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Abstract: We describe all simply connected Spinc manifolds carrying parallel
and real Killing spinors. In particular we show that every Sasakian manifold (not
necessarily Einstein) carries a canonical Spinc structure with Killing spinors.

1 Introduction

The classification of irreducible simply connected spin manifolds with parallel
spinors was obtained by M. Wang in 1989 [15] in the following way: the existence
of a parallel spinor means that the spin representation of the holonomy group
has a fixed point. Moreover, it requires the vanishing of the Ricci tensor, so the
only symmetric spaces with parallel spinors are the flat ones. Then looking into
Berger’s list of possible holonomy groups for Riemannian manifolds and using
some representation theory one finally obtains that the only suitable manifolds
are those with holonomy 0, SU(n), Sp(n), Spin7 and G2. One can give the
geometrical description of such a holonomy reduction in each of these cases [15].
For an earlier approach to this problem, see also [10].

The geometrical description of simply connected spin manifolds carrying real
Killing spinors is considerably more complicated, and was obtained in 1993 by
C. Bär [1] after a series of partial results of Th. Friedrich, R. Grunewald, I.
Kath and O. Hijazi (cf. [4], [5], [6], [7], [9]). The main idea of C. Bär was to
consider the cone over a manifold with Killing spinors and to show that the spin
representation of the holonomy of the cone has a fixed point for a suitable scalar
renormalisation of the metric on the base (actually this construction was already
used in 1987 by R. Bryant [3]). By the previous discussion, this means that the
cone carries a parallel spinor. Then one just has to translate in terms of the base
the geometric data obtained using Wang’s classification.

The problem of describing the Spinc manifolds with parallel and real Killing
spinors has recently been considered by S. Maier [13], who asserts that all these
manifolds have flat auxiliary bundle, so the classification problem reduces to
the above one. Unfortunately, as Th. Friedrich pointed out, his proof has an
essential gap, and in fact his statement is not valid, as one easily sees from the
following example. Let M be a Kähler manifold and consider its canonical Spinc
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structure. Then the associated spinor bundle can be identified with Λ0,∗M , which
obviously has a parallel section, and whose auxiliary bundle is not flat if M has
non-vanishing Ricci curvature. In this paper we will give the complete description
of simply connected Spinc manifolds carrying parallel and real Killing spinors.

It came to us as a surprise that the above example of Spinc manifold with parallel
spinors is essentially the only one, excepting those with flat auxiliary bundle (i.e.
spin structures). The result is the following

Theorem 1.1 A simply connected Spinc manifold carrying a parallel spinor is
isometric to the Riemannian product between a simply connected Kähler manifold
and a simply connected spin manifold carrying a parallel spinor.

We then turn our attention to Spinc manifolds with real Killing spinors, and
prove that the cone over such a manifold inherits a canonical Spinc structure such
that the Killing spinor on the base induces a parallel spinor on the cone. Then
using the above theorem and the fact that the cone over a complete Riemannian
manifold is irreducible or flat (cf. [8]), we obtain that the only simply connected
Spinc manifolds with real Killing spinors with non-flat auxiliary bundle are the
(non-Einstein) Sasakian manifolds. The importance of such a result comes from
the fact that it gives a spinorial interpretation of Sasakian structures, just as in
the case of Einstein–Sasakian and 3–Sasakian structures.

The author would like to thank Th. Friedrich for having brought this problem
to his attention, and for many useful discussions.

2 Spin and Spinc structures

Consider an oriented Riemannian manifold (Mn, g) and let PSO(n)M denote the
bundle of oriented orthonormal frames on M .

Definition 2.1 The manifold M is called spin if the there exists a 2–fold cover-
ing PSpinn

M of PSO(n)M with projection θ : PSpinn
M → PSO(n)M satisfying the

following conditions :

i) PSpinn
M is a principal bundle over M with structure group Spinn;

ii) If we denote by φ the canonical projection of Spinn over SO(n), then for every
u ∈ PSpinn

M and a ∈ Spinn we have

θ(ua) = θ(u)φ(a).

A Riemannian manifold M is spin iff the second Stiefel-Whitney class of M ,
w2(M), vanishes.
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The bundle PSpinn
M is called a spin structure. The representation theory shows

that the Clifford algebra Cl(n) has (up to equivalence) exactly one irreducible
complex representation Σn for n even and two irreducible complex representations
Σ±

n for n odd. In the last case, these two representations are equivalent when
restricted to Spinn, and this restriction is denoted by Σn. For n even, there
is a splitting of ΣM with respect to the action of the volume element in Σn :=
Σ+

n ⊕Σ−

n and one usually calls elements of Σ+
n (Σ−

n ) positive (respectively negative)
half-spinors. For arbitrary n, Σn is called the complex spin representation, and
it defines a complex vector bundle associated to the spin structure, called the
complex spinor bundle ΣM .

Definition 2.2 A Spinc structure on M is given by a U(1) principal bundle
PU(1)M and a Spinc

n principal bundle PSpinc
n
M together with a projection θ :

PSpinc
n
M → PSO(n)M × PU(1)M satisfying

θ(ũã) = θ(ũ)ξ(ã),

for every ũ ∈ PSpinc
n
M and ã ∈ Spinc

n, where ξ is the canonical 2–fold covering
of Spinc

n over SO(n) × U(1).

Recall that Spinc
n = Spinn ×Z2

U(1), and that ξ is given by ξ([u, a]) = (φ(u), a2).
The complex representations of Spinc

n are obviously the same as those of Spinn,
so to every Spinc manifold is associated a spinor bundle just like the for spin
manifolds. If M2m is Kähler, there is a parallel decomposition ΣM = Σ0M⊕ ...⊕
ΣmM , corresponding to the action of the Kähler form by Clifford multiplication.
The bundles ΣkM lie in Σ+M (Σ−M) for k even (odd) (cf. [11]).

If M is spin, the Levi–Civita connection on PSO(n)M induces a connection on
the spin structure PSpinn

M , and thus a covariant derivative on ΣM denoted by
∇. If M has a Spinc structure, then every connection form A on PU(1)M defines
in a similar way (together with the Levi-Civita connection of M) a covariant
derivative on ΣM denoted by ∇A.

In general, by Spinc manifold we will understand a set (M, g, S, L,A), where
(M, g) is an oriented Riemannian manifold, S is a Spinc structure, L is the com-
plex line bundle associated to the auxiliary bundle of S and A is a connection
form on L.

Lemma 2.1 A Spinc structure on a simply connected manifold M with trivial
auxiliary bundle is canonically identified with a spin structure. Moreover, if the
connection defined by A is flat, then by this identification ∇A corresponds to ∇
on the spinor bundles.

Proof. One first remarks that since the U(1) bundle associated to L is trivial,
we can exhibit a global section of it, that we will call σ. Denote by PSpinn

M
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the inverse image by θ of PSO(n)M × σ. It is straightforward to check that this
defines a spin structure on M , and that the connection on PSpinc

n
M restricts to

the Levi-Civita connection on PSpinn
M if σ can be choosen parallel, i.e. if A

defines a flat connection.
Q.E.D.

Consequently, all results concerning Spinc structures obtained below are also valid
for usual spin structures.

3 Parallel Spinors

In this section we classify all simply connected Spinc manifolds (M, g, S, L,A) ad-
mitting parallel spinors. The curvature form of A can be viewed as an imaginary–
valued 2–form on M , and will be denoted by iω := dA.

Lemma 3.1 Suppose there exists a parallel spinor ψ on Mn

∇A
Xψ = 0 ∀X. (1)

Then the following equation holds

Ric(X) · ψ = iX | ω · ψ, ∀X. (2)

Proof. Let {e1, ...en} be a local orthonormal frame. From (1) we easily obtain

RA
X,Y ψ = 0. (3)

A local computation shows that the curvature operator on the spinor bundle is
given by the formula

RA = R +
i

2
ω, (4)

where

RX,Y =
1

2

∑

j<k

R(X, Y, ej , ek)ej · ek· (5)

Using the first Bianchi identity for the curvature tensor one obtains ([2], p.16)

∑

i

ei · Rei,X =
1

2
Ric(X), (6)

so by (3), (4) and (6),

0 =
∑

j

ej · R
A
ej ,Xψ

=
∑

j

ej · (Rej ,Xψ +
i

2
ω(ej, X)ψ)

=
1

2
Ric(X) · ψ −

i

2
X | ω · ψ.
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Q.E.D.

We consider Ric as an (1,1) tensor on M and denote for every x ∈ M by K(x)
the image of Ric, i.e.

K(x) = {Ric(X) | X ∈ TxM}

and by L(x) the orthogonal complement of K(x) in TxM , which by (2) can be
written as

L(x) = {X ∈ TxM | Ric(X) = 0} = {X ∈ TxM | X | ω = 0}.

Since ψ is parallel, TM ·ψ and iTM ·ψ are two parallel sub-bundles of ΣM . This
shows that their intersection is also a parallel sub-bundle of ΣM . Let E be the
inverse image of TM ·ψ ∩ iTM ·ψ by the isomorphism Φ : TM → TM ·ψ, given
by Φ(X) = X · ψ. The fibre at some x ∈ M of E can be expressed as

Ex = {X ∈ TxM | ∃Y ∈ TxM, X · ψ = iY · ψ}.

By the preceding discussion, E and E⊥ are well-defined parallel distributions
of M . Moreover, (2) shows that K(x) ⊂ Ex for all x, so E⊥

x ⊂ L(x), i.e. the
restriction of ω to E⊥ vanishes. We now use the de Rham decomposition theorem
and obtain that M is isometric to a Riemannian product M = M1 ×M2, where
M1 and M2 are arbitrary integral manifolds of E and E⊥ respectively. The
Spinc structure of M induces Spinc structures on M1 and M2 with canonical
line bundles whose curvature is given by the restriction of ω to E and E⊥, and
(using the correspondence between parallel spinors and fixed points of the spin
holonomy representation) the parallel spinor ψ induces parallel spinors ψ1 and
ψ2 on M1 and M2, which satisfy (2). It is clear that (since the restriction of ω
to E⊥ vanishes) the canonical line bundle of the Spinc structure on M2 is trivial
and has vanishing curvature, so by Lemma 2.1, ψ2 is actually a parallel spinor of
a spin structure on M2.

On the other hand, by the very definition of E one easily obtains that the equation

X · ψ = iJ(X) · ψ (7)

defines an almost complex structure J on M1.

Lemma 3.2 The almost complex structure J defined by the above formula is
parallel, so (M1, J) is a Kähler manifold.

Proof. Taking the covariant derivative (on M1) in (7) in an arbitrary direction Y
and using (1) gives

∇YX · ψ = i∇Y (J(X)) · ψ. (8)
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On the other hand, replacing X by ∇YX in (7) and substracting from (8) yields
∇Y (J(X)) · ψ = J(∇YX) · ψ, so ((∇Y J)(X)) · ψ = 0, and finally (∇Y J)(X) = 0
since ψ never vanishes on M1. As X and Y were arbitrary vector fields we deduce
that ∇J = 0.

Q.E.D.

We finally remark that the restriction of the Spinc structure of M to M1 is just
the canonical Spinc structure of M1, since (7) and (2) show that the restriction
of ω to M1 is the Ricci form of M1.

Remark 3.1 Of course, replacing J by −J just means switching from the canon-
ical to the anti-canonical Spinc structure of M1, but we solve this ambiguity by
”fixing” the sign of J with the help of (7).

Conversely, the Riemannian product of two Spinc manifolds carrying parallel
spinors is again a Spinc manifold carrying parallel spinors, and as we already re-
marked in the first section, the canonical Spinc structure of every Kähler manifold
carries parallel spinors. Consequently we have proved the following:

Theorem 3.1 A simply connected Spinc manifold M carries a parallel spinor
if and only if it is isometric to the Riemannian product M1 × M2 between a
simply connected Kähler manifold and a simply connected spin manifold carrying
a parallel spinor, and the Spinc structure of M is the product between the canonical
Spinc structure of M1 and the spin structure of M2.

There are two natural questions that one may ask at this stage:

Question 1: What is the dimension of the space of parallel spinors on M?

Question 2: How many Spinc structures on M carry parallel spinors?

We can of course suppose that M is irreducible, since otherwise we decompose
M , endow each component with the induced Spinc structure, and make the rea-
sonning below for each component separately. Using Theorem 3.1, we can thus
always suppose that M is either an irreducible spin manifold carying parallel
spinors, or an irreducible Kähler manifold not Ricci flat (since these ones are
already contained in the first class), endowed with the canonical Spinc structure.
We call such manifolds of type S (spin) and K (Kähler) respectively. Then the
answers to the above questions are:

1. For manifolds of type S the answer is given by M. Wang’s classification [15].
For manifolds of type K we will show that the dimension of the space of parallel
spinors is 1. Suppose we have two parallel spinors ψ1 and ψ2 on M . Correspond-
ingly we have two Kähler structures J1 and J2. Moreover, the Ricci forms of these
Kähler structures are both equal to ω, so J1 = J2 when restricted to the image
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of the Ricci tensor. On the other hand, the vectors X for which J1(X) = J2(X)
form a parallel distribution on M , which, by irreducibility, is either the whole of
TM or empty. In the first case we have J1 = J2, so ψ1 and ψ2 are both parallel
sections of Σ0M whose complex dimension is 1. The second case is impossible,
since it would imply that the Ricci tensor vanishes.

2. This question has a meaning only for manifolds of type K. A slight modification
in the above argument shows that on a manifold of type K there is no other Kähler
structure but J and −J . On the other hand, we have seen that a parallel spinor
with respect to some Spinc structure induces on such a manifold M a Kähler
structure whose canonical Spinc structure is just the given one. It is now clear
that we can have at most two different Spinc structures with parallel spinors: the
canonical Spinc structures induced by J and −J . These are just the canonical and
anti-canonical Spinc structures on (M,J), and they both carry parallel spinors.

We can synthetise this as

Proposition 3.1 The only Spinc structures on an irreducible Kähler manifold
not Ricci-flat which carry Killing spinors are the canonical and anti-canonical
ones. The dimension of the space of parallel spinors is in each of these two cases
equal to 1.

4 Killing spinors

In this section we classify all simply connected Spinc manifolds (Mn, g, S, L, A)
carrying real Killing spinors, i.e. spinors ψ satisfying the equation

∇A
Xψ = λX · ψ, ∀X ∈ TM, (9)

for some fixed real number λ 6= 0. By rescaling the metric if necessary, we can
suppose without loss of generality that λ = ±1

2
. Moreover, for n even we can

suppose that λ = 1
2
, by taking the conjugate of ψ if necessary.

Consider the cone (M̄, ḡ) over M given by M̄ = M ×r2 R+, with the metric
ḡ = r2g + dr2. Let us denote by ∂r the vertical unit vector field. Then the
covariant derivative ∇̄ of the Levi-Civita connection of ḡ satisfies the formulas of
warped products ([14], p.206)

∇̄∂r
∂r = 0 , (10)

∇̄∂r
X = ∇̄X∂r =

1

r
X , (11)

∇̄XY = ∇XY − r g(X, Y )∂r , (12)

where here and in the formulas below, X, Y are vector fields onM , identified with
their canonical extensions to M̄ . Using this, one easily computes the curvature
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tensor R̄ of M̄ (cf. [14], p.210)

R̄(X, ∂r)∂r = R̄(X, Y )∂r = R̄(X, ∂r)Y = 0, (13)

R̄(X, Y )Z = R(X, Y )Z + g(X,Z)Y − g(Y, Z)X. (14)

In particular, if M̄ is flat, then M is a space form.

For later use, let us recall an important result concerning the holonomy of such
cone metrics, originally due, as far as we know, to S. Gallot ([8], Prop. 3.1).

Lemma 4.1 If M is complete, then M̄ is irreducible or flat.

The use of the cone over M is the key of the classification, as it is the case for
C. Bär’s description of manifolds carrying Killing spinors with respect to usual
spin structures. The principal ingredient is the following

Proposition 4.1 Denote by π the projection M̄ →M . Then, every Spinc struc-
ture (S, L,A) on M induces a canonical Spinc structure (S̄, π∗L, π∗A) on M̄ .
Moreover, if the dimension of M is even (odd), every spinor ψ on M induces a
spinor π∗ψ (respectively positive and negative half spinors (π∗ψ)±) on M̄ satis-
fying

∇̄A
X(π∗ψ) = π∗(∇A

π∗Xψ −
1

2
(π∗X) · ψ) ∀X ∈ TM̄, (15)

∇̄A
X(π∗ψ)± = π∗(∇A

π∗Xψ ∓
1

2
(π∗X) · ψ) ∀X ∈ TM̄, (16)

Proof. By enlarging the structure groups, the two-fold covering

θ : PSpinc
n
M → PSO(n)M × PU(1)M,

gives a two-fold covering

θ : PSpinc
n+1
M → PSO(n+1)M × PU(1)M,

which, by pull-back through π, gives rise to a Spinc structure on M̄

PSpinc
n+1
M̄

π
−→ PSpinc

n+1
M

π∗θ ↓ θ ↓

PSO(n+1)M̄ × PU(1)M̄
π

−→ PSO(n+1)M × PU(1)M

↓ ↓

M̄
π

−→ M
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The verification of the fact that the pull back of PSO(n+1)M is indeed isometric to
the oriented orthonormal frame bundle of M̄ and that π∗θ is Spinc–equivariant is
left to the reader. The Levi-Civita connection of M̄ and the pull-back connection
on PU(1)M̄ induce a connection on PSpinc

n+1
M̄ . We will now relate the (complex)

spinor bundles associated to the Spinc structures on M and M̄ .

There is an isomorphism Cl(n) ' Cl0(n+1) obtained by extending the mapping
Rn → Cl0(n + 1), v 7→ v · en+1 to Cl(n), which gives an inclusion i : Spinn+1 →
Cl(n) and thus an embedding of Spinc

n+1 into the complex Clifford algebra Cl(n)
by a × eit 7→ i(a)eit. This makes the complex spin representation Σn into a
Spinc

n+1–representation. Recall that Σn is an irreducible Cl(n)–representation of
complex dimension 2[ n

2
], and that Spinc

k has (up to equivalence) a unique complex

representation of dimension 2[ k
2
], namely Σk for k odd and two inequivalent com-

plex representations of dimension 2[ k
2
] (the so-called half-spin representations) Σ±

k

for k even. By dimensional reasons, we deduce that the above constructed rep-
resentation of Spinc

n+1 on Σn is equivalent to Σn+1 for n + 1 odd and to one of
the half-spin representations for n + 1 even. In order to decide which of them is
obtained by this procedure for n = 2k+ 1, we recall that, on Σ±

2k+2, the complex
volume element ωC(2k + 2) := ik+1e1 · ... · e2k+2 acts by ±1 and that on Σ2k+1,
the complex volume element ωC(2k+ 1) := ik+1e1 · ... · e2k+1 acts by the identity.
But ωC(2k+ 2) := ik+1e1 · ... · e2k+2 = ik+1(e1 · e2k+2) · ... · (e2k+1 · e2k+2), which by
the above acts on Σ2k+1 exactly as ωC(2k + 1), i.e. by the identity.

Consequently, we have identified the pull back π∗ΣM with ΣM̄ (Σ+M̄) for n
even (respectively odd), and with respect to this identification, if X and Y are
vectors on M and ψ a spinor on M , then

1

r
X · ∂r · π

∗ψ = π∗(X · ψ). (17)

1

r
X ·

1

r
Y · π∗ψ = π∗(X · Y · ψ). (18)

Similarly, if we define (for n odd) an isomorphism Cl(n) ' Cl0(n+1) by extending
to Cl(n) the mapping Rn → Cl0(n+1), v 7→ −v ·en+1, we obtain an identification
of the pull back π∗ΣM with Σ−M̄ , and the formula (17) has to be replaced with

1

r
X · ∂r · π

∗ψ = −π∗(X · ψ). (19)

The above constructed connection on PSpinc
n+1
M̄ defines a covariant derivative

∇̄A on ΣM̄ (Σ+M̄) for n even (respectively odd). Consider the pull-back π∗ψ of
a spinor ψ = [σ, ξ], where ξ : U ⊂ M → Σn is a vector valued function, and σ is
a local section of PSpinc

n
M whose projection onto PSO(n)M is a local orthonormal

frame (X1, ..., Xn) and whose projection onto PU(1)M is a local section s. Then
π∗ψ can be expressed as π∗ψ = [π∗σ, π∗ξ], and it is easy to see that the projection

9



of π∗σ onto PSO(n+1)M̄ is the local orthonormal frame (1
r
X1, ...,

1
r
Xn, ∂r) and its

projection onto PU(1)M̄ is just π∗s. In order to compute the covariant derivative
of the spinor π∗ψ at a point (x, r) ∈ M̄ in terms of the covariant derivative of ψ
on M we use the following formula which easily follows from (11):

∇̄∂r

1

r
X = 0, (20)

for every vector field X on M identified with the induced vector field on M̄ . We
then obtain

∇̄A
∂r
π∗ψ = [π∗σ, ∂r(π

∗ξ)] +
1

2

∑

j<k

ḡ(∇̄∂r
(
1

r
Xj),

1

r
Xk)

1

r
Xj ·

1

r
Xk · π

∗ψ

+
1

2

∑

j

ḡ(∇̄∂r

1

r
Xj , ∂r)

1

r
Xj · ∂r · π

∗ψ +
1

2
π∗A((π∗s)∗(∂r))π

∗ψ

= [π∗σ, ∂r(π
∗ξ)] +

1

2
A((π ◦ π∗s)∗(∂r))π

∗ψ

= 0 +
1

2
A((s ◦ π)∗(∂r))π

∗ψ

= 0,

and (using (11), (12), (17) and (18))

∇̄A
Xπ

∗ψ = [π∗σ,X(π∗ξ)] +
1

2

∑

j<k

ḡ(∇̄X(
1

r
Xj),

1

r
Xk)

1

r
Xj ·

1

r
Xk · π

∗ψ

+
1

2

∑

j

ḡ(∇̄X

1

r
Xj, ∂r)

1

r
Xj · ∂r · π

∗ψ +
1

2
π∗A((π∗s)∗(X))π∗ψ

= [π∗σ, π∗(X(ξ))] +
1

2

∑

j<k

1

r2
(ḡ(∇XXj, Xk))π

∗(Xj ·Xk · ψ)

−
1

2

∑

j

g(X,Xj)π
∗(Xj · ψ) +

1

2
A((π ◦ π∗s)∗(X))π∗ψ

= π∗

(

[σ, (X(ξ))] +
1

2

∑

j<k

g(∇XXj , Xk)Xj ·Xk · ψ

−
1

2
X · ψ +

1

2
A(s∗X)ψ

)

= π∗(∇A
Xψ −

1

2
X · ψ).

The computations are similar for (π∗ψ)±.
Q.E.D.

The following result comes as a direct consequence of the above proposition.
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Corollary 4.1 The cone over a Spinc manifold Mn carrying real Killing spinors
has a Spinc structure carrying parallel spinors. Moreover, for n odd, a Killing
spinor with Killing constant 1

2
generates a positive parallel half-spinor and a

Killing spinor with Killing constant −1
2

generates a negative parallel half-spinor.
The converse is also true.

Definition 4.1 A vector field ξ on a Riemannian manifold (M, g) is called a
Sasakian structure if the following conditions are satisfied:

1. ξ is a Killing vector field of unit length;

2. the tensors ϕ := −∇ξ and η := g(ξ, .) are related by

ϕ2 = −Id+ η ⊗ ξ;

3. (∇Xϕ)Y = g(X, Y )ξ − η(Y )X, for all vectors X , Y .

Recall that a Riemannian manifold carries a Sasakian structure if and only if the
cone over it is a Kähler manifold, as it is shown by a straightforward computation
([1]). From Corollary 4.1, Theorem 3.1 and Lemma 4.1 we thus obtain

Theorem 4.1 A simply connected complete Spinc manifold M carries a real
Killing spinor if and only if it satisfies one of the two conditions below:

1. the connection of the auxiliary bundle is flat and M is a simply connected spin
manifold carrying real Killing spinors;

2. M is a Sasakian manifold.

The first case is not interesting for us, since the simply connected spin manifolds
with real Killing spinors are already studied by C. Bär in [1]. We thus concentrate
our efforts towards Sasakian manifolds, and start with the following

Proposition 4.2 Every Sasakian manifold (M2k+1, g, ξ) carries a canonical Spinc

structure. If M is Einstein, then the auxiliary bundle of the canonical Spinc struc-
ture is flat, so if in addition M is simply connected, then it is spin.

Proof. The first statement follows directly from the fact that the cone over M is
Kähler, and thus carries a canonical Spinc structure, whose restriction to M is
the desired canonical Spinc structure.

If M is Einstein, then its Einstein constant is 2k ([2], p.78), so M̄ is Ricci flat by
(13), (14). The auxiliary bundle of the canonical Spinc structure of M̄ which is
just the canonical bundle K = Λk+1,0M̄ is thus flat, and the same is true for its
restriction to M . The last statement follows from Lemma 2.1.
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Q.E.D.

One can actually construct the Spinc structure more directly as follows: the
frame bundle of every Sasakian manifold restricts to U(k), by considering only
adapted frames, i.e., orthonormal frames of the form {ξ, e1, ϕ(e1), ...ek, ϕ(ek)}.
Then, just extend this bundle of adapted frames to a Spinc

2k principal bundle
using the canonical inclusion U(k) → Spinc

2k (cf. [12], p.392). We prefered the
description which uses the cone over M since the computations are considerably
simpler (e.g., for showing that, if M is Einstein and simply connected, it is spin).

The first description also has the advantage of directly showing (using Theorem
4.1) that the canonical Spinc structure carries a Killing spinor, which is not
obvious if one uses the second description.

Just as in the case of almost complex manifolds one can define an anti-canonical
Spinc structure for Sasakian manifolds, which has the same properties as the
canonical one.

We recall that the parallel spinor of the canonical Spinc structure of a Kähler
manifold M2k+2 lies in Σ0M , so is always a positive half-spinor, and the paral-
lel spinor of the anti-canonical Spinc structure lies in Σk+1M , so it is positive
(negative) for k odd (respectively even). Collecting these remarks together with
Corollary 4.1 we obtain the following

Corollary 4.2 The only simply connected Spinc manifolds admitting real Killing
spinors other than the spin manifolds are the non-Einstein Sasakian manifolds
M2k+1 endowed with their canonical or anti-canonical Spinc structure. For the
canonical Spinc structure, the dimension of the space of Killing spinors for the
Killing constant 1

2
is always equal to 1, and there is no Killing spinor for the

constant −1
2
. For the anti-canonical Spinc structure, the dimensions of the spaces

of Killing spinors for the Killing constants 1
2

and −1
2

are 1 and 0 (0 and 1) for
k odd (respectively even).
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