∧ Jθ − (β − f)JV ∧ θ + aαV ∧ JV = 0.

We now use (3.13) together with (2.4) and (3.4):

0 = d2(Jθ) = −2df ∧ Ω− 4fθ ∧ Ω− θ ∧ (−2fΩ + θ ∧ Jθ + (α + β)V ∧ JV )

+d(α + β) ∧ V ∧ JV − (α + β)V ∧ (V ∧ Jθ − JV ∧ θ − 2aΩ)

= 2 (−df − fθ + a(α + β)V ) ∧ Ω + d(α + β) ∧ V ∧ JV.

As n > 2, this shows that

(3.18) df + fθ = aαV.

Using this relation together with (3.17) yields

(dβ + βθ) ∧ JV + βV ∧ Jθ = 0.

We take the interior product with V in this relation and obtain

V (β)JV + βJθ + bβV = 0.
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Since by (3.16), JV is orthogonal to β(Jθ + bV ), this implies that V (β) = 0 and

β(Jθ + bV ) = 0.

We now use (3.11) in order to express the differential of the square norm |θ|2. For

every tangent vector X we have

X(|θ|2) = 2〈∇Xθ, θ〉 = 2〈(f − α)X − θ(X)θ + α〈X, V 〉V + β〈X, JV 〉JV, θ〉
= 2〈X, (f − α)θ − |θ|2θ + aαV + bβJV 〉,

so from (3.10) we get

d|θ|2 = 2
(
(f − α)θ − |θ|2θ + aαV + bβJV

)
= 2 (−fθ + aαV + bβJV ) ,

whence using (3.18):

(3.19) dα = d
(
2f − |θ|2

)
= 2(aαV − fθ)− 2(−fθ + aαV + bβJV ) = −2bβJV.

We are now ready to prove the key result of this section

Lemma 3.1. If M is compact, the Lee form θ of the lcK structure belongs to the space

generated by V and JV . Equivalently,

(3.20) θ = aV + bJV.

Proof. Let dµg denote the volume form of M . Taking the trace in (3.2) we get

(3.21) δ(JV ) = (2− n)b

and from (3.11) together with (3.10) we readily compute

(3.22) δθ = n(α− f) + |θ|2 − α− β = (n− 2)(α− f)− β.

Moreover, taking the scalar product with V in (3.12) and choosing X = JV gives

−JV (b) = 〈∇JV Jθ, V 〉 = f − a2 − β,

which together with (3.5) yields β = JV (b) +V (a). Using the Stokes Theorem several

times we obtain∫
M

fdµg =

∫
M

(
V (a) + a2

)
dµg =

∫
M

(
aδV + a2

)
dµg =

∫
M

a2dµg,

and from (3.21)–(3.22)∫
M

(α− f)dµg =
1

n− 2

∫
M

(β + δθ) dµg =
1

n− 2

∫
M

βdµg

=
1

n− 2

∫
M

(V (a) + JV (b)) dµg =
1

n− 2

∫
M

(aδV + bδ(JV ))dµg

=
1

n− 2

∫
M

(2− n)b2dµg = −
∫
M

b2dµg,
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so finally∫
M

|θ − aV − bJV |2dµg =

∫
M

(|θ|2 − a2 − b2)dµg =

∫
M

(2f − α− a2 − b2)dµg

=

∫
M

(f − a2 + (f − α)− b2)dµg = 0.

�

From now on M will be assumed compact.

Lemma 3.2. The following relations hold: ab = 0, f = a2, α = a2 − b2.

Proof. Taking the covariant derivative in (3.20) with respect to some arbitrary vector

X and using (3.2), (3.5) and (3.15) yields:

∇Xθ = X(a)V +X(b)JV + b∇XJV

= f〈X, V 〉V − a〈X, aV + bJV 〉V + (β − f)〈X, JV 〉JV + a〈X, aJV − bV 〉JV
+b (〈X, V 〉(aJV − bV ) + bX + 〈JX, V 〉(aV + bJV )− aJX)

= b2X − abJX +
(
f − a2 − b2

)
〈X, V 〉V − 2ab〈X, JV 〉V

+
(
β − f + a2 − b2

)
〈X, JV 〉JV.

Comparing with (3.11) we thus get:

∇Xθ = (f − α)X − θ(X)θ + α〈X, V 〉V + β〈X, JV 〉JV
= (f − α)X + 〈X, aV + bJV 〉(aV + bJV ) + α〈X, V 〉V + β〈X, JV 〉JV

and identifying the corresponding terms yields the result. �

Using Lemma 3.2 we now get from (3.5):

da = fV − aθ = fV − a2V − abJV = 0,

thus showing that a is constant on M . We distinguish two cases:

Case 1: a 6= 0. From Lemma 3.2 we must have b = 0, whence θ = aV is parallel,

so (M, g, J) is Vaisman and the parallel vector field V is proportional to the Lee form.

Case 2: a = 0. From Lemma 3.2 again we get f = 0, α = −b2 and θ = bJV .

Equation (3.2) now reads

(3.23) ∇X(JV ) = b (X − 〈X, V 〉V − 〈X, JV 〉JV ) ∀X ∈ TM.

Remark that M is never Vaisman in this case (unless it is Kähler). Indeed, from (3.15)

we see that X(b) = 0 for all X orthogonal to V and JV . If θ were parallel, we would

have by (3.23): 0 = ∇Xθ = n∇XJV = b2X for every vector X orthogonal to V and

JV , and thus b = 0, so θ = 0.
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By symmetrization (3.23) gives:

(3.24) LJV g = 2b(g − V [ ⊗ V [ − JV [ ⊗ JV [).

This relation allows us to make more explicit the metric structure of M :

Lemma 3.3. The universal cover (M̃, g̃, Ω̃) of (M, g,Ω) is (holomorphically) isometric

to R2 × (N, gN ,ΩN) endowed with the metric ds2 + dt2 + e2c(t)gN and the Kähler form

ds ∧ dt + e2c(t)ΩN , for some complete simply connected Kähler manifold (N, gN ,ΩN)

of real dimension 2n− 2 and some smooth real function c.

Proof. The tangent bundle of M is the direct sum of three orthogonal distributions:

TM = 〈V 〉 ⊕ 〈JV 〉 ⊕ D, where D := 〈V, JV 〉⊥. Since dV = 0 (as V is parallel) and

d(JV ) = 0 by (3.23), the distribution D is involutive. From (3.23) again we easily

check that [V, JV ] = 0, [V,D] ⊂ D and [JV,D] ⊂ D. The Frobenius theorem shows

that there exist local coordinates (s, t, x) ∈ R × R × Rn−2 around each point of M ,

such that V = ∂s, JV = ∂t and the metric g has the form g = ds2 + dt2 + h(s, t), for

some family of metrics h(s, t) on Rn−2.

We first note that for each s, t the metric h(s, t) is Kähler. Indeed, J defines by

restriction to D an integrable complex structure on each local leaf Rn−2, whose Kähler

form Ω(s, t) is just the restriction of Ω. Consequently, dΩ(s, t) is the restriction to the

leaves of dΩ = θ ∧ Ω, which vanishes since θ|D = 0.

Now, since V is parallel on M , its flow preserves g, whence h(s, t) = h(t) is inde-

pendent on s. From (3.15) we see that b = b(t) depends on t alone. Moreover, (3.24)

yields
∂h

∂t
= 2b(t)h,

whence

h(s, t) = e
∫ t
0 2b(τ)dτh(0).

This proves the local version of the lemma, by defining c(t) :=
∫ t
0
b(τ)dτ and gN :=

h(0). The global statement follows from the Frobenius theorem applied to the universal

cover of M . �

The fundamental group ofM induces a co-compact group of isometries of the globally

conformally Kähler manifold (M̃, g̃) := (R2 × N, ds2 + dt2 + e2c(t)gN). Our next aim

is to show that the Lee form of M is exact. Note that the Kähler form of M̃ is

Ω̃ = ds ∧ dt+ e2c(t)ΩN , which satisfies

dΩ̃ = 2c′(t)dt ∧ e2c(t)ΩN = 2c′(t)dt ∧ Ω̃ = 2dc ∧ Ω̃,

showing that the Lee form of M̃ is θ̃ = dc. It suffices to check that the function c is

Γ-invariant. This follows from a more general statement:
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Lemma 3.4. Assume that (Nd, gN) is a complete simply connected Riemannian man-

ifold of dimension d ≥ 1, c : R → R is a smooth function and Γ is a co-compact

group acting totally discontinuously by isometries on the Riemannian manifold (R2 ×
N, ds2 + dt2 + e2c(t)gN). Assume moreover that Γ preserves the vector fields ∂s and ∂t.

Then the function c is invariant by Γ.

Proof. The last assumption shows that every element γ ∈ Γ has the form γ(s, t, x) =

(s+ sγ, t+ tγ, ψγ(x)), where sγ and tγ are real numbers and ψγ is a diffeomorphism of

N . The condition that γ is an isometry of the metric ds2 + dt2 + e2c(t)gN reads

e2c(t)gN(X, Y ) = e2c(t+tγ)gN((ψγ)∗(X), (ψγ)∗(Y )), ∀ t ∈ R, X, Y ∈ TN.

Thus ψγ is a homothety of (N, gN) with ratio

(3.25) ργ := ec(t)−c(t+tγ)

(note that, in particular, this expression does not depend on t).

Assume, for a contradiction, that c is not Γ-invariant. By (3.25), there exists γ0 ∈ Γ

such that ργ0 < 1. The map ψγ0 is a contraction of the complete metric space (N, dN),

where dN is the distance induced by gN . By the Banach fixed point theorem, ψγ0 has

a unique fixed point x0 ∈ N and

(3.26) lim
k→∞

ψkγ0(x) = x0, ∀ x ∈ N.

Let γ be any element of Γ. For every integer k ∈ N we have

yk := (γk0 ◦ γ ◦ γ−k0 )(0, 0, x0) = (sγ, tγ, ψ
k
γ0

(ψγ(x0))),

so by (3.26), the sequence {yk} converges to (sγ, tγ, x0) =: y0. Since the action of

Γ is totally discontinuous, this implies that yk = y0 for k sufficiently large, whence

ψγ(x0) = x0 for every γ ∈ Γ.

Consider now the continuous map f : R2 × N → R+ defined by f(s, t, x) :=

ec(t)dN(x, x0). Using (3.25) an immediate induction shows that

c(ntγ0) = c(0)− n ln(ργ0), ∀ n ∈ Z,

thus showing that c is onto on R. In particular, f is onto on R+.

For every γ ∈ Γ we have using (3.25):

(γ∗f)(s, t, x) = f(s+ sγ, t+ tγ, ψγ(x)) = ec(t+tγ)dN(ψγ(x), x0)

= ec(t+tγ)dN(ψγ(x), ψγ(x0)) = ργe
c(t+tγ)dN(x, x0) = ec(t)dN(x, x0)

= f(s, t, x).

Thus f is Γ-invariant and induces a continuous map f̃ : Γ\(R2 × N) → R. Since

f is onto, f̃ is also onto, contradicting the fact that the action of Γ on R2 × N is

co-compact. �
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Summarizing, we have proved:

Theorem 3.5. Let (M, g, J, θ) be a compact lcK manifold of complex dimension n > 2

admitting a non-trivial parallel vector field V . Then the following (exclusive) possibil-

ities occur:

(i) The Lee form θ is a (non-zero) constant multiple of V [, so M is a Vaisman

lcK manifold.

(ii) (M, g,Ω, θ) is globally conformally Kähler and there exists a complete simply

connected Kähler manifold (N, gN ,ΩN) of real dimension 2n − 2, a smooth

real function c : R → R and a discrete co-compact group Γ acting freely and

totally discontinuously on R2 × N , preserving the metric ds2 + dt2 + e2c(t)gN ,

the Hermitian 2-form ds ∧ dt + e2c(t)ΩN and the vector fields ∂s and ∂t, such

that M is diffeomorphic to Γ\(R2×N), and the structure (g,Ω, θ) corresponds

to (ds2 + dt2 + e2c(t)gN , ds ∧ dt+ e2c(t)ΩN , dc) through this diffeomorphism.

Example 3.6. Typically, one can obtain examples of type (ii) by taking (N, gN ,ΩN)

to be any compact Kähler manifold, c any T -periodic function, and Γ the group of

isometries of (R2 × N, ds2 + dt2 + e2c(t)gN) generated by the maps γ1 : (s, t, x) 7→
(s+ 1, t, x) and γ2 : (s, t, x) 7→ (s, t+ T, x).
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