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1 Introduction

. hthis paper we give various applications of a constructibicivwe callgener-

» alized cylindersLet M be a manifold and lej; be a smooth 1-parameter family
1 of semi-Riemannian metrics oi/, ¢ € I C R. Then we call the manifold
® Z = I x M with the metricdt®> + g; a generalized cylinder ove¥/. On the
one hand, this ansatz is very flexible. Locally, near a serir@nnian hypersurface with
spacelike normal bundle every semi-Riemannian manifaddtisis form. The restriction to
spacelike normal bundle, i. e. to the positive sign in frdn#43 in the metric ofZ is made
for convenience only. Changing the signs of the metricdbas well as orZ reduces the
case of a timelike normal bundle to that of a spacelike nobuatle. On the other hand,
this ansatz still allows to closely relate the geometried/odnd 2.

In Section 2 we collect basic material on spinors and the daperator on semi-
Riemannian manifolds. We do this to fix notation and for thavamience of the reader.
Some of the material, such as the spin geometry of submasifid not so easily found in
the literature unless one restricts oneself to the Riensarsituation.

In Section 3 we study spinors on a manifold foliated by semerkannian hypersur-
faces. In particular, we derive a formula for the commutafdhe leafwise Dirac operator
and the normal derivative. This formula will be importartela

In Section 4 we collect formulas relating the curvature ofemeralized cylinder to
geometric data oV/.

After these preliminaries we give a first application in $at. One technical diffi-
culty when dealing with spinors comes from the fact that tb#énition of spinors depends
on the metric on the manifold. This problem does not arisenndree works with tensors.
Thus if one wants to compare the Dirac operators for two dfiemetrics, then one first
has to identify the spinor bundles in a natural manner. Tdesfification problem can be
split into two steps. First, construct an identification feparameter families of metrics
and, secondly, given two metrics construct a natural 1spatar family joining them.

The second step is trivial for Riemannian metrics; just uisear interpolation. For
indefinite semi-Riemannian metrics the situation is muchientmmplicated. In fact, two
semi-Riemannian metrics on a manifold cannot always beegbby a continuous path of
metrics even if they have the same signature. In Section Qwedy shis problem in detail
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for Lorentzian metrics and we give a criterion when two Ldréan metrics can be joined
in a natural manner.

The first step, identifying spinors for 1-parameter fansilié semi-Riemannian metrics,
is carried out in Section 5. The idea is very simple. Givengafameter family of metrics
take the corresponding generalized cylinder and use phtedhsport on this cylinder. It
turns out that this identification is the same as the one oartsd differently by Bour-
guignon and the second author in [3] for Riemannian metfib® commutator formula
from Section 3 directly translates to the variation formfalaDirac operators.

This variation formula is what one needs to compute the gnergmentum tensor for
spinors. To make this precise we briefly summarize Lagrarfiggld theory in Section 6 and
we give a general definition of energy-momentum tensorsnT¥ecompute the example
of the Lagrangian for spinors given by the Dirac operator.

In Section 7 we give a new and simple proof of the fundamehtbrtem of hyper-
surface theory. A hypersurface B**! inherits a Riemannian metric and its Weingarten
map must satisfy the Gauss and Codazzi-Mainardi equatidre fundamental theorem
says that, conversely, any Riemannian manifaldvith a symmetric endomorphism field
of T'M satisfying the Gauss and Codazzi-Mainardi equations ddeast locally, be em-
bedded isometrically int®™*! with Weingarten map given by this endomorphism field.
Our proof goes like this: We write down axplicit metric on the cylindeZ = I x M
and we then check that this metric is flat. Since every flat Rieman manifold is locally
isometric to Euclidean space the theorem follows. This @aggin directly extends to semi-
Riemannian manifolds and to embeddings into spaces of @oinséctional curvature not
necessarily zero. This kind of approach to the fundamehéarem for hypersurfaces was
suggested, but not carried out, by Petersen in [10, p. 95].

In Section 8 we study generalized Killing spinors. They draracterized by the overde-
termined equatioR’ 5 ¢ = 1 A(X) 1) whereA is a given symmetric endomorphism field.
We show that ifA is a Codazzi tensor, then the manifold can be embedded aseasyp
face into a Ricci flat manifold equipped with a parallel spimgnich restricts tay). This
generalizes the case of Killing spinors,= X id. The classification of manifolds admitting
Killing spinors in [1] was based on the observation that theecover such a manifold pos-
sesses a parallel spinor. This also generalizes the casé thgarallel which was studied
in [7].

2 The Dirac operator on semi-Riemannian manifolds
n this section we collect the basic facts and conventionseming spinors and

» Dirac operators on semi-Riemannian manifolds. For a detaiitroduction the
reader may consult the book [2]. We start with some algelmaliminaries. Let

T n
(v, w) = Zvjwj - Z v w’
j=1

j=r+1

onR"™. Define the correspondiraythogonal grougpby
O(r,s) :={A € GL(n,R) | (Av, Aw) = {v,w) forallv,w € R"}
and thespecial orthogonal groupy
SO(r,s) :=={A € O(r,s) | det(A) =1}.

If » =0o0rs =0, thenSO(r, s) is connected, otherwise it has two connected components.
The connected component of the identity of the gr8Qxir, s) is denoted bysOq(r, s).
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Now let Cl,. s be theClifford algebracorresponding to the symmetric bilinear form
(-,+). This is the unital algebra generatedRY subject to the relations

vewtw-v+2v,w)-1=0 (2.1)
forall v, w € R™. There is a decomposition into even and odd elements
Cl,s = CI), @ Cl}
such thaiR injects naturally intoﬁl(T{S andR"™ into Cl}“,s' Thespin groupis defined by
Spin(r, s) := {v1 -+ -v € CI, | v; € R™ such that(v;, v;) = +1 andk is ever}

with multiplication inherited fronCl,. ;. Its connected component of the identity, denoted
by Spin, (r, s) is given by

2%k
Sping(r, 8) := {vy - --vog € Clg_’S |v; € R", (v;,v;) =+1land H (vj,v;) =1}
j=1

Givenv € R™ such that{v, v) # 0 and arbitraryw € R™ we see directly from relation

(2.1) thatv=! = — oy and

(v, w)
(v,0)

Hence—Ad, is the reflection across the hyperplane and, in particular, leaveR™ C
Cl, s invariant. Thus conjugation gives an actionSgfin(r, s) on R™ by an even number
of reflections across hyperplanes. This yields the exactesemp

Ady(w) :=v " w-v=—w+2

1—7Z/27 ={1,—1} — Spin(r, s) Ad, SO(r,s) — 1.

If n =1 + s is even the Clifford algebra possesses an irreducible ecampbduleX’, ; of
complex dimensior2”/2, the complexspinor moduleWhen restricted t@lg,s the spinor
module decomposes into

.= eX

7,87

the submodules of spinors pbsitiveresp.negative chirality In particular, the spin group
Spin(r, s) C Cl}, acts on¥;t, and onX,. This action

p=p"@®p :Spin(r,s) — Aut(E;fS) x Aut(X ;) C Aut(X, 5)

is called thespinor representatiomf Spin(r, s). Given an orientation o™ the C1° -
submodulesU, and ¥~ can be characterized by the action of the volume elemsnt=
e1- ... e, € CI), which acts onZ;f, as+i*+"("+1)/2id and onX;, as—i*t"("+1/%id
wherees, .. ., e, is a positively oriented orthonormal basisif.

If n is odd, thenCl, , has two inequivalent irreducible modulgg) ; and %} _, both
of complex dimensio(®~1)/2_ These two modules are again distinguished by the action
of the volume elementol = ¢; - ... - e, € Cl},, namelyvol acts asti*+("*+1/2iq on
x9, and as—i*t"("+1)/2id on X! . When restricted 1] , the two modules become
equivalent and we simply writ&, ; := 2978. This time the spinor representation

p : Sping(r, s) — Aut(X, 5)

is irreducible. The spinor module carries a nondegeneratmifian form(-, -) (in general
not definite) which is invariant under the action$fin,(r, s). To see this, we start with
a Spin(n, 0)—invariant positive definite Hermitian produketon the spinor modulée,, .
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We denote by * the action dfl,, o on X, o. We realizeX’, ; by turningX,, o into aCl, s
representation space in the following way:

ej - ¥i=e;x¥ V1I<j<r and e Wi=iejx¥ Vr+1<j<n,

where{e;} is a space and time oriented local orthonormal frame sudtehia spacelike
for j < r andtimelike forj > r 4+ 1. We then define

s(s+1)
2

(D,¥) =i h(P,erp1 % ... %€ xW).

Itis easy to check that this is a (not necessarily definitejiitéan product an@pin,(r, s)—
invariant, and that the action of a vectore R™ C Cl, s on X, 5 is Hermitian or skew—
Hermitian with respect t¢-, -), depending on the parity af

(v-o1,09) = (=1)*T (o1, v - 09). (2.2)

To prepare for the study of submanifolds later on we now Idadkneembedding oR™
into R™*! such thatfR™)* is spacelike. Le{R™)* be spanned by a spacelike unit vector
eo. The mamR™ — Cl,41 4, v — €g - v, induces an algebra isomorphisih. s — CIEH,S
under which the volume element @1, ; is mapped to the volume element®f, 5 in
casen is odd.

If n is even, then¥,; ; pulls back toX, ; under this algebra isomorphism. In other
words, we can regarfl, ; ; as the spinor representation©¥, ; provided we define the
action ofCl, ; on X, 41 s by

VRO eV 0

wherev € R" and- denotes the action @1, 5.

Similarly, if  is odd, then the action of the volume forms shows tiat, , pulls back
to X7 while ¥,  pulls back toX} ..

Now we turn to geometry. LeX denote an oriented-dimensional differentiable man-
ifold. The bundleP; +(X) of positively oriented tangent frames formsGd. ™ (n, R)-

principal bundle oveX . Here and hencefortiL ™ (n, R) denotes the group of realx n-
: . iy : ot :
matrices with positive determinant andl : GL (n,R) — GL¥(n,R) its connected

twofold covering group. Aspin structureof X is aévLJr(n, R)-principal bundlePg; (X)
over X together with a twofold covering ma@ : Pg; +(X) — Pgp+(X) such that the
following diagram commutes

P +(X) x GL™ (n,R) — P+ (X) (2.3)

N

OxA e X

-

Pgr+(X) x GLT (n,R) — P+ (X)

where the horizontal arrows denote the group actions ontineipal bundles. This def-
inition of a spin structure has the advantage of being inddeet of the choice of any
semi-Riemannian metric ol . An oriented manifold together with a spin structure will be
called aspin manifold

Let X now in addition carry a semi-Riemannian metric of signature), » + s = n,
and space and time orientations. The bunille, (X) C Pqr+(X) of positively space
and time orientearthonormaltangent frames forms &0y (r, s)-principal bundle over
X . RestrictingA : CA}iJr(n,R) — GLT(n,R) to the preimage 68Oy (r, s) € GLT (n,R)
we recoverAd : Spingy(r,s) — SOq(r,s). Putting Pspin, (X) := 07 (Pso, (X)) we
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get aSpin, (r, s)-principal bundle and the maps in diagram (2.3) restrichefbllowing
commutative diagram

PSpinO (X) X Spin() (Tv 5) - PSPino (X)

.

OxAd e X

7

PSOU (X) X SOO (7‘, S) —_— PSOU (X)

Very often in the literaturePs,;,, (X) is called a spin structure of and we will call X
together withPspi, (X)) asemi-Riemannian spin manifold

On a semi-Riemannian spin manifold we definegpaor bundleof X as the complex
vector bundle associated to the spinor representation, i. e

EX = Psping (X) X Dy

In other words, fop € X the fiber of£, X of X' X overp consists of equivalence classes
of pairs[b, o] whereb € Pspin, (X), ando € X, ; subject to the relation

[b,0] = [bg~", go]

for all g € Spin,(r, s). Unfortunately, the spinor bundle cannot be defined inddeetty
of the metric usingPg; + (X) instead ofPsyin, (X)) because the spinor representatioof

Spin, (r, s) on X, s does not extend to a representatior@+(n,R) on X, . We will
come back to this problem in Section 5.

Note that the tangent bundle can also be written in a simiarmer,l’ X = Pso, (X)X,
R™ wherer is the standard representationSgh, (r, s) onIR™. One define£lifford multi-
plicationT, X ® X, X — X, X by

[@(b)a 1)] ' [bv U] = [ba v - J]
whereb € Pspin, (X)p, v € R”, ando € X, ;. Forg € Spin(r, s) we see from

[6(bg),v] - [bg, 7] = [O(b)Ady, v] - [bg, 0] = [O(b), Adgv] - [b, go]
= [b,gvg~"go] = [b,gvo] = [bg,vo]

that this is well-defined. It is this point that goes wrong wiog@e tries to work with nonori-
ented manifolds and pin structures. Had we defilled = X} _ instead of, , = X7 in
odd dimensions, then we would have obtained the Cliffordtiplidation with the opposite
sign.

Clifford multiplication inherits the relations of the Cisfrd algebra, i. e. forX, Y €
T,X andp € X, X we have

XY o4+Y X - 0o+2(X,Y)p=0.

In even dimensions the spinor bundle splits into the pasdivd the negativealf-spinor
bundles
IX=XtTXoX X (2.4)

where X+ X = Pspin, (X) Xt Zj.fs. Clifford multiplication by a tangent vector inter-
changesf ™ X and¥Y~—X.

TheSpiny(r, s)-invariant nondegenerate Hermitian forms bp, and X%, induce (in
general indefinite) inner products X and X+ X which we again denote by, -).
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The connection 1-fornw* on Pso,(X) for the Levi-Civita connectiorWV* can be
lifted via © t0 Pspin, (X), i. €.w™X := Ad;" 0 ©*(w¥). Composing withAd " is nec-
essary because the connection 1-formRap;, (X ) must take values in the Lie algebra of
Spiny (r, s) rather than in that O (r, s). Noww*¥ induces a covariant derivative>~
onXX.

An equivalent, but less invariant, way of describ®g' X is as follows: Ifb is a local
section inPspin, (X ), then©(b) = (e1, ..., e, ) is alocal space and time oriented orthonor-
mal tangent frame(e;, ex,) = ;4,, wheree; = £1. The Christoffel symbols 0¥/~ with
respect to this frame are given by

ek—g keé

Now the covariant derivative of a locally defined spinor figle= [b, o], o a function with
values inY) ;, is given by

1
ijxtpz b,deja+§ E kaskek-eg-a . (2.5)
k<t

One checks thaZ*X is a metric connection and that it leaves the splitting (R14ven
dimensions invariant. Moreover, it satisfies the followlrejbniz rule:

VXY - 9)=(V3Y) o+Y - Vz¥

for all vector fieldsZ andY and all spinor fieldsy.
The curvature tensaR*X of V*X can be computed in terms of the curvature tensor
RX of the Levi-Civita connection,

R¥X(Y, Z)p ZEJEk YZ)eJ,ek> e .
j<k

Using the first Bianchi identity one easily computes
Zej ej - R¥*X(e;,Y)p = §R10X(Y) - . (2.6)

HereRic® denotes th®icci curvatureconsidered as an endomorphism fieldloh/. The
Ricci curvature considered as a symmetric bilinear form aé writtenric™ (Y, Z) =
(RicX(Y), Z).

TheDirac operatormaps spinor fields to spinor fields and is defined by

n
X, _ s . uZX
p=1 E €;€; Vej Pp.
j=1

Given two spinor fields andy one can define a vector field by the requirement’, Z) =
(Z - p,) for all vector fieldsZ and one easily computes

i*div(Y) = (D¥p,9) — (p, D*9).

Hence the Dirac operator is formally selfadjoint, i. e. iétimtersection of the supports of
o andy is compact, then

(D, ) = (¢, D¥9)
where(g, 1) = [}, (¢, ) d



8 Christian Bar et al.

3 The Dirac operator on manifolds foliated by hypersurfaces

et Z be a space and time orientéd + 1)-dimensional semi-Riemannian spin
7. manifold. LetO : Pspin (Z£) — Pso,(Z) be a spin structure of. Let M C Z
be a semi-Riemannian hypersurface with trivial spacelibamal bundle. This

- means there is a vector field on Z along M satisfying (v,v) = +1 and
(v, TM) = 0. If the signature of\/ is (r, s), then the signature & is (r + 1, s).

In this situationM/ inherits a spin structure as follows: The bundle of spacetane
oriented orthonormal frames @, Pso, (M), can be embedded into the bundle of space
and time oriented orthonormal frames Bfrestricted toM, Pso,(Z)|a, by the map :
(e1,...,€n) = (v,€1,...,en). Then Psyin (M) := O~ (u(Pso,(M))) defines a spin
structure onV/. We will always implicitly assume that this spin structure taken oni/.
The same discussion is possible on the levelibf (n,R)-bundles.

The algebraic remarks in the previous section show thaisfeven, then

YZ|y=XM

where the Clifford multiplication with respect td is givenbyX @ ¢ — v- X - p and “”
always denotes the Clifford multiplication with respectZolf n is odd, then

XtZly=YXM
and again Clifford multiplication with respect i/ is given byX ® ¢ — v - X - ¢ while
Y Zuy=XM

with Clifford multiplication with respect ta\/ given byX ® ¢ — —v - X - . The minus
sign comes from the fact that in odd dimensions we defiiigd = X? while X}  leads
to the opposite sign for the Clifford multiplication. Theeiatifications preserve the natural
inner productsg-, -).

Let W denote théMeingarten mamvith respect to, i. e.

viY = VY + (W(X),Y)v (3.1)

for all vector fieldsX andY on M. The Weingarten map is symmetric with respect to
the semi-Riemannian metri¢iV (X),Y) = (X, W(Y)) and is also given byV (X)) =
—VZv. If we denote the Christoffel symbols @ff with respect to a local orthonormal
tangent framgley,...,e,) by Fj]\,f’e and the Christoffel symbols of with respect to

(e0.€1,---,€n), €0 = v, by I'7*, then (3.1) implies foll < j.k,¢ <n

3t =ri (3.2)
F]i 0= <W(ej)’ ek) ) (33)
Fj%’é = —505131“5’0 = —e; (W(ej), eq) . (3.4)

Plugging this into (2.5) we get for a sectign= [b, o] of X Z|); andl < j < n

ot 1,6
VeZe= bdeja-i- g ee (W(ej), er) eoeo - er + g k crer-€er | o

1<k<t<n

1 ¢
= b,dej0'+§ —eo - W{(ej;) + Z Ff,f’ Exeo-€r-€o-er | o
1<k<t<n

, 1
=ViMp— Y W{(e;) - .
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Hence for eact € T'M and each sectiop of X' Z|,, we have

.1
VxTe=Vxte - sv-W(X) e (3.5)

Now let p be a section of. Z defined in a neighborhood éff. On the one hand,

n
Z'_SDZQD = ZEjej . ijzga +v- szgo.
j=1

On the other hand by (3.5),

n n n

1
> cjej Vetp =) cieg Vo= ejej v Wie) o
j=1 j=1

j=1

n n
) 1
71/~E Ejl/~ej~ijMgO+§E gjv-ej-Wiej) ¢
=1 i=1

~ar 1
= —i*v.-DM — 3 tr(Wv -

~ ~ M
where DM = DM if n is even andDM = DO ,BM

operators o/ and onZ are related by

) if n is odd. Thus the Dirac

;S

v-DZ =DM 4 Z2nH —itvEE (3.6)

whereH = 1 tr(W) denotes the mean curvature.

Next we consider the situation th&tcarries a semi-Riemannian foliation by hypersur-
faces. The commutator of the leafwise Dirac operator andtinmal derivative will be of
central importance later.

Proposition 3.1.Let Z be an(n + 1)-dimensional semi-Riemannian spin manifold of sig-
nature(r + 1,s). Let Z carry a semi-Riemannian foliation by hypersurfaces wittiat
spacelike normal bundle, i. e. the leavisare semi-Riemannian hypersurfaces and there
exists a vector field on Z perpendicular to the leaves such that v) = 1 andVZv = 0.
Let W denote the Weingarten map of the leaves with respectid letH = % tr(W) be
the mean curvature.

Then the commutator of the leafwise Dirac operator and thenabderivative is given

by
V52, DM = (@ o — 2 v grad (H) - o+ L v-div™ (W) - ).
Here grad™ denotes the leafwise gradientiv" (W) = 3, ¢; (V2/W)(e;) denotes

the leafwise divergence of the endomorphism i€ldD" o = 377, g; v - ¢; - Vil s,
and “.” denotes Clifford multiplication orZ.
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Proof. We choose a local oriented orthonormal tangent fréee. . . , e,,) for the leaves
and we may assume for simplicity th&f e; = 0. We compute
iCIVEE DM = 3 e (VEEw ey VEVG) —vee;  VEMVEE)

j=1

n
= Zsj v-ej- (VfZVerMga — Vé]\/IVfZQD)
j=1

5) 1
(3:5) ZEJ' v - €j . (sz(vezjz + 51/ . W(e]))

Jj=1

1
~(VEZ + 5 W(e))VEF e

= 1
= > gveoe;- (REZ(% ) + Vi, + 37" (V,?W)(ej))w
j=1

- 1 1
+ ey (Vf;v%n — 5V Wiey) +5v (VfW)(ej))w
j=1

1
= 5V Ric®(v) - o + D"

1 ¢ 5 =
+§;€j € (*W (e) + (V5 W)(ej))sa- (3.7)
The Riccati equation for the Weingarten mapZ W)(X) = R* (X, v)v + W?(X) yields

, - 1 1o
iV DM = —ov RiF W) o+ DV p 0 Tejes - (RE(ejv)p) o
j=1

1 1
= -5V Ric®(v) - o + DV + iricz(y, v)p

1 n
=Wy - 52@ ric? (v, e;) v -e; - p. (3.8)

j=1
The Codazzi-Mainardi equation [9, p. 115] gives forY, V e T, M
(RE(X,Y)V,v) = (VEW)(Y),V) = (V¥ W)(X), V).

Thus

£; <RZ(X, ej)e;, l/>

NE

ric (v, X) =
1

<.
Il

s ((TEW)es),es) — (FHW)(X),e,))

I

<
Il
—

— tr(VMW) — <divM(W), X> .
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Plugging this into (3.8) we get

i VEE DM o = 0" - %isj (V2 W) = (aiv™ (W), e;)) v-e -

j=1

1 1
— Wy 3 Zsj de, tt(W)v - ej - o+ v divM(W) 4
j=1

| 1
— Wy — gy ~grad (H) - o+ sv- div™ (W) - .

4 The generalized cylinder

Z:=IxM

with semi-Riemannian metric
gz == dt* + gq.

The generalized cylinder is &n+1)-dimensional semi-Riemannian manifold (with bound-
ary if I has boundary) of signatufe + 1, s) if the signature ofy; is (r, s). The vector field
V= % is spacelike of unitlength and orthogonal to the hypersada/; := {¢t} x M. Let

W denote the Weingarten map df; with respect tar and letH be the mean curvature.
If X is alocal coordinate field o/, then(X, v) = 0 and[X,v] = 0. Thus

0=dy, (X,v) =(VIX,v) +(X,VZv) = (Viv,v) + (X, Vi)
= —(W(X),v) + (X, VZv) =(X,Vv)

and differentiatingv, v) = 1 yields (v, VZv) = 0. Hence
Vv =0,

i. e. forp € M the curves — (t,p) are geodesics parameterized by arclength. So the
assumptions of Proposition 3.1 are satisfied for the faliedi\/;):c;.

Now fix p € M andX,Y e T,,M. We define the first and second derivativeypby

G, V) = S0 (X)),
G, Y) = S0 Y),

Theng: andg; are smooth 1-parameter families of symmeteicO)-tensors on/.
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Proposition 4.1.0n a generalized cylindeE = [ x M with semi-Riemannian metric
g% = (-,-) = dt® + g, the following formulas hold:

(W(X),Y) = —%g't(X, Y), (4.1)

(R®(U,V)X,Y) = (RM(U,V)X,Y) (4.2)
4 GU )3V Y) = 40, )u(V, X)),

<RZ(X7 Y)Uv V> = % ((vytgt)(Xv U) - (Véb([tgt)(ya U)) ’ (43)

(RE(X v Y) = —2 (X, Y) + @(W(X).Y)). (4.9

ric? (v,v) = tr(W?) — %trgt (Gt)s (4.5)

ricZ (X, v) = dx tr(W) — <divM(W),X> : (4.6)

ric®(X,Y) = ric”(X,Y) + 2(W(X), W(Y)) 4.7)

(W) (W (X),Y) — Z(X. V),
Scal? = Scal™* + 3 tr(W?) — tr(W)? — try, (i), (4.8)

whereX,Y, U,V e I, M,p € M.

Proof. To show (4.1) we extend andY to local coordinate fields o/ so that all Lie
brackets vanish. Then the Koszul formula [9, p. 61] for theii@ivita connection ofZ
yields

(W(X),Y) = —(V30,Y) = 5 (dx () +dy (¥, X) — dy (X))
= *%dv <Y7X> = 7%%915()(7}/) = 7%gt(X7Y)

Equation (4.2) follows directly from (4.1) and the Gaussageqpn [9, p. 100]

(RP(UV)X,Y) = (RM (U, V)X,Y) +(W(U),X) (W(V),Y)
—(W(U),Y) (W(V),X).

Equation (4.3) follows directly from (4.1) and the Codakkkinardi equation [9, p. 115]
(REXY)U,v) = (VW)(0),U) = (T W) (X),U).
The Riccati equation for”

(VEW)(X) = R®*(X,v)v + W(X)
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gives
(RF(X,v)r,Y) = (ViW)(X),Y) = (W*(X),Y)
= % (W(X),Y) = (W(V7X),Y) = (W(X),V]Y)
+%gt(W(X),Y)
= i;’;gxx Y) = (W(VE0),Y) = (W(X),Viv)

50 (X))

_ _%g't(X, Y) + (W(W(X)),Y) + (W(X),W(Y))

50V (X), 1)

= XY~ LW (X),Y)

which is (4.4). The Ricci curvature is now easily computed.

44 1 . .
Zsy vvies) = =5 D e (eleg e) + (W ej). ;)
j=1
. 1
)ty () + (W)
which is (4.5). Moreover,
ric® ZEJ X ej)e;, v >
(4.3) 1 L
= 5;€j (Vg0 (X,e5) = (TN g0)(ese))
(4.1) . :
=3 (VW) (X) e ) = (VW) e), e ))
j=1

_ <divM" W, X> + (VW)
= _ <dith w, X> + dx tr(W)

thus showing (4.6). Furthermore,

ric®(X,Y) = Z 5] X)Y, e]> <RZ(V, X)Y, 1/>

(4.2),(4.4) . 1 .
Z ( (RM(es, X)Y,e5) + 70065, V)in(X, e5)

—igxej, )in(X. Y)) — 5 G Y) + (W (X), V)

= e (X Y) + 35 (e).Y) (W(X).e))

(W (eg), ) (W(X),Y)) = 26X, ¥) + (W2 (X), )
= eV (XY 4 2 (W (X), W (Y) — () (W (X),Y)

1,
_§gt(Xa Y)
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shows (4.7). Formula (4.8) for the scalar curvature follfresn (4.5) and (4.7).

Example 4.2A simple special case of a generalized cylinder is that whgped product
i.e.g, = f(t)2g wheref : I — Ris a smooth positive function. Thega =2 f f g = %gt
andij, = 2(f2 + ff)g = 2%% and the formulas in Proposition 4.1 reduce to

_ 4
W= 7 d,
2
R*(X,Y)U = RM (X, Y)U + % (X, U)Y — (Y,U) X),
f

X

(X, vy =—-%
R (X7 ) f , . .
ric® (X,Y) = ric™* (X, Y) — ("_Uf# (X,Y),
ric® (X, v) = 0,

ric® (v, v) = fn?, | "
Scal® = Scal™ — n —(n — 1);22 ha 2ff7

compare [9, Ch. 7].

5 Identifying spinors and the variation formula for the Dira c operator

t is an annoying problem that the definition of spinors, intcast to that of
»» differential forms and tensors, depends on the semi-Riemarmetric of the
> manifold. Hence if one wants to compare the Dirac operamr$wo different
® metrics one first has to identify the underlying spinor besd|

The problem of constructing such identifications can bd spb two steps: First con-
struct identifications for any two metrics in a 1-parameaenity of metrics. The identifica-
tion of spinors for two metrics will in general depend on thparameter family of metrics
joining them. Secondly, given two metrics construct a retcmrve of metrics joining them.

Both steps have been carried out very satisfactorily foctse of Riemannian metrics
in [3]. In the present section we will deal only with the firs¢s. The second step cannot
always be carried out. In Section 9 we will discuss this peabfor the case of Lorentz
metrics in great detail.

Now let g;, t € I, be a smooth 1-parameter family of semi-Riemannian metrics
signature(r, s) on a manifoldM/. We form the generalized cylindef := I x M with
metricg = dt*> + g;. Fort € I we abbreviate the semi-Riemannian manifald, ;) by
Mt-

Spin structures o/ and onZ are in 1-1-correspondence. As explained in Section 3
spin structures o can be restricted to spin structures b = M. Conversely, given a

spin structure o/ it can be pulled back té x M yielding aC/}VLJr(n, R)-principal bundle
on Z. Enlarging the structure group via the embedcﬁV@+(n,R) — Cﬁf(n +1,R)

covering the standard embeddi6d. ™ (n,R) — GL*(n + 1,R), a — <(1) 2) yields the

spin structure ot which restricts to the given spin structure dh

Let us write “” for the Clifford multiplication onZ and “s,” for the Clifford multipli-
cation on)M;. Recall from Section 3 that' Z|,,, = X' M; as Hermitian vector bundles if
n=r+ sisevenand.t 2|y, = XM, if nis odd. In both cases the Clifford multiplica-
tions are related byX o, o = v - X - . For givenz € M andt, t; € I parallel translation
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on Z along the curve — (¢, z) is alinear isometryfo1 2 XMy, — Xy My, . Since *” and
v are parallel along the curve— (¢, x) so is the family of Clifford multiplications é,”
andrfn1 preserves Clifford multiplication in the following sense:

(X 0 @) = (11 X) &, (181 0).

In general, the covariant derivative and hence paralleispart depends on the semi-
Riemannian metric and its first derivatives. We note hereftirdixed - € M the parallel
transportr;! : T, My, — T, My, or 7} : X, My, — X, M,, is determined by (z) and
g¢(z), noz-derivatives ofg; enter. Namely, ifr!, ..., 2" are local coordinates ol and
X(t,z) = Y1, & (x,t) 5% is a parallel vector field along— (¢, ), then this means by
(3.4)and (4.1)

n

v RN B
- — J ek | 2
0=—X Z(s +;Fk,0§ ) o

j=1

n 1l N B
j - 7l - k
> &+ > NS ek

j=1 k,e=1

Thusnﬂ} : T, My, — T, My, is given by solving the system of ordinary differential equa
tions

n

o) =—5 3 o' @) ().

k=1

For spinors the situation is similar. By [3, Prop. 2] this wisahat our identiﬁcationrfo1 of
spinors for different metrics coincides with the one in [3].

Now we rewrite the commutator formula of Proposition 3.1t &sectiony of X' Z (or
XY+ Zif nis odd) we have

s n y | Y
iTVE DM = DWip = O grad™ (Hy) o o+ 5 div (Wi) oo (B1)

whereD™: is the Dirac operator ol/;, grad* is the gradient andiv*’* the divergence
(of endomorphisms) off;, W; is the Weingarten map a¥/; in Z andH; = % tr(W;) the
mean curvature and finallp" ¢ = Y7 ¢;e; o, Vit | for any orthonormal basis
e1,...,en. (From (4.1) we havéiv™ (W;) = —1div™ (g:), Hy = — 5 trg, (¢¢) and
DWr = —1D9 whereD9 p = S o1 Eendi(es, ex)e; o VEMep. Thus (5.1) can be
rewritten as

. 1.1 , . 1
iTVYE DM o= =DM + o grad™ (trg, (g:)) o¢ ¢ — 1 div™ (ge) o1 . (5.2)

Now if ¢ is parallel along the curves— (¢, z), i. e. itis of the formp(t, z) = 7{ v (x) for
some spinor field> on M, then the left hand side of (5.2) ista& ¢

(V7 DM =V, 2DMr g = 7 DM

t=to

dt

t VI t
7f0l) t’? 01/1.
t=to

We have shown the variation formula for the Dirac operator:
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Theorem 5.1.Let g, be a smooth 1-parameter family of semi-Riemannian metmca o
spin manifold)M . We write brieflyM; for the semi-Riemannian spin manifdlt, g;). Let
Tttol be the identification of spinor spaces fof;, and M;, constructed above, leb
be the Dirac operator of\/;, let “e,” be Clifford multiplication on M, and let®9% ¢y =
Z;’l.,kzl ejergiles ex)e; o Voo,

Then for any smooth spinor fieltlon M;, we have

a
dt

,I:S

) A 17 . . .
/0 DM Ttt(ﬂ/’ = - E’Dg"” Y+ 1 grad!to (trg,, (Gt0)) @tV — 1 div*o (9to) @209

t=to

This is exactly the formula given in [3, Thm. 21] for Riemaanimanifolds.

6 Energy-momentum tensors

Q

> .55 heorem 5.1 can be used to compute the energy-momentum temspinors.
@%‘@ In order to explain what this means we briefly sketch Lagrandield theory,
“‘ see [4, p. 153 ff] for a more detailed introduction. Lidtdenote a differentiable

: s manifold and letG be a set of (smooth) semi-Riemannian metrics\énopen

in the C*°-topology. Letr : E — G x M be a fiber bundle with finite dimensional fibers.
For example, ifM carries a spin structure the fiber ougt =) € G x M could be the
spinor space at with respect to the metrig, £, .., = X9M. For each fixedy € G the
restrictiont—1({g} x M) — M is a fiber bundle ove and we can form the space of
smooth sections, of this bundle. These Fréchet manifolfig give rise to a Fréchet fiber
bundleS :={J,c; Sy — G. LetF C S be a Fréchet submanifold such that the restriction
m: F — Gisagain a Fréchet fiber bundle.

Now let L : F — QI"I(M) be a smooth map where!”! (M) denotes the space of
smooth densities of/, i. . smooth sections of*T* M ® o, whereo, is the orientation
line bundle. We assume thdt is local in the sense that fas € F the densityL(y)
evaluated at: € M depends only op(z) and theM -derivatives ofp atx. In other words,
L(p)(x) is a function of the jefi3 ¢ (). We call L theLagrangian densityin physics it is
customary to integrate ové and call [,, L() the Lagrangianor theaction We avoid
this integration since in general the integf;g,} L(y) need not exist.

We call a smooth 1-parameter famiby € F, with ¢y = ¢ compactly supporte it
is constant outside a compact subBetC M, i. e.p:(z) = ¢(x) forallz € M \ K and
all t. SinceL is local L(¢;) is constant outsid&” as well so thaif, ,(L(¢;) — L(p)) exists

. L),

and - d
il / (o)~ L) = /M il

The sectionp € F, is calledcritical for L if for each compactly supported deformatipn

/i
v dt

To explain the concept of energy-momentum tensors we needhaine piece of struc-
ture. LetH C TF be a connection. This means that for anyc F we havel,F =
T, (Fr(p)) @ H, and the restrictiodr| g, : H, — Tr (G is an isomorphism. For fixed
¢ € F andg := m(y) we have the linear magL o (dr|y,)~" : T,G — 2I"I(M). Recall
that 7,G is nothing but the space of smooff, 0)-tensors. A smooth symmetrie, 0)-
tensorQ),, will be called theenergy-momentum tensfar , with respect to the Lagrangian
Lif

t=0

dL o (drla,) ™ (k) = (Qu k), 4V,

forall k € T,G. Here(, ), denotes the (pointwise) metric on symmetf0)-tensors
induced byg anddVj, is the Riemannian volume measure forlf it exists @, is obvi-
ously unique. By its definition the energy-momentum tensscdbes the behavior of the
Lagrangian under variations of the metric.
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Example 6.1Let M carry a spin structure, 1€t be the set of all semi-Riemannian metrics
on M and letE be the universal spinor bundl&,, ,) = XJM. ThenS is the universal
bundle of spinor fields and we pi := S. We fix A € R and we define the Lagrangidn
by

L(¢) :==Re (g, (D7 — N)p), dV,
whereD? is the Dirac operator with respect to the meyyie= «(p). If ; is a compactly
supported deformation of we write % lt=0: = ¢ and we compute

/i

Thusy is critical if and only if (DY — A\ = 0, i. e. if ¢ is a Dirac-eigenspinor for the
eigenvalue\.

The connectiotf is determined by the parallel translatiq‘i(j used in the previous sec-
tion to identify spinors for different metrics. More preelg, I, is the set of aII% |t:O to
for all smooth curveg; of metrics withgy = ().

Now letg; be such a 1-parameter family of metrics and wikite= go. We compute

dL o (d7T|H¢)71(k)

Lg) = / Re((%, (D7 — N}, + (@, (DI — @), ) dV,
t=0 M

= 2Re /M (@, (D7 = X)), dV,.

= — L(+t
dt|,_, (T0%)
d
= 2| Re(ro, (D% — N(rde)),, 4V,
t=0
d dv,,
= 21 Re(p, (0D" 7 — M), -V,
t=0 go
d d dv,
=R - 0 Dge 7t D% — )\ — 9t | dv,,.
€ <<907 dt —o (Tt TO(ID)>g0 + <(p7( )SD>90 dt =0 dvg0> 90

The first term is given by the variation formula for the Dirguecator. By (2.2), all terms
of the formRe (p,i° X o4, ¢) vanish. Thus Theorem 5.1 yields

d
Re <<p, T

For the second term we use

1
(TtODg"ngo)> =-3 Re <<p, @ktp>g0 .

t=0 g0

d aVy,
E o dvgo 2 trgo (k)
Thus
_ 1
dL o (dnlm,) ™ (k) = 5 Re (= (. D%, + (0. (D = N)g),, trg, (K)) Vi,

= <Qtpak>go dvgo
for the symmetri¢2, 0)-tensor
1 ,
Qu(X,Y) = =7 Re ((p, X o, Vy"'0) + (0, Y 05, VX))
1
+5 Re <<)05 (D.(]o - )‘)50> gO(Xa Y)

2
If pis critical, i. e. if D9°p = Ay, then the energy-momentum tensor simplifies to

1 ,
Qe(X,Y) = =7 Re ({p, X oy, VM) + (0, Y o4 ViV ). (6.1)
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Example 6.2Again, let M carry a spin structure, €l be the set of all semi-Riemannian
metrics on}/ and letE be the universal spinor bundlB, ,) = X7 M. Then agair§ is the
universal bundle of spinor fields and we this time weit= {¢ € S, | [}, (¢, P),dVy =
+1}. We define the Lagrangiah by

L(p) := Re(p, DY), dVy.

Now ¢ is critical if and only if

|,
a dt
for all ¢ perpendicular ta, i. e. if and only if D9 is a multiple ofp. This way we obtain
all nonnull eigenspinors for all eigenvalues simultandpas criticaly’s.

This time the connection has to be chosen differently be}:aﬁgsjs a pointwise isom-

etry but the volume element/, also depends on the semi-Riemannian metric. Therefore
Tttol does not give an isometry for thg>-product used to defin&. This can be corrected

L(gt) = 2Re / (6, DIg), dV, =0
t=0 M

by defining the connectioil as the set of alldi Vo 8¢ for all smooth curveg;,

t |t:0 Vg,
of metrics withgy = ().
Then we have for such a 1-parameter family of metgicwith & := gg

_ d
Lo (drl,) ) = Re (i, 5

(TtODg" Té(p) > dVy,

t=0 go

and therefore
1 )
Qe(X,Y) = =7 Re ((¢, X 0 Vi) + (0, Y 05, VX))
for all ¢, critical or not.

These two examples show that for noncritigghe energy-momentum tensor also depends
on the choice of the connectidih. In contrast, for critical the differentiali L descends to
amapdL : T,F /Ty, (Fr(p)) — 2" (M). Thus the maglL o dn= : Ty ()G — £2!"(M)

is well defined without any reference .

7 Embeddings of hypersurfaces

e will now apply the cylinder construction described in $&t# to study the
guestion whether a given manifold can be isometrically imseé as a hyper-
surface into a manifold of constant curvature. The clasgsixample for such
a result is the fundamental theorem for hypersurfaces wtéchbe stated as

Theorem 7.1.Let (M™, g) be a Riemannian manifold and It be a field of symmetric
endomorphisms df M satisfying the equations of Gauss and Codazzi-Mainardi:

(VM A)Y = (VM A)X, (7.1)
RM(X,Y)Z = (A(Y), Z) A(X) — (A(X), Z) A(Y) (7.2)

forall X,Y,Z e T,M,pe M.

Then every point of/ has a neighborhood which can be isometrically embedded into
Euclidean(n + 1)-spaceR™*!, with Weingarten mapi. If M is simply connected, then
there exists a global isometric immersionidfinto R™*! with the above property.
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A proof can be found in [6, Ch. VII.7], but here we will give a reogeometrical ar-
gument based on the cylinder construction. This will allosvta extend the result with-
out effort to the semi-Riemannian case and to embeddingsmioidel spaces of constant
sectional curvature not necessarily zero. We will constamexplicit metric of constant
curvature on the cylindef x M, whose restriction to the legh} x M is g.

For a constant € R define thegeneralized sinandcosine functions

ﬁsin(\/ﬁ-t) , k>0 cos(v/i-t) , k>0
5,(t) = t k=0 and c.(t) := 1 , k=0
\/ﬁ sinh(y/[x| - ), K <0 cosh(4/|k|-t), k<O

One easily checks, (0) = 0, ¢, (0) = 1, k52 +¢2 = 1,5". = ¢,,, andc/, = —ks,.

Theorem 7.2.Let (M™, g) be a semi-Riemannian manifold andie€ R. Let A be a field
of symmetric endomorphismsBi\/ satisfying

(VM AY = (VM A)X, (7.3)
RM(X,Y)Z = (A(Y), Z) A(X) = (A(X), Z) A(Y)
+r((Y,Z) X —(X,2)Y) (7.4)

forall X,Y,Z € T,M,p € M. Define a family of metrics of/ by
gi(X,Y) == g((cx(t) id — 5,(1)4)* X, Y).

Then the metrie/t? + g; on Z = I x M has constant sectional curvatureon its
domain of definition (i. e. foft| sufficiently small).

Proof. Put RZ(X,Y)Z := R*(X,Y)Z — s({Y,Z) X — (X, Z)Y). Having constant
sectional curvature is equivalentta?Z = 0. The proof is based on the following lemma:

Lemma 7.3.Let Z = [ x M be a generalized cylinder and let € R. Assume that
g(RZ(X,v)v,Y) = 0 for all vector fieldsX andY on Z, wherev denotes the vecto%.

(i) If the Weingarten map! of the hypersurfacd0} x M of Z satisfies (7.3), then
g(RZ(X,Y)Z,v) = 0 for all vector fieldsX, Y andZ on Z.

(i) If, moreover,A also satisfies (7.4), theRZ = 0, i. e. Z has constant sectional
curvaturex.

Assume this lemma for a moment. We will check that the melic+ g, satisfies the
hypothesis of the lemma fai (X, Y) = g((cx(t) id — 5,(t)A)?X,Y). Let W, denote the
Weingarten tensor of the hypersurfgeé x M of Z. This gives rise to a tensor field on
Z, vanishing in the direction af. ¢ From the definition of; we compute

G(X,Y) = —2g((cx(t) id — 5, (t)A)) (ks (t) id + ¢, () A) X, Y)
—20:((cx () id — 5, () A)) " (ks (t) id + ¢ (D) A) X, Y)

hence by (4.1)
W = (cx(t)id — 5, (t)A)) " (ks (t) id + ¢ (t)A).

Moreover,
G(X,Y) = =29 ([6(cn(t) id — 5, (t)A)* — (ks (t)id + ¢, () A)*] X, Y) .
Equation (4.4) yields

g (R (X0, Y) = ~23u(X,¥) = 50 (W(X),Y)
= g(k(ce(t)id — 5,.(t)A)*X,Y)

K‘gt(Xa Y)7
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thus R (X,v)v = kX and henceRZ(X,v)v = 0. All conditions of the lemma are
satisfied and the theorem follows. O
Proof of the lemmaThe modified curvature tensdt? has all the symmetries of a
curvature tensor including the Bianchi identities.
i) Consider the family of tensors ol defined byK,(X,Y, Z), := (RZ(X,Y)Z, u>(t 2
Using the second Bianchi identity & together with the fact thatcommutes with vectors
on M and the formuldV (X) = —VZv = —-VZX + [, X] = ~VZ X we see

Ky(X,Y,Z)=d, (RE(X,Y)Z,V)
= ((VZRE)(X,Y)Z,v)

—(R ( (X),Y)Z + RZ(X,W(Y))Z + RZ(X,Y)W(Z),v)
= <( (1/ Y)Z, V> <(V§Z/R§)(X, v)Z, 1/>
+(W* Kt)(X Y, Z) (7.5)

wherelW* denotes the induced action Bf as a derivation on tensors. ¢ From the assump-
tion in the lemma we conclude
0=dx(RZ(v,Y)Z,v)
= ((VER))w,Y)Zv)+ (RE(VZv,Y)Z v) + (RE(v,VXY)Z,v)
<RZZ/YVZZV> <R§uyzv v)
= ((VER)(v,Y)Z,v) — (RZ(W(X),Y)Z,v) + 0
- <R§(V7 Y)Za W(X)>

thus

(VERE)(,Y)Z,v) = (REZ(W(X),Y)Z,v) + (RE(v,Y)Z,W(X))
and similarly

((VERE)(X,v)Z,v) = (RE(X,W(Y))Z,v) + (RZ(X,v)Z,W(Y)).
Plugging this into (7.5) yields

K(X,Y,Z) = (RE(W(X),Y)Z,v) + (RE(v,Y)Z,W (X))
+{(RE(X,W(Y)Z,v) + (RZ(X,1)Z,W(Y))
+(WK)(X,Y, Z).

HenceK, = F(t)(K,) for some linear endomorphisi of the space of 3-tensors. This is
a linear first order ODE foK;. The initial conditionKy = 0 follows from (4.3) because
Wy = Ais a Codazzi tensor. This shows thét = 0.

ii) Similarly, using the identitf R (X,Y)Z,v) = 0 that we just obtained, we see
that the family of tensors o/ defined byR,(X,Y, 2, V), := (RZ(X,Y)Z, V>(t_z)
satisfies a linear ODE. Moreover, (4.2) impli = 0 becausdV, = A satisfies the
Gauss equation. Thug;, = 0 for all t. This proves the lemma.

Now recall that any semi-Riemannian manifold of constactiseal curvatures is
locally isometric toM;*. HereM;* is the model space of constant sectional curvature
x and signaturér, s). If k = 0, thenM® is semi-Euclidean spade™ with the metric
Grs = (dx')2 4+ 4 (d2")? — (dz"t1)2 — - - — (dz™)?. If k > 0, thenM”:® is a pseudo-
sphere, more precisely, it is the semi-Riemannian hypaseiof (R"*1, g, ) defined
by (z,2),., , = 1/K andz! > 0if r = 0. If k < 0, thenM”* is a pseudohyperbolic
space, more precisely, it is the semi-Riemannian hypeaseréf(R"*!, g, ;1) defined
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by (z,z), .\, = 1/K andz"*! > 0if » = 0. In all caseM”* is connected and homo-
geneous. MoreovelM”* is simpy connected except féfi-"~! if x > 0 andM? b1 jf
k < 0, compare [9, p. 108 ff].

The local isometry is essentially given by the Riemannigooaential map, see [11,
Cor. 2.3.8], and it is uniquely determined by its differahtt a point. Applying this to the
cylinder constructed in Theorem 7.2 yields the local stateinn the fundamental theorem
for hypersurfaces for semi-Riemannian manifolds.

Corollary 7.4. Let(M™, g) be a semi-Riemannian manifold of signatares) and letx €
R. Let A be a field of symmetric endomorphismg @i/ satisfying the equations of Gauss
and Codazzi-Mainardi:

(VX A)Y = (VY A)X,
RM(X,Y)Z = (A(Y), Z) A(X) — (A(X), Z) A(Y)
+r((Y,Z) X — (X, 2)Y)

forall X,Y,Z e T,M,pe M.

Then for every point € M, for everyq € M7 "1, and for every linear isometric em-
beddingF : T,M — T,M; ! there exists a neighborhodd of p in M and an isometric
embedding : U — M’ 1 as a semi-Riemannian hypersurface with Weingarten mhap
such thatf(p) = ¢ anddf(p) = F.

Moreover, any two such local embeddinfjsand f, must agree in a neighborhood of

pif f1(p) = f2(p) =: g anddfy (p) = dfa(p) : TyM — T,MI 15,

Now, that this local result is established, exactly the sammf as in [6, Ch. VII,
Thm. 7.2] can be used to show the corresponding global imorestsatement in the simply
connected case.

Corollary 7.5. Let (M™, g) be a simply connected semi-Riemannian manifold of sigaatur
(r,s), letk € R and letA be a field of symmetric endomorphismsIt¥/ satisfying the
two equations (7.3) and (7.4) above.

ThenM can be isometrically immersed as a semi-Riemannian hygdaciinto the
model spac®”+1:* with Weingarten map!. Any two such immersions differ by an isom-
etry of M7 T1s,

8 Generalized Killing spinors

e now turn our attention to restrictions of spinors to hypegeces. LetM™ C
Z"+1 pe a hypersurface of a spin manifafl admitting a parallel spino#.
If n + 1 is even, we will assume that lies in Xt Z. From the discussion in
. Section 3 we see that the restrictiprof ¥ to M is actually a spinor od/ and
(3.5) reads

0=V3ZV =vVviMy — %A(X) o) (8.1)

forall X € T'M whereA is the Weingarten tensor of the submanifdidand “e” denotes
Clifford multiplication onM. If v is an eigenspinor of the Dirac operator, théis closely
related to the energy-momentum tensotyoMore precisely, using (6.1) one computes

QuiX,¥) = 7 (X, A(Y)) (v, 0)

where (v, ) is constant since is parallel onZ. Spinors satisfying (8.1) will be called
generalized Killing spinorsThey are closely related to the so—callEdKilling spinors
studied by Friedrich and Kim in [5].
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Conversely, given a generalized Killing spingron a manifoldM™ with V) —
1A(X) e ¢, it is natural to ask whether the tensdrcan be realized as the Weingarten
tensor of some isometric embedding/af in a manifoldZ"+! carrying parallel spinors.
Morel studied this problem in the case where the teasi parallel, see [7].

The next result provides an affirmative answer to the aboestipn, for the case where
the energy-momentum tensor«fis a Codazzi tensor.

Theorem 8.1.Let (M™, g) be a semi-Riemannian spin manifold and Jetbe a field of
symmetric endomorphisms 6f\/ satisfying equation (7.1) oi/. Let«) be a spinor on
(M™, g) satisfying for allX € TM

ViMy = %A(X) o). (8.2)

Then the generalized cylindér = I x M with the metricdt® + g;, whereg,(X,Y) =
g((id — tA)2X,Y), and with the spin structure inducing the given one{0n x M by
restriction has a parallel spinor, whose restriction to tleaf {0} x M is justi).

Proof. The spinory defines a spino® on Z by parallel transport along the geodesics
R x {x}. More precisely, we defing, . := 1, via the identification¥’, M = ¥, ) Z
(resp.E(“(“)_z)Z for n odd) and¥(; .y = 7% 0, By construction we have

V2w =0 and V2|1 =0 (8.3)

forall X e TM.

The explicit form of the metricg; yields (R?(X,v)r,Y) = 0 on Z for all X and
Y tangent toM as in the proof of Theorem 7.2. Since the Codazzi equatidl) flds
Lemma 7.3 (i) yields{R* (v, X)Y, Z) = 0 on all of Z. HenceR? (v, X) = 0 for all
X eTM.

Let X be a fixed arbitrary vector field o/, identified as usual with the vector field
(0,X) on Z. Using (8.3) we geb = 1 RZ(v, X) - ¥ = V2V, thus showing that
the spinor fieldVZ ¥ is parallel along the geodesiisx {z}. Now (8.3) shows that this
spinor vanishes fot = 0, hence it is zero everywhere ah SinceX was arbitrary, this
shows that? is parallel onZ.

This theorem generalizes the result from [1] where the éase\-id is treated )\ € R,
and it is shown that the cone over a manifold with Killing spisadmits parallel spinors,
as well as a more recent result by Morel [7] for the case whés parallel. Nevertheless,
the question whether a manifold with a spinor satisfyin@)8an be isometrically embed-
ded in a manifold with parallel spinors such thlabecomes the Weingarten tensor of the
embedding without assuming thatis a Codazzi tensor is left open in the present article.

9 The space of Lorentzian metrics

, nthe final section we address the problem of connecting amgémi-Riemannian
metrics of signaturér, s) on some manifold/ of dimensionn = r + s, by a
curveg,; of semi-Riemannian metrics of the same signature in a uraqdeuni-
versal manner. The latter requirement reduces this probietime purely alge-
braic issue of finding a universal way of relating any two inpe@ducts of signaturé-, s)
on some real vector spaée= R" in the manifoldM,. ; of all inner products of signature
(r,s)onE.

In the positive or negative definite case an obvious cangidahe linear interpolation
gt = tg1 + (1 — t)go which, however, cannot be used for other signatures. Anreltive
solution, which has been considered in the definite case.gef3], but holds in a formally
identical way for all signatures, relies on the geometry\df. ;, as a (semi-Riemannian)
symmetric space that we now recall briefly.

i
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For any signaturér, s) the identity component of the general linear grdiip" (E) =

GL™(n,R) acts transitively on\,. ; by

(v- 9)(u,v) = g(vu, 7" 'v)
fory € GL*(E), g € M., andu,v € E. For any chosemy in M, g, the isotropy
group of go in GL™(E) is the special orthogonal groufO(g,) relative to go. Recall
that, except in the definite case whé&i®(g,) is connected3SO(gy) hastwo connected
components. We thus get the identification, . = GL™(E)/SO(go) or, equivalently,
M, s = RT x SL(E)/SO(g0), whereR™ acts by homotheties, arffl.(E) = SL(n,R)
denotes the special linear group of elements of determinemGL ™ (E). HenceM? , :=
SL(E)/SO(go) can be regarded as the space of inner producfs ofisignaturg(r, s) and
with a fixed volume element. Concerning the problem addcEssthis section, it is clearly
sufficient to restrict our attention t&1° _.

The homogeneous geometry.61° . = SL(E)/SO(go) can be described as follows.
For simplicity, writeG := SL(E), H := SO(go), let g be the Lie algebra of?, identified
with the Lie algebra of trace-free endomorphismsihfand leth be the Lie algebra of
H, identified with the Lie algebra ofy-skewsymmetric endomorphisms. Denote thy
the orthogonal complement ¢fin g with respect to the Killing form ofy, so thatg =
h @ m. Recall that the Killing form ofy equals the bilinear form,b — tr(ab), up to a
positive universal constant, so thatis the space of,-symmetric elements gf. Since
the Killing form is G-invariant,m is stable under the adjoint action &f, making M _ a
reductive homogeneous space. Moreover, we clearly haugdh@acket relation$, h] C
b, [h, m] C m, and[m, m] C h showing thatM? _ is actually a symmetric homogeneous
space.

In the positive definite case\1? , is a Riemannian symmetric space of noncompact
type, hence a Hadamard space. It follows that any two pofntstf) , can be joined by a
unigue geodesic. i andg, are any two points aM,, o, theng = gO(A-, -), for a uniquely
defined automorphism of £, whereA is symmetric and positive definite for bogh and
g. Then A = exp(a) for a uniquely defined symmetric endomorphisnof £ and the
unique geodesic connecting to g is the curveg; = go(exp(ta)-,-) = go(A-, "), for
t € [0,1] whereexp : g — G denotes the exponential mapping.

In the general case, the restriction of the Killing formtds an H-invariant inner prod-
uct of signature(w + @ -1, rs), making/\/l?.7S a semi-Riemanniasymmetric
space of this signature.

The fact thatM? , is symmetric, as a semi-Riemannian homogeneous spacéesmpl
that the Levi-Civita connection of the semi-Riemannianmoebincides with the canonical
homogeneous connection. In particular, all (semi-Rierf@arrgeodesics emanating from
go are of the formexp(tX) - go for X € m = Ty, M, ..

As a symmetric semi-Riemannian manifo&d?ys is certainly geodesically complete
in the sense that geodesics are defined on ail,dfut for (r, s) # (n,0), (0,n), it is not
longer true that any two points can be joined by a geodesicibsal, there is no guarantee
that the geodesic be unique. This will be illustrated firgtlyhe case thafr, s) = (1,1),
then in the general Lorentzian case wiieys) = (n — 1, 1).

9.1 The space of Lorentzian inner products in dimengion

Let £ denote an oriented real vector space of dimengidie fix a positive generatar of
the real lineA2 E*, which can be viewed as a symplectic form BnNow G = SL(2, R),

g = sl(2,R) is the Lie algebra of trace-free endomorphismgipfand M? | is the space
of all Lorentzian inner products ofi, whose volume form with respect to the given orien-
tation isw. For any chosen poingy € M9 ; we then haveM? ; = SL(2,R)/SO(1, 1).
Note thatSO(1, 1) has two connected components. The connected componeret iolfth-
tity SOy(1, 1) is isomorphic the the additive grolipof real numbers via the isomorphism
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<COSht SN TY) The other connected component equatiOy(1, 1). Differentiation

sinh ¢ cosht
with respect ta shows that the corresponding isotropy Lie algebis the Lie algebra of
2 x 2-matrices of the for 2 8 ,forb e R.
An endomorphisna of E is tracefree if and only if it is “antisymmetric” with respec
tow, i. e. if and only if it satisfiesw(a-, ) + w(-, a:) = 0.
For anyg € /\/1(1)71 there is one and only one automorphigyrof £ such that

g =w(1g). (9.1)

Sinceg is symmetrid, is trace-free. Its determinant equal$ because is Lorentzian,
with volume form equal tav. In particular,Ig2 = 1. The light cone ofy is the union of
the two eigenspaces df,, for the eigenvalues-1. The latter are generated by+ /v
respectively, for any nonzeroe FE.

Conversely, for any automorphishof E of trace equal t6 and of determinant equal to
—1, the bilinear formy defined byg = w(-, I-) is a Lorentzian inner product, with volume
form equal taw and/ = I,,.

The automorphisnd, belongs to the Lie algebrg on whichG acts by the adjoint
representation, and the map— I, is G-equivariant. Indeed, by definition ¢f, we have

thatw(y-,7-) = w(:,-) for eachy € G, so that

yog=g(y ) =wly T Ly ) = w( v gy ).

The mapg — 1, is then aG-equivariant identification 01\/1(1’71 with the adjoint orbit
of all elements ofy of determinant equal te-1.

As a function defined oy = R?, the opposite of the determinant is a nondegener-
ate quadratic form of signature (2, 1), equal to the (swtadrmalized) Killing form.
We denote the symmetric bilinear form corresponding-tdet by (-, ), i. e. (u,u) =
—det(u) = 1 tr(u?). The adjoint orbit is then the pseudosphife’ of elements; such
that(u, u) = 1 in the 3-dimensional Minkowski spads, (-, -)). The restriction of.-, -) to
M"" makes the latter &-homogeneous Lorentzian manifold, known as the 2-dimexasio
de Sitter universeThe mapM? ; — M, g~ I,, is aG-equivariant isometry.

The reflection with respect tp, -) about a vector subspace is an isometrygf-, -))
and it preserveM%’l. Since the fixed point set of an isometry is a totally geodssiz-
manifold the geodesics &fl;" are precisely the intersectionsidf,”" with 2-dimensional
vector subspaceB C g. There are three types of geodesics: timelike geodesigse(hy
bolas) corresponding to Minkowski planes, spacelike gsiocdeellipses) corresponding
to spacelike planes, and null geodesics (straight linesesponding to degenerate planes
(tangent to the light cone).

Fig. 1

Now let 7, I’ be two different points irIMI}"l. If I’ = —I, then each plan& containing
I also containd’. In the timelike or in the null cas# lies on the other connected com-
ponent ofE N M}"'. Thus all spacelike geodesics emanating fibhit I’ = —1I, but the
timelike and null geodesics emanating frdmrmissI’ = —1.
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If I’ # —1I,thenl andl’ are linearly independent, so the plafieontainingl andl’ is
uniquely determined. Thug is hit by the geodesic emanating franif and only if it does
not lie on the “wrong” connected componention M%’l (in the timelike or null case). In
other words, the points diil;"' which cannot be reached by a geodesic emanating from
are precisely the ones lying on timelike or null geodesicarmating from—1.

\ / unreachable
points

AN\

Fig. 2

The two null geodesics emanating froa¥ are cut out ofM'" by the affine plane
{(I, I’y = —1}. Thus the pointd’ € M} with (I,I') < —1 cannot be attained by a
geodesic fronT.

Similarly, by looking at the affine plang(Z, I') = +1} we see that the point8 with
(I,I'"Y > 1 are the ones that lie on timelike geodesics emanating ffpthe ones with
(I,I'Y = 1 are the ones that lie on null geodesics emanating ffpend the ones with
—1 < (I,I') < 1lie on spacelike geodesics emanating frbm

We now retranslate this information backd? ;. If g, g’ € M{ |, then

with
A=1I "y =1,1y.

We then have )
<Ig, Igl> = 5‘51‘ A

Note thatA is g- andg’-symmetric and of determinant equalHd.
By choosingg as a base-point, we conclude tbt\atl‘i1 can also be identified with the
space of all-symmetric automorphisms of determinardgf E. We summarize:

Proposition 9.1.The spaceM? ; of Lorentzian inner products on a 2-dimensional real
vector space that have a fixed volume element carries a rldtarantzian metric making it
SL(2, R)-equivariantly isometric to the 2-dimensional de Sitteivense. Forg, g’ € MY |
there is a unique endomorphisimsuch thaty’ = g(A4-, -). Moreover, the following holds:

—If tr(A) > 2, then there is a unique geodesicM! , joining g and¢’. This geodesic
is timelike.

—If tr(A) = 2, then there is a unique geodesicM?_’1 joining g and¢’. This geodesic
is null.

—If =2 < tr(A4) < 2, then there is a unique geodesicyM‘i1 joining g and ¢’. This
geodesic is spacelike.

—If tr(A) < —2, then there is no geodesic ikt! | joining g andg'.

—If tr(A) = —2 andg # —g/, then there is no geodesic itt{ ; joining g andg’.

—If tr(A) = —2 andg = —¢/, then all spacelike geodesics.ivt{ ;, emanating frony
pass througly’ while the timelike and null geodesicsj\%l?’1 emanating fromy miss
g
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This proposition shows that given two Lorentzian metricaddimensional manifold
we can construct a canonical 1-parameter family of Lorantmnetrics joining them only
if the endomorphism field! relating the two metrics satisfies(A) > —2. A restriction
like this does not come as a surprise because there are pamsamtzian metrics e. g. on
the 2-torus which cannot even be joined by any continuougecaf Lorentzian metrics.
Topological properties of the space of Lorentzian metricsompact manifolds such as
the number of connected components and their fundamemtapgrare studied in [8].

9.2 The space of Lorentzian inner products in higher dinersi

We now consider the manifold1,,_; ; = R x M%_Ll of all Lorentzian inner products
of signaturein — 1, 1) on somen-dimensional real vector spade
As observed before the manifol#?, , ; is a symmetric semi-Riemannian space of

signature(@,n — 1) and the geodesics emanating from any chosen base-g@pint

are of the formexp(tX) - go, whereX belongs to the spaae of trace-freeyy-symmetric
endomorphisms of?, m being naturally identified with the tangent spacgM® _, ;.

The goal of this section is to determine the set of elemgmtsM,,_; ; which can be
joined fromgy by a geodesic ioM,,_; 1, and whether or not this geodesic is unique. This
has just been done in detail in the case that 2 and, as we shall see, the general case can
essentially be reduced to tBedimensional case. More precisely, we have

Proposition 9.2.Let gy andg be two distinct points i\, 1. Then there is the following
alternative: Either
(i) E splits as
E=FE1®E, 20,

where the sum is orthogonat, ; is of signature(1, 1), E,,_2 ¢ is of signature(n — 2,0)
for go and g. Both g9 and g belong to the corresponding totally geodesic submanifold
M1 X Mp_209 C My_1,1. Thus the issue of the existence and uniqueness of geodesics
connectinggo to g is reduced to the same issue for thvelimensional Lorentzian metrics
90|k, , andg g, , iIn M ; as described in Proposition 9.1, or
(i) E splits as
E=FE1DE, 30,

where the sum is orthogondi, ; is of signature(2, 1), E,,_3 ¢ is of signature(n — 3,0)

for go and g. Both go and g belong to the corresponding totally geodesic submanifold
Mo X Mp_30 C My_1,1. The3-dimensional Lorentzian metricg z, , and gz, ,

are related bygg, , = go|g,, (B, ), whereB is an automorphism ok ; of the form
k(id + z), wherek is a positive real number andis an endomorphism df; ; satisfying

x3 = 0 butz? # 0. Thusg, andg are connected by a unique geodesic whBseg-part is

of the form

9t|Fzpy = 90|E2, (Bt ),

with B, = k' exp(t(z — 12%)) = k' (1 +tr + @12)

This follows directly from Exercise 19 in [9, Ch. 9]. Since weuld not find any ref-
erence containing a proof of this statement we devote thteofethe paper to showing
Proposition 9.2.

Recall that for any; andg in M,,_; 1, there exists a uniquely defined automorphism
A of E—withdetA > 0—suchthay = go(A-,-): A = (v })*y~L, foranyy € GL(E)
such thaty = ~ - go and A is symmetric relative to both andgy. Thengy can be joined
with g by a geodesic inM,,_1 1 if and only if A is of the formA = exp(a), for some
go-symmetric endomorphism of F, and the corresponding geodesic is then the curve
g+ = go(exp(ta)-,-) fort € [0, 1].
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The proof of Proposition 9.2 requires the spectral analykid. For this purpose it is
convenient to introduce a positive definleiclideaninner product(-,-) on E such that
go = (I-,-) wherel is of the form

I =1id - 2(u, )u, (9.2)

for some element € E such thatu|? = 1. Here, and henceforth; | denotes the norm
with respect tq-, -). For go the vectoru is timelike with go(u, u) = —1. Conversely, any
suchu determines a Euclidean inner product as above.

Theng = go(A-, ) can be written ag = (.S-, ) for a uniquely defined., -)-symmetric
automorphisnt of E with exactlyn — 1 positive andl negative eigenvalues.

Conversely, for any such automorphistnthe inner producy = (S-,-) belongs to
Mn_171 with

A=11'S=1S.

The spectral decomposition Sfreads

L
S = XoIly + @ N 11,

r=1

with Ay < 0 < A1 < ... Ay, wherell; denotes thég:, -)-orthogonal projection onto the
d;-dimensional eigenspade; of S corresponding to the eigenvalue, j = 0,1,...,4.
Note thatdy = 1.

Via the decompositioly = Ey @ @f-:1 E, the unit vector:, appearing in (9.2) splits
as

9

U=uy+uy +...+ up.

We denote byA the subset off € {0,1,...,¢} such thatu; # 0, and bym the
cardinality of A. For eachj € A such thatd; > 1 we denote by, the (-, -)-orthogonal
complement of; in E;. Let E be the subspace @ defined by

E= @ Bode. ©3)

JEAd;>1 j¢A

andW them-dimensional subspace &f defined by

W= PRu; (9.4)
JEA
so that
E=EaW.

Both E and W are left invariant byA4, I, andS. The sum is orthogonal with respect to
(++), 9o, andg. i

Note that if0 ¢ A, i. e. if ug = 0, thenE is of signaturgn —m — 1,1) andW is of
signature(m, 0), whereas, i) € A, i. e. if ug # 0, W is of signaturgm — 1,1) andE
is of signaturgn — m, 0) for g (but W is always of signaturém — 1, 1) for go, asFE is
orthogonal tou).

SinceE is orthogonal taz, Ip =1idandA z = 5 ;. In particular,A, 5 is symmetric
for g9, g and(-, -) and its spectral decomposition coincides with the onS‘gt given by
(9.3), with eigenvalue3; for eachj ¢ A and eacly € Awith d; > 1.

The spectral study ofl is then reduced to the spectral studyAf;, and the latter is
summarized by the following lemma.
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Lemma 9.3.(i) The characteristic polynomiaP of Ay, defined byP(t) = det(tid —
Ayw ) is given by

Pty =JJE-2)+2> N> JI =M. (9.5)
jeEA JjeA ke A\{j}

In particular, the roots of” are all distinct from the\;, j € A.
(i) For each real rootu of P the corresponding eigenspace is the one-dimensional
vector space generated by the elemgnt W defined by

U
v =y . (9.6)
AR
Moreover,
1P
g(vuavu) = Ngo(vuavu) = _5 Q((Z)) (97)

where@ denotes the polynomial defined ®yt) = [[;. ,(t — A;). In particular, v, is a
null-vector — for bothy and go — if and only ify; is a multiple root ofP.

Proof. By definition, anyv € W is of the formv = >, , y;u;, for real numbers
Y1, - -+, Ym, SO that
Av =1Sv = Z()\jyj —2(Su,v))u;.
JEA

Note thatv is an eigenvector ofl;;; for some eigenvalug if and only if

(1= Aj) yj = —2(Su,v), (9.8)

for eachj € A. Itis easily checked thgtSwu, v) cannot be equal t0 if v # 0. Indeed,
suppose for a contradiction thasatisfies (9.8) witl{Su, v) = 0 andwv # 0. Sincev # 0,
one of they;, sayyi, is nonzero, so thgt = A;. This impliesy # A;, for j # 1, as
the \; are pairwise distinct. It follows that; = 0 for all j # 1, so thatv = y;u;. Then
(Su,v) = M\y1|ui|? # 0 asy; # 0, a contradiction.

In particular, this showg # \; for eachj € A so that we can write

v = —2(Su,v) Z Y (9.9)

Al

Moreover, by computingSu, v) = (Swv, u) from (9.9), we get

Ailw,|? 1
Z%&'.:*a (9.10)
jea ™7

It follows that each eigenvalue ¢y is a root of the polynomialP defined by (9.5). Since
P is monic and of degree, it must coincide with the characteristic polynomial &fy .
We readily see from (9.5) that the roots Bfare distinct from the\; (recall that the latter
are pairwise distinct). From (9.9) we immediately see thatdigenspace corresponding to
1 is generated by the vectoy, defined by (9.6).

Conversely, for each rogt of P the vectory,, defined by (9.6) is certainly an eigen-
vector of A}y for the eigenvalug:.

Since the roots of” are distinct from the\;, P can also be expressed by

P(t) Ajlug [?
— =142 9.11
on 2 t=X; (®-11)

where we puiQ(t) := [[;cA(t — A;). Differentiating (9.11) at = u, we get (9.7). It
follows thatv,, is a null vector if and only ifP’ (1) = 0, meaning thaf is a multiple root.



Generalized Cylinders in Semi-Riemannian and Spin Gegmetr 29

For further use, we need more information about the signettiaracteristic polyno-
mial P att = \;, j € A, and att = 0. In the sequel, we use the notatifiit,) = (—1)",
for some integer, to mean thaf” has the sign of—1)" — in particular is not zero — at
t=to.

Lemma 9.4.(i) If 0 ¢ A, we re-label the\; so thatA = {1,...,m},and0 < A\; < ... <
Am. We then have:

P(—00) = P(Ao) = (1),
P(0) = (-1)™, (9.12)
PO)=(-1)"", j=1,...,m.

In particular, P has then exactlyn distinct real rootsuy < 0 < 1 < ... < fm—1, With
Mo € ()\(),0) and,LLi S ()\i,)\lqu), fori = 1, e, — 1.

(i) If 0 € A, we re-label the); so thatA = {0,1,...,m —1}andX < 0 < A\; <
... < Am—1. We then have

P(—0) = P(A\g) = P(0) = (-1)™,

PO = (1) j=1,...,m—1. (9.13)

In particular, P has then at leastm — 2) distinct real roots) < p1 < ... < fm—2, With
Wi € ()\i,)\iJrl), fori = 1,.. L, m— 2.

Proof. Easy consequence of (9.5).

We now consider the two cases whedoes or does not belong tb.

Case 10 ¢ A.

According to Lemma 9.4 (i)4,y is diagonalizable (oveR) with one negative eigen-
valuey andm — 1 distinct positive eigenvalues. Moreover, we easily semf(8.7) that
them corresponding eigenvectarg, defined by (9.6), are all spacelike. On the other hand,
A|E is also diagonalizable with one negative eigenvalue, narkgl— whose eigenspace
is Fp — andn — m — 1 positive eigenvalues. Denote 8 ; the direct sum o, and the
(one-dimensional) eigenspace /af, and byE,,_s ¢ the orthogonal complement d; ;
for g or go. Then, bothg and g, are of signaturél, 1) on E; ; and positive definite on
E,_2 . Accordingly,A splits as the sum of two operatofs= A; ; & A,,_2 o, whereA, ;
acts trivially onE,,_ ¢ and is diagonalizable, with negative eigenvaluesin, whereas
A, 2,0 acts trivially onE; ; and is positive definite, as well ag- and g-symmetric on
E,_20. This can be interpreted as follows. Denote.®b¥; ; the space of Lorentzian in-
ner products of; 1, by M,,_5 o the space of positive definite inner productsff_; .
Then the producM; ; x M,,_2 ¢ is naturally embedded as a totally geodesic submanifold
of M,_11 and bothg = g, , ® gg,_,, andgo = 9015, P 90|E, s, belong to it.

In M,,—2 0 any two elements, in particulgig, _, , andgo g, _, .. are joined by a unique
geodesic. The situation concerning; ; has been explored in detail in the first part of
this section. In the present cages, , andgoz, , are related by the automorphistz, ,
which is diagonalizable with distinct negative eigenvalus thay, , , andgo 5, , cannot
be linked by a geodesic.

Case 20 € A.

According to Lemma 9.4 (ii), there exist at least— 2 distinct positive eigenvalues of
Ajw, namely0 < p; < ... < um—2. Then, either these eigenvalues are all simple roots of
P, or one of them — and only one — is a triple root. The case thatdithem are double
roots is impossible since, according to Lemma 9.3 (ii), theesponding eigenvectors de-
fined by (9.6) would then form an orthogonal pair of nonzeribvectors in the Lorentzian
spaceFE, g).

In the case when all; are simple roots, we easily check by using (9.7) that the cor-
responding eigenvectors are all spacelike. Denot&hys, , the direct sum of the corre-
sponding eigenspaces afAijand byE, 1 C W the orthogonal complement &,,_» ( for
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g or go. Then, bothy andg, are positive definite of,,_» o and of signaturél, 1) on E ;.
The situation is then quite similar to the previous one, pktieat all cases considered in
Section 9.1 forM ; may now happen, depending on whether the missing two roa®s of
are complex conjugate, both positive (equal or distinctath negative (equal or distinct).
It remains to consider the case that one of ghesayy; := k& > 0, is a triple root of
P. Then, according to Lemma 9.3 (iii), the corresponding eigetorv,,; is a null vector.
Again, it is easily checked that thg,,, for i # j, are all spacelike. Denote Wy, _3 o the
direct sum of the eigenspaces corresponding tqithé # j, andE°, and byE>; ¢ W
the orthogonal complement &, _3 ( for g or go. Then, bothy andg, are positive definite
on E,_s o and of signaturg2, 1) on Es ;. It follows thatg andgo both belong to a same
totally geodesic subspacef, ; x M,,_3 o. Moreover, the restriction ofl to £, 1, which
relatesy| g, , andgo, , , is of the formk(id + z), wherez is nilpotent and regular (this is

becausg:; has no other eigenvector thap,). Now, id + x is the exponential of — %
which is certainly symmetric for botl, andg (sincex = (id + «) — id is symmetric) and
is the only symmetric “logarithm” ofd + z. We thus get a unique (null) geodesic between
90|E,, @ndg|x, , in My 1, hence also betweep andg in M,, ;.

This completes the proof of Proposition 9.2. O
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