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Abstract. An essential point of a conformal vector field ξ on a conformal manifold
(M, c) is a point around which the local flow of ξ preserves no metric in the conformal
class c. It is well-known that a conformal vector field vanishes at each essential point.
In this note we show that essential points are isolated. This is a generalization to
higher dimensions of the fact that the zeros of a holomorphic function are isolated. As
an application, we show that every connected component of the zero set of a conformal
vector field is totally umbilical.
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1. Introduction

It is a classical result by D. Alekseevskii [1] that the group of conformal automor-
phisms of a Riemannian manifold either fixes a conformally equivalent metric or the
manifold is conformally flat. A gap in his proof, found by R.J. Zimmer and K.R.
Gutschera in 1992, was filled by J. Ferrand [6].

From an infinitesimal point of view, if a conformal manifold admits a complete and
essential conformal vector field (whose global flow acts by conformal transformations,
but not by isometries with respect to any compatible metric), then it is conformally
flat, [10]. More recently, Ch. Frances proved a local version of this result [7], see also
[8] and [11] for the pseudo-Riemannian setting.

For a given conformal vector field ξ (whose flow is not globally defined in general),
there might exist local metrics in the conformal class preserved by the local flow of ξ.
The union of the definition domains of these ξ-invariant local metrics is the open set of
non-essential points of the conformal vector field ξ. This motivates the following:

Definition 1.1. Let (M, c) be a conformal manifold and let ξ be a conformal vector field
on M . A point x ∈ M is called essential for ξ if there is no local metric in c preserved
by the local flow of ξ around x.

If ξ does not vanish at some point p, it is easy to see that p is not essential. Indeed, ξ is
rectifiable in a neighborhood U of p, so there exists a system of coordinates (x1, . . . , xn)
near p such that xi(p) = 0 for all i and ξ = ∂/∂x1. Take any metric in c, restrict it
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to the hypersurface U ∩ {x1 = 0} and extend it to U as to be constant with respect to
x1. Then ξ preserves the new metric, which moreover belongs to the conformal class c
because ξ is conformal.

In this note, we prove

Theorem 1.2. The essential set of a conformal vector field ξ on a Riemannian manifold
M of dimension n ≥ 2 consists of isolated zeros of ξ.

Note that this is equivalent for n = 2 to the fact that the zeros of a non-constant
holomorphic function are isolated. The theorem above may thus be seen as an extension
to higher dimensions of this classical fact.

For the proof, we focus on the zero set of ξ and show that if a zero point x of ξ is not
isolated then an algebraic condition (Theorem 2.1) is satisfied by the derivative of ξ at
x, which implies, via a result by Beig [2] and Capocci [4], that ξ is Killing with respect
to a local metric around x.

As an application, we show in Theorem 3.1 that every connected component of the
zero set of ξ is a totally umbilical submanifold, thus generalizing a well-known result
of S. Kobayashi [9], that states that the connected components of the set of zeros of a
Killing vector field on a Riemannian manifold are totally geodesic submanifolds of even
codimension.

A proof of Theorem 3.1 was previously given by D.E. Blair [3] under the additional
restriction (required by his proof based on the Obata theorem) that the manifold is
compact. Instead, our proof is purely local, as is the proof of the above mentioned
Kobayashi’s result.

Very recently, results similar to Theorem 1.2 were obtained independently by M.
Lampe in his PhD Thesis [11].

2. Proof of the main result

Let (Mn, c) (n ≥ 3) be a conformal manifold. We choose a background Riemannian
metric g ∈ c and make the usual identifications between vectors and 1-forms, 2-forms
and skew-symmetric endomorphisms etc., induced by this metric.

A vector field ξ is called conformal if the symmetric part of its covariant derivative
with respect to the Levi-Civita connection of g is reduced to its trace:

(1) ∇Y ξ =
1

2
Y y dξ + ϕY, ∀Y ∈ TM.

The function ϕ is equal to −δgξ/n, but we will not need this in the sequel.

Let Zξ and Eξ denote the zero set and the essential set of ξ respectively. We have
seen that Eξ ⊂ Zξ, so in order to prove Theorem 1.2, it will be enough to show that
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every limit point1 x of Zξ is not essential, i.e. there exists a ξ-invariant metric defined
locally around x.

To do that, we make use of the following criterion by Capocci [4, Theorem 2.1], (cf.
also [2]):

Theorem 2.1. [4] Let x ∈ Zξ be a zero of the conformal field ξ on a Riemannian
manifold (M, g) of dimension at least 3 and let ϕ be the function defined by (1). Then
ξ is a homothetic vector field with respect to some conformal metric g̃ defined on a
neighborhood of x if and only if the gradient of ϕ with respect to g belongs to the image
of ∇ξ at x; moreover, ξ is Killing with respect to g̃ if, in addition, ϕ(x) = 0.

Theorem 1.2 will follow directly from Theorem 2.1, together with:

Theorem 2.2. Let x ∈ Z ′ξ be a limit point of the zero set Zξ of a conformal vector field
ξ. Then the function ϕ defined in (1) vanishes at x and its gradient with respect to g
belongs to the image of ∇ξ at x.

Proof. Let xk 6= x be a sequence of zeros of ξ converging to x. In a geodesic chart
around x, we connect x with xk by uniquely defined minimizing geodesics, denoted by
ck : [0, tk]→M , ck(0) = x, ck(tk) = xk, ‖ċk‖ = 1.

The function fk := g(ξ, ċk) admits the following Taylor-Lagrange expansion:

(2) fk(tk) = fk(0) + tkf
′
k(τk), for τk ∈ (0, tk).

Since fk(tk) = fk(0) = 0 and tk 6= 0, we have found a sequence of points ck(τk),
converging to x, such that f ′k(τk) = 0.

On the other hand, equation (1) implies that f ′k(t) = ϕ(ck(t)), therefore ϕ vanishes
on a sequence converging to x, thus ϕ(x) = 0.

For the second part of the theorem, we need to show that dϕx lies in the image of
the skew-symmetric endomorphism dξx of TxM for every x ∈ Z ′ξ.

For a geodesic c : [0, T ]→M with c(0) = x and ‖ċ‖ = 1, we denote by ξ′(t) and ξ′′(t)
the derivatives ∇ ˙c(t)ξ, respectively ∇ ˙c(t)∇ ˙c(t)ξ. From (1) we have

(3) ξ′(t) =
1

2
dξ(ċ(t)) + ϕ(c(t))ċ(t),

in particular ξ′(0) = 1
2
dξ(ċ(0)).

Lemma 2.3. For a conformal vector field ξ on a Riemannian manifold (M, g), such
that Lξg = 2ϕg, the following relation holds:

∇Xdξ = 2RX,ξ + 2dϕ ∧X, ∀X ∈ TM.

Proof. The notations are those from (1), which we will use in the following equivalent
form

(4) g(∇Aξ, B) + g(∇Bξ, A) = 2ϕg(A,B), ∀A,B ∈ TM.

1A limit point of a set S in a topological space X is a point x ∈ S such that every neighborhood of
x intersects S \ {x}. The set of limit points of S is denoted by S′.
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Let x ∈M and let X, Y, Z be vector fields parallel at x. Since dξ(Y, Z) = g(∇Y ξ, Z)−
g(∇Zξ, Y ), we have at x:

(∇Xdξ)(Y, Z) = ∇X (dξ(Y, Z)) = g(∇X∇Y ξ, Z)− g(∇X∇Zξ, Y )

= g(RX,Y ξ, Z)− g(RX,Zξ, Y ) + g(∇Y∇Xξ, Z)− g(∇Z∇Xξ, Y ).

We use (4) to substitute the last two terms, and the Bianchi identity for the first two
and get

(∇Xdξ)(Y, Z) = g(RX,ξY, Z)− g(∇Y∇Zξ,X) +∇Y (2ϕg(X,Z))

+ g(∇Z∇Y ξ,X)−∇Z(2ϕg(Y,X))

= 2g(RX,ξY, Z) + 2dϕ(Y )g(X,Z)− 2dϕ(Z)g(X, Y ).

�

We compute then (for clarity, we omit the argument t)

(5) ξ′′ = Rċ,ξ ċ+ (dϕ ∧ ċ)(ċ) + dϕ(ċ)ċ,

in particular, since ξx = 0, we have

(6) ξ′′(0) = 2dϕx(ċ(0))ċ(0)− dϕx.

We come now to the core of our argument. For an arbitrary geodesic c generated by
a unit vector in TxM , we estimate the function f(t) := g(ξc(t), ċ(t)) using the Taylor
expansion of order 2:

(7) f(t) = f(0) + tf ′(0) +
t2

2
f ′′(0) +O(t3).

Here the function f depends on the chosen geodesic, and the error term O(t3) is locally
bounded (around x) by t3K, where K is a positive constant depending only on the
derivatives of ξ but not on the geodesic c. Note that ξx = 0 implies f(0) = 0, and that
f ′(0) = ϕ(x) = 0 for any geodesic c.

We choose c := ck and t := tk, and denote by fk(t) := g(ξck(t), ċ(t)). From (7) we infer

(8) f ′′k (0) −→ 0 for k −→∞,

Restricting ck to a subsequence for which ċk(0) converges to a unit vector V ∈ TxM
yields

(9) dϕx(V ) = 0.

In the next step we estimate ξ(t) := ξc(t) using a version of the Taylor expansion for
vector-valued functions (here we consider ξ(.) as a function on an interval with values
in Rn, whose components are the components of ξ with respect to a chosen orthonormal
basis parallel along c):

(10) ξ(t) = ξ(0) + tξ′(0) +
t2

2
ξ′′(0) +O(t3).
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Note that the function t 7→ ξ(t) depends on the chosen geodesic c, but the norm
of the error term O(t3) is bounded by Mt3 for a constant M depending only on the
derivatives of ξ. We now set c := ck and t = tk and denote the corresponding function
ξck(.) by ξk. We get

0 = tkξ
′
k(0) +

t2k
2
ξ′′k(0) +O(t3k),

which implies, after taking the quotient by t2k and using (3) and (6):

(11)

∥∥∥∥1

2
dξ

(
ċk(0)

tk

)
+ 2dϕx(ċk(0))ċk(0)− dϕx

∥∥∥∥ ≤Mtk ∀k ∈ N.

Denote now by Vk the vector ċk(0)/2tk. The sequence {Vk} is unbounded, but in
our relation (11) only counts the projection of Vk on the image of dξx, denoted by
Wk := πVk.

Since ċk(0) −→ V ∈ TxM and dϕx(V ) = 0 by (9), we conclude that the middle term
in (11) tends to zero, thus

(12) ‖dξx(Wk)− dϕx‖ −→ 0, for k −→∞.

Since Wk ⊥ ker(dξx), it follows that the norm of Wk is bounded, and we can restrict
to a subsequence that converges to W ∈ Im(dξx) (Here we consider the kernel and the
image of dξx as the kernel and the image of a skew-symmetric endomorphism of TxM).
It thus follows

dϕx = dξx(W ),

which finishes the proof.

�

Remark. We have shown that all zeros of ξ which are not isolated are not essential.
Nothing can be said, in general, about isolated zeros of a conformal vector field, as the
following classical example shows:

Let ξ be the conformal vector field on the round sphere Sn ⊂ Rn+1, which is sent
through the stereographic projection from one pole P to a translation vector field on
Rn. Then both ξ and its derivative vanish at P , which is the only zero of ξ. Therefore,
in the notations of the equation (1)), dξP = 0 and ϕP = 0. On the other hand, dϕP 6= 0
(which is implied by the very fact that ξ is not trivial), so the condition in Theorem 2.1
is violated, which is a proof that P is an essential point for ξ.

3. The zero set of a conformal vector field

As an application to our main result, we prove

Theorem 3.1. Let ξ be a conformal vector field on a Riemannian manifold (M, g) of
dimension at least 2, and let Zξ be the zero set of ξ on M . Then Zξ is a disjoint union
of embedded connected totally umbilical submanifolds of M , of even codimension when
not reduced to a point.
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Let N ⊂ M be an isometrically embedded submanifold and denote with the same
letter g both the metric of M and the induced metric on N . Let then ∇M , ∇N be the
associated Levi-Civita connections on M and N . The (0, 2) tensor field B : T ∗N ⊗
T ∗N → ν(N), defined by B(X, Y ) := ∇M

X Y −∇N
XY , where ν(N) the normal bundle of

N in M , is called the second fundamental form of the embedding.

By definition, the submanifold N is called totally umbilical if its second fundamental
form is proportional to the metric tensor induced on N in the following sense:

B(X, Y ) = Hg(X, Y ), ∀X, Y ∈ X (N).

The normal vector field H is called the mean curvature vector field. One-dimensional
submanifolds and totally geodesic submanifolds (i.e. with vanishing second fundamental
form) are totally umbilical.

By definition, every point is considered to be a totally umbilical submanifold of di-
mension 0.

Using the relation between the Levi-Civita connections∇,∇′ of two conformal metrics
g′ = e2fg:

∇′ = ∇+ df ⊗ Id+ Id⊗ df − g · gradgf,

one easily sees that if N is totally umbilical with respect to a metric then it is totally
umbilical with respect to any other conformally equivalent metric. In particular, N is
totally umbilical if there exists a metric g̃ in the conformal class, for which N is totally
geodesic.

Proof of Theorem 3.1. First, we apply Theorem 1.2 to decompose the zero set Zξ as the
disjoint union of its isolated points Ziso and non-isolated points Z ′ := Z ′ξ, which are
inessential, and conclude that every x ∈ Z ′ admits a metric gx ∈ [g], defined locally
around x, such that ξ is Killing with respect to gx, and ξx = 0.

The classical result of Kobayashi [9] implies then that there is a neighborhood Ux of
x such that Zξ∩Ux = expx(ker dξx)∩Ux = expy(ker dξy)∩Ux, for any y ∈ Zξ∩Ux (here,
we consider the dual 1-form to ξ with respect to gx, and compute its exterior derivative
dξ at x; Also, the exponential map expx is taken with respect to gx).

In conclusion, every point in Zξ admits a neighborhood Ux such that Zξ ∩ Ux is a
totally umbilical submanifold of even codimension. By usual connectedness arguments,
these local totally umbilical submanifolds have a common dimension and glue together
to a global submanifold.

�

Note that a classification of totally umbilical submanifolds exists only for space forms
and, more generally, for locally symmetric spaces (see e.g. [5]).

The above result can then be a useful tool for producing examples of totally umbil-
ical submanifolds or obstructions to the existence of conformal vector fields on certain
Riemannian manifolds.
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