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Abstract. Compact Hermitian symmetric spaces are Kähler manifolds with constant scalar
curvature and non-negative sectional curvature. A famous result by A. Gray states that,
conversely, a compact simply connected Kähler manifold with constant scalar curvature and
non-negative sectional curvature is a Hermitian symmetric space. The aim of the present
article is to transpose Gray’s result to the quaternion-Kähler setting. In order to achieve
this, we introduce the quaternionic sectional curvature of quaternion-Kähler manifolds, we
show that every Wolf space has non-negative quaternionic sectional curvature, and we prove
that, conversely, every quaternion-Kähler manifold with non-negative quaternionic sectional
curvature is a Wolf space. The proof makes crucial use of the nearly Kähler twistor spaces
of positive quaternion-Kähler manifolds.

1. Introduction

The original inspiration for this article stems from a beautiful result of A. Gray [13] stating
that compact simply connected Kähler manifolds with constant scalar curvature and non-
negative sectional curvature are Hermitian symmetric. Gray’s proof was revisited in [19],
where it is shown that it basically follows from a Weitzenböck formula applied to the curvature
tensorR, together with the fact that the curvature operator q(R) is semi-definite on symmetric
tensors whenever the sectional curvature is non-negative, cf. [14].

It is thus natural to ask whether this strategy can be applied to other classes of Riemannian
manifolds, like quaternion-Kähler manifolds, which appear in Berger’s classification of Rie-
mannian manifolds with special holonomy. In every dimension 4n ≥ 8, the holonomy group
of a quaternion-Kähler manifold is contained in Sp(n) · Sp(1) ⊂ SO(4n). Geometrically, a
quaternion-Kähler manifold (M, g) can be characterized by the existence of a parallel rank
3 vector subbundle E of End(TM) locally spanned by three almost Hermitian structures
I, J,K satisfying the quaternionic relations I2 = J2 = K2 = −id, and IJ = K.

All quaternion-Kähler manifolds are Einstein. The scalar curvature vanishes if and only
if the manifold is hyperkähler (i.e. I, J,K can be chosen globally as Kähler structures), a
situation which is in general not considered as proper quaternion-Kähler. In the remaining
cases, a quaternion-Kähler manifold (M, g, E) is called positive or negative according to the
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sign of its scalar curvature. While in the negative case it is possible to construct complete non-
locally symmetric examples of quaternion-Kähler manifolds, the only examples of complete
positive quaternion-Kähler manifolds are the so-called Wolf spaces [26], which are symmetric
spaces of compact type associated to each simple compact Lie group G via the choice of a
root of G of maximal length.

The famous LeBrun-Salamon conjecture (which was proved only in small dimensions n = 2
[23] and n = 3 or 4 [5]) states that all positive quaternion-Kähler manifolds are Wolf spaces. A
possible weakening of this conjecture would be to add some curvature positivity assumption,
and to use Gray’s theorem [13]. Indeed, an important feature of positive quaternion-Kähler
manifolds is that the sphere bundle of E , called the twistor space, can be naturally endowed
with a Kähler-Einstein structure [24].

It is thus tempting to try to impose a condition on the sectional curvature of M which is
sufficient for the non-negativity of the sectional curvature of the twistor space and conclude by
Gray’s theorem. However this cannot work, since the twistor spaces of Wolf spaces endowed
with the Kähler-Einstein metric are not symmetric, except for the quaternionic projective
space HP n. Such a curvature condition on M would therefore be too strong and would not
hold for the other Wolf spaces.

Our strategy in this article is inspired by this naive idea. However, the main new ingredient
is that, instead of using the Kähler-Einstein structure of the twistor space, we rather consider
its nearly Kähler structure, obtained from the former by changing the sign of the complex
structure on the vertical distribution, and rescaling the metric by a factor 1/2 in vertical
directions. Recall that every nearly Kähler manifold (N, g, J) carries a metric connection
∇̄ with parallel skew-symmetric torsion, called the canonical connection. This connection
often is more appropriate for understanding the intrinsic structure of the manifold than the
Levi-Civita connection ∇g, and indeed, it will play a key role in what follows.

Note that a somewhat similar approach was tempted by Chow and Yang in [8]. They intro-
duced a so called quaternionic bisectional curvature and showed that if it is non-negative for
a positive quaternion-Kähler manifold, the manifold has to be a Wolf space. In fact, without
noticing, they proved that the manifold has to be HP n. By calling the non-negativity of the
quaternionic bisectional curvature ”a somewhat weaker assumption” than non-negativity of
the sectional curvature, they suggest that the first is implied by the later. Actually, this is
not the case, as explained in [19].

Let us now give a quick overview of the organization of the paper. In Section 2 we focus
on nearly Kähler manifolds and generalize Gray’s result to this setting. In Proposition 2.1
we show that the curvature tensor R̄ of the canonical connection is the sum of a curvature
tensor of Kähler type and a parallel tensor, which, according to Proposition 2.4, satisfies a
Weitzenböck formula similar to the one in the Kähler setting. Assuming the non-negativity
of the sectional curvature of R̄, it is then possible to show that ∇̄R̄ = 0, so the manifold is
an Ambrose-Singer homogeneous space (cf. Theorem 2.7).

In Section 3 we study in detail the nearly Kähler structure of the twistor spaces of positive
quaternion-Kähler manifolds. Most calculations performed in §3.1 can be found at different
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places in the literature, but the computations in the references that we could find are not
always correct, so we give a self-contained proof of the necessary formulas in Proposition 3.3.

Using these calculations, we reinterpret in §3.2 the non-negativity condition for the sectional
curvature of the canonical connection ∇̄ on the nearly Kähler twistor space of a positive
quaternion-Kähler manifold, in terms of the Riemannian curvature of the quaternion-Kähler
base (cf. Corollary 3.10). It turns out that this is equivalent to the non-negativity of the
so-called quaternionic sectional curvature of the base.

In Section 4 we show that every Wolf space has non-negative quaternionic sectional curva-
ture (cf. Corollary 4.2) and conversely we obtain our main result (Theorem 4.5) which can
be stated as follows: A compact quaternion-Kähler manifold with non-negative quaternionic
sectional curvature is a Wolf space.

In particular it follows that a compact positive quaternion-Kähler manifold whose sectional
curvature κ satisfies for every 2-plane P the inequality

κ(P ) ≥ scal cos2(θP )

8n(n+ 2)

(where scal denotes the scalar curvature and θP is the angle between P and the quaternionic
line passing through a non-zero vector in P ), is a Wolf space. Hence, our main result gives
further evidence for the following

Conjecture: Any compact quaternion-Kähler manifold with non-negative sectional cur-
vature is a Wolf space.

Recall that by a result of Berger [3], a quaternion-Kähler manifold of (strictly) positive
sectional curvature is isometric to HP n up to constant rescaling.

Acknowledgments. A.M. was partly supported by the PNRR-III-C9-2023-I8 grant CF
149/31.07.2023 Conformal Aspects of Geometry and Dynamics. U.S. was partly supported
by the Procope Project No. 57650868 (Germany) / 48959TL (France).

2. Nearly Kähler manifolds of non-negative curvature

A nearly Kähler manifold is by definition a Riemannian manifold (N, g) together with
an almost complex structure J , orthogonal with respect to g and satisfying the condition
(∇g

XJ)X = 0 for all tangent vectors X. Here ∇g is the Levi-Civita connection of g. A nearly
Kähler manifold is called strict if ∇g

XJ = 0 implies that X = 0 for all X ∈ TN . On any
nearly Kähler manifold there exists a unique metric connection ∇̄ with skew-symmetric and
parallel torsion, preserving the Hermitian structure, i.e. with ∇̄J = 0. It can be written as
∇̄ = ∇g+ τ with τ := −1

2
J ◦∇gJ . Then τ(X, Y, Z) = g(τXY, Z) is a ∇̄-parallel 3-form. Note

that τX ∈ Λ(2,0)+(0,2) TN , i.e. τX(JY, JZ) = −τX(Y, Z) holds for all vectors X, Y, Z. We will
call ∇̄ the canonical connection of the nearly Kähler manifold (N, g, J).

For the convenience of the reader the following proposition recalls and collects properties
of the curvature of the canonical connection on a nearly Kähler manifold. These facts will be
important in the rest of our paper.
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Proposition 2.1. Let (N2n, g, J) be a strict nearly Kähler manifold. Then the curvature R̄
of the canonical connection ∇̄ is pair symmetric and satisfies the first and second Bianchi
identities

S
XY Z

(
R̄(X, Y, Z,W )− 4g(τXY, τZW )

)
= 0 and S

XY Z
(∇̄XR̄)Y,Z = 0 ,

for all tangent vectors X, Y, Z,W ∈ T (= TN). The Ricci tensor Ric of R̄ is symmetric
and ∇̄-parallel. Moreover, the curvature R̄ takes values in the Lie algebra u(n) ∼= Λ1,1T, i.e.
R̄ ∈ Sym2Λ1,1T, and R̄ can be written as

R̄ = RK +R0 ,

where RK is a Kähler curvature tensor and R0 is a ∇̄-parallel tensor. More precisely, it holds
that R0

X,Y = −(σX,Y + σJX,JY ), where σ := τei ∧ τei =
1
2
dτ (throughout this paper we use the

Einstein sum convention).

Proof. The curvature of any metric connection ∇̄ = ∇g + τ with parallel skew-symmetric
torsion τ can be decomposed as

(1) R̄ = Rg − τ 2 ,

where τ 2X,Y := [τX , τY ] − 2ττXY (see [9, Eq. (3)]). This formula implies the pair symmetry

of R̄ and thus also the symmetry of the Ricci tensor Ric of R̄. The first and second Bianchi
identities follow from [17, Thm. 5.3, Ch. III], (cf. also [9, Cor. 2.3]). The fact that the
Riemannian Ricci tensor Ric is ∇̄-parallel was first shown by P.-A. Nagy [20, Cor. 2.1].
By (1), it follows that Ric is ∇̄-parallel as well. Note that in the case of interest for us
in this paper, namely when the nearly Kähler structure is the twistor space over a positive
quaternion-Kähler manifold, we provide a direct proof for this fact in Proposition 3.12 below.

Since the almost complex structure is ∇̄-parallel, the curvature R̄ takes values in u(n) and
the holonomy of ∇̄ is a subgroup of U(n). The pair symmetry implies R̄ ∈ Sym2Λ1,1T.

It remains to prove the decomposition of R̄. We have R̄ ∈ Sym2(Λ2T) ∼= ker b ⊕ Λ4T,
where b : Sym2(Λ2T) → Λ4T is the Bianchi map, defined by b(R) := ei∧ej ∧R(ei∧ej). The
kernel of b is by definition the space of algebraic Riemannian curvature tensors. Consider
the embedding ı of Λ4T into Sym2(Λ2T) defined by ı(σ)(X ∧ Y ) := σ(X, Y, ·, ·). Since
b ◦ ı = 12 IdΛ4T , it follows that 1

12
ı ◦ b is the projection onto the subspace of Sym2(Λ2T)

isomorphic to Λ4T. An easy computation shows that b(R̄) = −b(τ 2) = 8σ. Hence, one can
write R̄X,Y =: R̃X,Y + 1

12
(ı ◦ b(R̄))X,Y = R̃X,Y + 2

3
σX,Y , with

(2) σX,Y = 2τ(ei, X, Y )τei − 2τeiX ∧ τeiY =: 2σ−
X,Y − 2σ+

X,Y ,

where σ− denotes the first and σ+ the second summand of σ in the above expression and R̃ is
an algebraic Riemannian curvature tensor. Since τX ∈ Λ(2,0)+(0,2)T we see that σ+

X,Y ∈ Λ1,1T,

i.e. σ+ ∈ Sym2Λ1,1T and σ−
X,Y ∈ Λ(2,0)+(0,2)T. In particular, we have σ+

X,Y = 1
2
(σX,Y +

σJX,JY ). Another simple calculation shows b(σ−) = 2σ and b(σ+) = −4σ. It follows that
σ̃ := 2σ−+σ+ is in the kernel of the Bianchi map, i.e. σ̃ is an algebraic Riemannian curvature
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tensor, whence RK := R̃ + 2
3
σ̃ is also an algebraic Riemannian curvature tensor. Moreover,

we can write σ = 2σ− − 2σ+ = σ̃ − 3σ+ and

R̄X,Y = R̃X,Y +
2

3
σX,Y = (R̃X,Y +

2

3
σ̃X,Y )− 2σ+

X,Y = RK
X,Y − (σX,Y + σJX,JY ) .

Since R̄ and σ+ are in Sym2Λ1,1 the previous calculation shows that RK is an algebraic
Riemannian curvature tensor of Kähler type. From (2) it follows that σ is ∇̄-parallel and
thus the same is true for σ+. Hence R0 defined by R0

X,Y := −(σX,Y + σJX,JY ) is a ∇̄-parallel
tensor. □

Let q(R̄) be the curvature endomorphism of the vector bundle Λ2T⊗ Λ2T, defined as

q(R̄)K :=
1

2
(ei ∧ ej)∗R̄ei,ejK ,

for every section K of Λ2T ⊗ Λ2T, where {ei} is any local orthonormal basis of T. If
(ωα)1≤α≤n(n−1)/2 is an orthonormal basis of Λ2T, then one can write q(R̄)K = (ωα)∗R̄(ωα)∗K.

Remark 2.2. The curvature endomorphism q(R̄) is symmetric. This follows from the pair
symmetry of R̄ which more generally holds for the curvature tensor of all connections with
parallel skew-symmetric torsion. In particular, q(R̄) is pointwise diagonalizable.

Consider the curvature tensor R̄ as an element of Ω2(Λ2T), i.e. as a 2-form with values in
the vector bundle Λ2T.

Lemma 2.3. Let πSym2 denote the projection from Λ2T⊗ Λ2T to Sym2(Λ2T). Then

πSym2(ej ∧ ei ⌟ R̄ei,ej R̄) =
1

2
q(R̄)R̄ ,

where the interior and exterior products on the left hand side are only applied to the first
factor of Λ2T⊗ Λ2T.

Proof. Let us write R̄ = R̄αβωα ⊗ ωβ, with R̄αβ = R̄βα for every 1 ≤ α, β ≤ n(n− 1)/2. We
then get

q(R̄)R̄ = R̄αβ(ωα)∗(ωβ)∗R̄ = R̄αβR̄γδ(ωα)∗(ωβ)∗(ωγ ⊗ ωδ)

= R̄αβR̄γδ

(
(ωα)∗(ωβ)∗ωγ ⊗ ωδ + (ωβ)∗ωγ ⊗ (ωα)∗ωδ

+(ωα)∗ωγ ⊗ (ωβ)∗ωδ + ωγ ⊗ (ωα)∗(ωβ)∗ωδ

)
= R̄αβR̄γδ

(
(ωα)∗(ωβ)∗ωγ ⊗ ωδ + 2(ωα)∗ωγ ⊗ (ωβ)∗ωδ + ωγ ⊗ (ωα)∗(ωβ)∗ωδ

)
.

On the other hand, recall that (ei∧ ej)∗ acts on Λ2T as ej ∧ ei ⌟ − ei∧ ej ⌟. Therefore, using
that R̄(ωα) = R̄αβωβ, we can write

ej ∧ ei ⌟ R̄ei,ej R̄ =
1

2
(ej ∧ ei − ei ∧ ej⌟) R̄ei,ej R̄ = (ωα)∗R̄(ωα)R̄

= (ωα)∗
(
R̄αβR̄γδ((ωβ)∗ωγ ⊗ ωδ + ωγ ⊗ (ωβ)∗ωδ)

)
= R̄αβR̄γδ

(
(ωα)∗(ωβ)∗ωγ ⊗ ωδ + (ωα)∗ωγ ⊗ (ωβ)∗ωδ

)
,

where we recall that in the first two lines, (ωα)∗ only acts on the first factor of Λ2T⊗ Λ2T.
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Thanks to the symmetry of R̄, the last summand belongs to Sym2(Λ2T), whereas the
projection of the first factor onto Sym2(Λ2T) reads

πSym2(R̄αβR̄γδ(ωα)∗(ωβ)∗ωγ ⊗ ωδ) =
1

2
R̄αβR̄γδ((ωα)∗(ωβ)∗ωγ ⊗ ωδ + ωδ ⊗ (ωα)∗(ωβ)∗ωγ)

=
1

2
R̄αβR̄γδ((ωα)∗(ωβ)∗ωγ ⊗ ωδ + ωγ ⊗ (ωα)∗(ωβ)∗ωδ) .

Comparing the above expressions yields the result. □

Proposition 2.4. For the curvature tensor of the canonical connection of a nearly Kähler
manifold (N, g, J) the following relation holds

πSym2(∇̄∗∇̄R̄) = −1

2
q(R̄)R̄ .

Proof. Considering again R̄ as an element of Ω2(Λ2T), it is well known that the second
Bianchi identity for R̄ is equivalent to d∇̄R̄ = 0. Since ∇̄Ric = 0 we also have δ∇̄R̄ = 0.
Indeed, writing R̄ as R̄ = 1

2
ei ∧ ej ⊗ R̄ei,ej we find (choosing the local orthonormal frame to

be ∇̄-parallel at the point where the computation is done):

δ∇̄R̄ = −ei ⌟∇̄eiR̄ = −1

2
ei ⌟(ej ∧ ek)⊗ (∇̄eiR̄)ej ,ek = −(∇̄eiR̄)ei,ek .

Using the second Bianchi identity for R̄ we obtain

g((∇̄eiR̄)ei,ekY, Z) = g((∇̄eiR̄)Y,Zei, X)

= g((∇̄Y R̄)ei,Zei, X) + g((∇̄ZR̄)Y,eiei, X)

= Y g(R̄ei,Zei, X) + Zg(R̄Y,eiei, X) .

The last sum vanishes because of ∇̄Ric = 0. We assume again that the local orthonormal
frame is ∇̄-parallel at the point where the computation is done, so in particular [ei, ej] =

−τeiej + τejei = −2τeiej. Keeping in mind that d∇̄R̄ = 0 and δ∇̄R̄ = 0, we then obtain:

0 = δ∇̄d∇̄R̄ = −ei ⌟ ∇̄ei(ej ∧ ∇̄ej R̄) = −ei ⌟ (ej ∧ ∇̄ei∇̄ej R̄)

= −∇̄ei∇̄eiR̄ + ej ∧ ei ⌟ ∇̄ei∇̄ej R̄

= ∇̄∗∇̄R̄ + ej ∧ ei ⌟
(
R̄ei,ej R̄ + ∇̄ej∇̄eiR̄ + ∇̄[ei,ej ]R̄

)
= ∇̄∗∇̄R̄ − d∇̄δ∇̄R̄ + ej ∧ ei ⌟ R̄ei,ej R̄ − 2ej ∧ ei ⌟ ∇̄τeiej

R̄ ,

whence

(3) ∇̄∗∇̄R = −ej ∧ ei ⌟ R̄ei,ej R̄ + 2ej ∧ ei ⌟ ∇̄τeiej
R̄ .
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We claim that the last summand in (3) vanishes. Indeed, the second Bianchi identity yields

2 ej ∧ ei ⌟ ∇̄τeiej
R̄ = 2ej ∧ ei ⌟ (∇̄ekR̄) τ(ei, ej, ek)

= ej ∧ ei ⌟ (ea ∧ eb)⊗ (∇̄ekR̄)ea,eb τ(ei, ej, ek)

= 2 ej ∧ eb ⊗ (∇̄ekR̄)ea,eb τ(ea, ej, ek)

= 2 ej ∧ eb ⊗
(
(∇̄eaR̄)ek,eb + (∇̄ebR̄)ea,ek

)
τ(ea, ej, ek)

= ej ∧ eb ⊗ (∇̄ebR̄)ea,ek τ(ea, ej, ek) .

(The last equality follows by exchanging the indices a and k in the third line). We then
replace ea and ek by Jea and Jek and obtain that the last line is equal to its opposite (as
R̄ea,ek = R̄Jea,Jek and τ(ea, ej, ek) = −τ(Jea, ej, Jek)) so it has to vanish. Consequently, (3)
becomes

(4) ∇̄∗∇̄R̄ = −ej ∧ ei ⌟ R̄ei,ej R̄ .

The proposition thus follows from Lemma 2.3. □

Remark 2.5. It is easy to check, using the symmetry by pairs of R̄, that ∇̄∗∇̄R̄ is actually
pair symmetric as well. Equation (4) thus shows that the formula in Lemma 2.3 is actually
valid without projecting the left hand term on Sym2(Λ2T).

Lemma 2.6. Let (N, g, J) be a nearly Kähler manifold. If the sectional curvature of the
curvature R̄ of the canonical connection ∇̄ is non-negative, then q(R̄) ≥ 0 on all symmetric
tensors, i.e. all eigenvalues of q(R̄) are non-negative.

Proof. Since the curvature R̄ is pair symmetric the proof of the corresponding statement for
the Riemannian curvature carries over to the present situation (see the proof of [14, Prop.
6.6.]). □

Theorem 2.7. A compact, simply connected nearly Kähler manifold (N, g, J) such that the
sectional curvature of R̄ is non-negative, is a naturally reductive homogeneous space.

Proof. We write R̄ = RK + R0 as in Proposition 2.1. Since R0 is ∇̄-parallel, q(R̄)R0 = 0, so
from Proposition 2.4 and Remark 2.5 we get

∇̄∗∇̄RK = ∇̄∗∇̄R̄ = −1

2
q(R̄)R̄ = −1

2
q(R̄)RK .

Taking the scalar product with RK yields

g(RK , ∇̄∗∇̄RK) = −1

2
g(RK , q(R̄)RK) ,

so after integration we find

∥∇̄RK∥2L2 = −1

2
⟨q(R̄)RK , RK⟩L2 .

On the other hand, as in the proof of [19, Lem. 2.4] we can replace RK by its holomorphic
sectional curvature S, which is a symmetric 4-tensor. Note that the map RK 7→ S is injective
(see [16, Lem. 2.2]). Then Lemma 2.6 implies that g(RK , q(R̄)RK) ≥ 0 at every point,
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whence by the above integral formula ∇̄RK = 0 and finally ∇̄R̄ = 0. It follows that the
canonical connection ∇̄ of the nearly Kähler manifold (M, g, J) has parallel torsion and
parallel curvature. Hence M is homogeneous by the Ambrose-Singer Theorem [2]. □

3. The twistor space of quaternion-Kähler manifolds

3.1. The nearly Kähler structure of the twistor space. Let (M4n, gM , E) be a quat-
ernion-Kähler manifold, where E ⊂ End(TM) is the rank 3 parallel subbundle of End(TM)
locally spanned by almost complex structures I, J,K compatible with the metric and sat-
isfying the quaternionic relation IJ = K. Such a triple {I, J,K} will be called a local
quaternionic frame, and will sometimes be written as {Jα}, α = 1, 2, 3. We denote with ∇M

the Levi-Civita connection of gM , with RM
X,Y := ∇M

X ∇M
Y −∇M

Y ∇M
X −∇M

[X,Y ] its curvature ten-

sor, and with scal the scalar curvature of RM . The metric gM is then automatically Einstein
as already mentioned in the introduction.

The twistor space of M is defined as ZM := {I ∈ E | I2 = −id}. It is the total space of
a CP 1-fibration ZM → M . The connection on E induced by the Levi-Civita of gM defines
the decomposition TZM = H⊕V of the tangent bundle of ZM into the horizontal and the
vertical tangent spaces. The corresponding decomposition of tangent vectors ξ ∈ TZM will
be written as ξ = ξH + ξV . At a point I ∈ ZM , the vertical tangent space, i.e. the tangent
space to the fibres, can be written as VI = {A∗ ∈ E |AI + IA = 0}. Here and below we
will write A∗ for an endomorphism A ∈ E considered as tangent vector, under the canonical
identification of a vector space with its tangent space at a point.

On ZM we consider the family of metrics gc = π∗gM +gVc (c > 0), with the vertical part gVc
defined as the restriction gEc |V of the metric gEc (A

∗, B∗) = −c2tr(AB). For every choice of c,
π : ZM → M is a Riemannian submersion with totally geodesic fibres. Since |A∗|2 = 4nc2 for
all A ∈ ZM , the twistor fibres ZMp = π−1(p), are 2-spheres of radius c

√
4n in the Euclidean

vector space (Ep, gEc ). In particular the fibres ZMp have sectional curvature 1
4nc2

.

For a tangent vector X ∈ TpM we denote with X̃ ∈ TIZM its horizontal lift at I ∈ ZMp.
The twistor space ZM carries two natural almost complex structures Jε. They are defined

on the horizontal part HI by Jε(X̃)I = ĨX and on the vertical part VI by Jε(A∗)I = ε(IA)∗,
with ε = ±1.

Lemma 3.1. For all vertical vector fields A∗ and vector fields X, Y on M we have

(i) Jε[A∗, X̃] = [JεA∗, X̃];

(ii) [A∗, JεX̃]H = ÃX;

(iii) [X̃, Ỹ ]I = [̃X, Y ]− [RM
X,Y , I]

∗ in a point I ∈ ZM .

Proof. All these formulas can be found in [4]: the argument for (i) is in §14.72, the formula
(ii) is exactly equation (14.72). The horizontal part of (iii) is clear. The vertical part follows
from (9.53a) and (9.53b). □
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Lemma 3.2. Let {I, J,K} be a local quaternionic frame. Then the relation

[RM
X,Y , I] =

scal

4n(n+ 2)

(
− gM(KX,Y )J∗ + gM(JX, Y )K∗ )

is true for all X, Y ∈ TpM . The formula holds for all even permutations of I, J,K.

Proof. The formula appears in [4, Thm. 14.39]. Note that in [4, Lem. 14.40] the wrong factor
2 has to be deleted. □

It is well known that the twistor space of a positive quaternion-Kähler manifold is Kähler,
respectively nearly Kähler for certain choices of the parameter ε and c. For the convenience
of the reader and since we need the explicit form of the torsion τ , which we could not found
in the literature, we give the following proposition together with its proof.

Proposition 3.3. The twistor space (ZM, gc, J
ε) is Kähler if and only if ε = 1 and c2 = n+2

scal
.

It is nearly Kähler if and only if ε = −1 and c2 = n+2
2 scal

. The torsion τ of the nearly Kähler
structure on ZM is a section of Λ2H⊗ V. At each point I ∈ ZM , the torsion is given by

τ(A∗, X̃, Ỹ )I =
1

4
gM(AIX, Y ) ,

for every X, Y ∈ TpM and A ∈ VI .

Proof. In order to simplify the notation, we will denote throughout the proof the metric gc
by g and its Levi-Civita connection by ∇. We need to compute the covariant derivative ∇Jε.
According to the splitting TZM = H⊕ V , we consider several cases.

First we note that (∇A∗Jε)B∗ = ∇A∗JεB∗ − Jε∇A∗B∗ = 0, since the fibres are totally
geodesic and Jε restricted to the fibres is parallel, being the standard complex structure on
S2 = CP .

Next we compute using the Koszul formula

2g((∇X̃J
ε)A∗, B∗) = 2g(∇X̃J

ε)A∗, B∗) + 2g(∇X̃A
∗, JεB∗)

= X̃g(JεA∗, B∗) + g([X̃, JεA∗], B∗) + g([B∗, X̃], A∗)

+ X̃g(A∗, JεB∗) + g([X̃, A∗], JεB∗) + g([JεB∗, X̃], A∗)

Since Jε is skew-symmetric and using Lemma 3.1 (i) we see that the summands cancel pairwise
and we obtain g((∇X̃J

ε)A∗, B∗) = 0.

As a consequence we also have g((∇A∗Jε)X̃, B∗) = −g((∇A∗Jε)B∗, X̃) = 0.

We next claim that g((∇X̃J
ε)Ỹ , Z̃) = 0 holds for all vector fields X, Y, Z on M . Indeed,

applying again the Koszul formula we find

2g((∇X̃J
ε)Ỹ , Z̃) = X̃g(JεỸ , Z̃) + (JεỸ )g(Z̃, X̃)− Z̃g(X̃, JεỸ )

+ g([X̃, JεỸ ], Z̃)− g([JεỸ , Z̃], X̃) + g([Z̃, X̃], JεỸ ) .
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we can assume X, Y, Z and I ∈ ZMp to be parallel at p. Then it is clear the the second and
the last summand in the sum above vanish at p. Moreover we compute at p:

X̃g(JεỸ , Z̃) =
d

dt

∣∣∣∣
t=0

g(ItY, Z) = 0 ,

where It is the parallel transport of I along the flow of X. Hence the scalar product is
constant. It follows that the first and third summands in the sum above vanish as well. If φt

denotes the flow of X̃, then φt(I) = It and (JεỸ )It = ĨtY . For the remaining two summands

we compute [X̃, JεỸ ]H = [X̃, ÃY ]H , where A is an endomorphism on M with Ap = I and A
is parallel along the integral curve of X through p. Then the commutator vanishes since we
have [X,AY ] = 0 at p.

The parameter ε and c will be fixed by the following calculations. For every I ∈ ZM and
A∗ ∈ VI we have

g((∇X̃J
ε)A∗, Ỹ )I = g(∇X̃(J

εA∗), Ỹ )I+g(∇X̃A
∗, JεỸ )I = −g(∇X̃ Ỹ , JεA∗)I+g(∇X̃A

∗, ĨY )I .

We will calculate the two summands separately. If we write A = aJ + bK, then (IA)∗ =
aK∗ − bJ∗, so using the Koszul formula, Lemma 3.1 (3) and Lemma 3.2, together with
|K∗|2 = |J∗|2 = 4nc2, we obtain

−g(∇X̃ Ỹ , JεA∗)I =
1

2
g([Ỹ , X̃], ε(IA)∗)I

=
scal

8n(n+ 2)
g
(
− gM(KX,Y )J∗ + gM(JX, Y )K∗, ε(IA)∗

)
I

=
scal ε c2

2(n+ 2)
gM(AX, Y ) .

Similarly we compute (by extending I to a local section of E):

g(∇X̃A
∗, ĨY )I =

1

2
g([ĨY , X̃], A∗)I

=
scal

8n(n+ 2)
g
(
− gM(KX, IY )J∗ + gM(JX, IY )K∗, A∗)

I

= − scal c2

2(n+ 2)
gM(AX, Y ) .

Combining these two calculations we get: g((∇X̃J
ε)A∗, Ỹ )I = scal c2

2(n+2)
(ε − 1)gM(AX, Y ).

For later use we note that the formula for the second summand also proves the equation

(5) g([ĨY , X̃], A∗)I = −scal c2

n+ 2
gM(AX, Y ) .

Finally we have to compute the expression

g((∇A∗Jε)X̃, Ỹ )I = g(∇A∗(JεX̃), Ỹ )I + g(∇A∗X̃, ĨY )I .
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Since [X̃, A∗]H = 0, the second summand follows from the calculation in the previous case:

g(∇A∗X̃, ĨY )I = g(∇X̃A
∗, ĨY )I = − scal c2

2(n+ 2)
gM(AX, Y ) .

For the first summand we again use the Koszul formula to obtain

(6) g(∇A∗JεX̃, Ỹ )I =
1

2

(
A∗g(JεX̃, Ỹ )I + g([A∗, JεX̃], Ỹ )I − g([JεX̃, Ỹ ], A∗)I

)
.

We fix a curve At ∈ ZM with A0 = I and Ȧ0 = A. Then the first summand in (6) is equal to
1
2

d
dt
|t=0g(ÃtX, Ỹ ) = 1

2
gM(AX, Y ). Due to Lemma 3.1, the second summand in (6) is equal to

1
2
g(ÃX, Ỹ ) = 1

2
gM(AX, Y ). At last, by tensoriality in X, Y and by (5), the third summand

in (6) can be computed as −1
2
g([ĨX, Ỹ ], A∗)I = −1

2
scal c2

n+2
gM(AX, Y ). Altogether we obtain

(7) g((∇A∗Jε)X̃, Ỹ )I =

(
1− scal c2

n+ 2

)
gM(AX, Y ) .

Summarizing we see that (g, Jε) is Kähler, i.e. Jε parallel, if and only if scal c2 = n + 2 and
ε = 1. The twistor space (g, Jε) is nearly Kähler, i.e. (∇X̃J

ε)A∗+(∇A∗Jε)X̃ = 0, if and only
if ε = −1 and 2 scal c2 = n+ 2.

We still have to compute the torsion 3-form τ of the nearly Kähler structure on ZM . From
the calculation of ∇Jε given above it is clear that τ ∈ Λ2H⊗V . The explicit form of τ then
follows from (7) with 2 scal c2 = n+ 2 and ε = −1. We find

τ(A∗, X̃, Ỹ )I =
1

2
g((∇A∗Jε)X̃, JεỸ )I =

1

4
gM(AX, IY ) =

1

4
gM(AIX, Y ) .

Here we still use that A, representing the tangent vector A∗ in VI , anti-commutes with I. □

Remark 3.4. Our values of ε and c in the Kähler respectively nearly Kähler case confirm
the results in [1]. However, the definition of the constant c in [1] has to be modified since it
is not consistent with the rest of the calculations.

From now on we will only consider the nearly Kähler structure on the twistor space ZM ,
i.e. we fix ε = −1 and c2 = n+2

2 scal
. For this choice we will write J = Jε, g = gc, and denote as

before by ∇̄ = ∇g + τ the canonical connection of the nearly Kähler manifold (ZM, g, J).

Lemma 3.5. For any vector fields X, Y on M and any vertical vector V in V we have

(i) ∇̄X̃ Ỹ = ∇̃M
X Y ;

(ii) [X̃, Ỹ ]V = −2τX̃ Ỹ ;

(iii) g(∇̄V X̃, Ỹ ) = 2τ(V, X̃, Ỹ ) = 2g(τX̃ Ỹ , V ).

In particular, the torsion τ coincides (up to a sign) with the O’Neill tensor A.



12 ANDREI MOROIANU, UWE SEMMELMANN, GREGOR WEINGART

Proof. All three statements are consequences of the fact that the connection ∇̄ preserves the
splitting TZM = H⊕ V in horizontal and vertical vectors. For (i) we compute

∇̄X̃ Ỹ = (∇̄X̃ Ỹ )H = (∇X̃ Ỹ + τX̃ Ỹ )H = (∇X̃ Ỹ )H = ∇̃M
X Y ,

where we also use the property that the torsion vanishes on three horizontal vectors. Similarly
we derive for (ii):

[X̃, Ỹ ]V = (∇X̃ Ỹ −∇Ỹ X̃)V = (∇̄X̃ Ỹ − τX̃ Ỹ − ∇̄Ỹ X̃ + τỸ X̃)V = −2τX̃ Ỹ .

To prove (iii) it is enough to compute the scalar product with a horizontal lift Z̃. The
statement then follows from

g(∇̄X̃ Ỹ , Z̃) = g(∇X̃ Ỹ , Z̃) = gM(∇M
X Y, Z) = g(∇̃M

X Y , Z̃) .

For the first equality we used the fact that the torsion vanishes on three horizontal vectors. □

3.2. The curvature of the nearly Kähler twistor space. In this section we will describe
the relation between the curvature R̄ of the canonical nearly Kähler connection of the twistor
space ZM and the curvature RM of the Levi-Civita connection on the quaternion-Kähler
manifold M . Since the decomposition TZM = V ⊕ H is preserved by ∇̄, it follows that R̄
can be considered as map R̄ : Λ2TZM → Λ2V ⊕Λ2H. Hence, the curvature R̄ is determined
by the following three lemmas.

Lemma 3.6. Let {I, J,K} be a local quaternionic frame defined in the neighborhood of some
p ∈ M . Then at Ip ∈ ZM we have

R̄(X̃, Ỹ , Z̃, Ṽ ) = RM(X, Y, Z, V )− scal

8n(n+ 2)

(
gM(JX, Y )g(JV, Z) + gM(KX,Y )g(KV,Z)

)
for all X, Y, Z, V ∈ TpM .

Proof. Using [X̃, Ỹ ]
H
= [̃X, Y ] and the third formula of Lemma 3.5 we obtain

R̄(X̃, Ỹ )Z̃ = ∇̄X̃∇̄Ỹ Z̃ − ∇̄Ỹ ∇̄X̃Z̃ − ∇̄[X̃,Ỹ ]Z̃ = ˜RM(X, Y )Z − ∇̄[X̃,Ỹ ]V Z̃ .

Taking the scalar product with Ṽ in the last summand and applying the first and second
equation of Lemma 3.5 gives

−g(∇̄[X̃,Ỹ ]V Z̃, Ṽ ) = 2g(∇̄τX̃ Ỹ Z̃, Ṽ ) = 4g(τZ̃ Ṽ , τX̃ Ỹ )

= 4
2∑

i,j=1

1

|A∗
i |2

g(τZ̃ Ṽ , A∗
i ) g(τX̃ Ỹ , A∗

j)

=
scal

8n(n+ 2)

(
gM(KZ, V )gM(KX,Y ) + gM(JZ, V )gM(JX, Y )

)
.

Here {A∗
i } is an orthogonal basis of VI , which we can take to be {J∗, K∗}, where {I, J,K} is

a local quaternionic frame with |J∗|2 = |K∗|2 = 4nc2 = 2n(n+2)
scal

. The last displayed equation
follows from the explicit form of the torsion given in Proposition 3.3. □
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Consider V1, V2 ∈ VI two arbitrary vertical tangent vectors. Then, writing V1 = a1J
∗+b1K

∗

and V2 = a2J
∗ + b2K

∗, the determinant of the family V1, V2 with respect to every oriented
orthonormal basis of VI is given by

(8) det(V1, V2) = (a1b2 − a2b1)
2n(n+ 2)

scal
.

Lemma 3.7. For vertical tangent vectors V1, V2 ∈ VI the following holds

R̄(V1, V2, V2, V1) =
scal

2n(n+ 2)
det(V1, V2)

2 =
scal

2n(n+ 2)
|V1 ∧ V2|2 .

Proof. Since τV1V2 = 0 for vertical vectors V1, V2 we have R̄(V1, V2, V2, V1) = R(V1, V2, V2, V1)
(here R denotes the Riemannian curvature tensor of g on ZM). Thus the statement of the
lemma follows from the fact that the fibres of ZM are totally geodesic and have sectional
curvature 1

4nc2
= scal

2n(n+2)
in the nearly Kähler case. □

Lemma 3.8. For vertical tangent vectors V1, V2 ∈ VI and tangent vectors X1, X2 ∈ Tπ(I)M
we have

R̄(X̃1, X̃2, V2, V1) = − scal

4n(n+ 2)
gM(IX2, X1) det(V1, V2) .

Proof. We apply the first Bianchi identity for connections with parallel and skew-symmetric
torsion (see [9, Cor. 2.3]). Then two of the curvature terms vanish since ∇̄ preserves the
splitting TZM = H⊕V and in the cyclic sum over the torsion terms one summand vanishes
as well because the torsion is zero when applied to two vertical vectors. It follows

R̄(X̃1, X̃2, V2, V1) = 4
(
g(τX̃2

V2, τX̃1
V1) + g(τV2X̃1, τX̃2

V1

)
= 4

(
− g(τV1 τV2X̃2, X̃1) + g(X̃1, τV2 τV1X̃2)

)
= −4 g([τV1 , τV2 ]X̃2, X̃1) .

It remains to compute the commutator [τV1 , τV2 ]. From the explicit form of the torsion, given
in Proposition 3.3, we see that τJ∗ = 1

4
K̃ and τK∗ = −1

4
J̃ , where J̃ and K̃ denote the natural

lifts of J and K to HI . Hence, writing again V1 = a1J
∗ + b1K

∗ and V2 = a2J
∗ + b2K

∗, we
obtain

[τV1 , τV2 ] =
1

8
a1b2Ĩ −

1

8
b1a2Ĩ =

1

8
(a1b2 − b1a2)Ĩ =

1

8
det(V1, V2)

scal

2n(n+ 2)
Ĩ .

The statement now follows from the fact that g(ĨX̃2, X̃1) = gM(IX2, X1). □

Combining the curvature expressions of the preceding three lemmas we obtain a formula
for the sectional curvature of R̄. Note that any two tangent vectors in TIZM can be written
as X̃1 + V1, X̃2 + V2 for V1, V2 ∈ VI and X1, X2 ∈ Tπ(I)M .
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Proposition 3.9. Let V1, V2 be vertical vectors at some I ∈ ZM , and let X1, X2 be tangent
vectors to M at the point π(I). Then

R̄(X̃1 + V1, X̃2 + V2, X̃2 + V2, X̃1 + V1)

= RM(X1, X2, X2, X1) − scal

8n(n+ 2)

3∑
α=1

gM(JαX1, X2)
2

+
scal

8n(n+ 2)

(
gM(IX2, X1)− 2 det(V1, V2)

)2
.

Proof. Using the fact that ∇̄ preserves the splitting TZM = H⊕V , and the pair symmetry
of R̄ we obtain

R̄(X̃1 + V1, X̃2 + V2, X̃2 + V2, X̃1 + V1) = R̄(X̃1, X̃2, X̃2, X̃1) + R̄(V1, V2, V2, V1)

+ 2R̄(X̃1, X̃2, V2, V1) .

If we denote as before the local quaternionic frame {I, J,K} by {Jα}, α = 1, 2, 3, then
substituting the curvature expressions of Lemmas 3.6, 3.7 and 3.8 and using the tautological
formula

gM(JX, Y )2 + gM(KX,Y )2 =
3∑

α=1

gM(JαX, Y )2 − gM(IX, Y )2

yields the result. □

As a direct consequence of this curvature formula we obtain:

Corollary 3.10. Let (M, gM , E) be a positive quaternion-Kähler manifold and let R̄ be the
curvature of the canonical connection ∇̄ of the nearly Kähler structure on the twistor space
ZM . Then the sectional curvature of R̄ is non-negative if and only if

(9) RM(X, Y, Y,X) ≥ scal

8n(n+ 2)

3∑
α=1

g(JαX, Y )2

holds for all vectors X, Y ∈ TM , where {Jα} is a local quaternionic frame and scal is the
scalar curvature of gM .

Proof. From Proposition 3.9 it follows that the assumption in (9) implies that the sectional
curvature of R̄ is non-negative.

Conversely, if the sectional curvature of R̄ is non-negative, then for any I ∈ ZM and
tangent vectors X, Y ∈ Tπ(I)M , we can choose vertical vectors V1, V2 ∈ VI with det(V1, V2) =
1
2
gM(IX2, X1). For such a choice of V1, V2, the last summand in the curvature formula of

Proposition 3.9 vanishes and the left hand side is non-negative, thus proving (9). □

The curvature formulas for R̄ on the twistor space also have another important application.



QUATERNION-KÄHLER MANIFOLDS WITH NON-NEGATIVE QUATERNIONIC CURVATURE 15

Corollary 3.11. Let M be a compact quaternion-Kähler manifold with positive scalar curva-
ture. Then the nearly Kähler twistor space ZM satisfies ∇̄R̄ = 0 if and only if M is a Wolf
space.

Proof. We need to show that ∇̄R̄ = 0 holds if and only if ∇MRM = 0 holds. Notice that
if ∇̄R̄ = 0, then the twistor space is an Ambrose-Singer space, since the torsion is already
∇̄-parallel. Hence it is homogeneous by the Ambrose-Singer Theorem [2].

First, we remark that the composition of R̄ : Λ2TZM → Λ2V ⊕ Λ2H with the projection
onto the first summand is ∇̄-parallel. This follows from a general result on the curvature of
connections with parallel skew-symmetric torsion (see [9, Prop. 3.13]). Thus we only need to
consider the covariant derivative of the purely horizontal part.

From the first step in the proof of Lemma 3.6 we obtain the formula

(10) R̄(X̃, Ỹ , Z̃, Ṽ ) = RM(X, Y, Z, V ) ◦ π + 4g(τZ̃ Ṽ , τX̃ Ỹ ) .

Taking the derivative into the direction of a further horizontal vector Ũ and recalling that
the torsion τ is ∇̄-parallel together with Lemma 3.5, (3), immediately gives

(∇̄Ũ R̄)(X̃, Ỹ , Z̃, Ṽ ) = (∇UR
M)(X, Y, Z, V ) ◦ π .

This already proves one direction of the statement, i.e. that ∇̄R̄ = 0 implies ∇MRM = 0 and
thus that the quaternion-Kähler base M is symmetric.

For the other direction we still have to consider the derivative into vertical directions. But
then the derivative of the first summand on the right side of (10) vanishes since it is constant
along the fibres and the derivative of the second summand vanishes again since the torsion is
parallel. □

Finally we note that the explicit curvature formulas above can be used to compute the
Ricci curvature of R̄, thus verifying directly that Ric is ∇̄-parallel. We obtain

Proposition 3.12. Let X be a horizontal tangent vector of ZM and let V be a vertical
tangent vector. Then the ∇̄-Ricci curvature Ric is completely described by Ric(X, V ) = 0 and

Ric(X,X) =
(n+ 1) scal

4n(n+ 2)
|X|2g and Ric(V, V ) =

scal

2n(n+ 2)
|V |2g .

In particular Ric is ∇̄-parallel.

Proof. For arbitrary tangent vectors A,B ∈ TZM the ∇̄-Ricci curvature Ric is defined as
Ric(A,B) =

∑
i R̄(ei, A,B, ei), where {ei}, i = 1, . . . , 4n + 2, is a local orthonormal frame

of ZM , which can be assumed to be adapted to the decomposition TZM = V ⊕ H. Now,
let X be a horizontal and V be a vertical tangent vector. Then, since ∇̄ preserves this
splitting, we immediately have Ric(X, V ) = 0. Recall that the Ricci tensor of a connection
with parallel skew-symmetric torsion is symmetric. Hence, it remains to compute Ric(V, V )
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and Ric(X,X). First, we obtain from Lemma 3.7

Ric(V, V ) =
4n+2∑
i=1

R̄(ei, V, V, ei) =
2∑

i=1

scal

2n(n+ 2)
|Vi ∧ V |2g =

scal

2n(n+ 2)
|V |2g ,

where {Vi}, i = 1, 2, can be taken to be an orthonormal basis of the vertical tangent space VI .
Similarly, but this time using a local orthonormal basis {Xi}, i = 1, . . . , 4n, of the horizontal
tangent space HI , the curvature formula of Lemma 3.6 leads to

Ric(X,X) =
4n+2∑
i=1

R̄(ei, X,X, ei) =
4n∑
i=1

R̄(Xi, X,X,Xi)

= RicM(π∗(X), π∗(X))

−
4n∑
i=1

scal

8n(n+ 2)

(
gM(Jπ∗(Xi), π∗(X))2 + gM(Kπ∗(Xi), π∗(X))2

)
=

scal

4n
gM(π∗(X), π∗(X))− scal

4n(n+ 2)
gM(π∗(X), π∗(X))

=
(n+ 1) scal

4n(n+ 2)
gM(π∗(X), π∗(X)) .

Since π : ZM → M is a Riemannian submersion we have gM(π∗(X), π∗(X)) = g(X,X), thus
finishing the proof. □

4. Sectional curvature of quaternion-Kähler manifolds

Let (M, g, E) be a quaternion-Kähler manifold. Then any tangent vector X ∈ TpM
spans a well-defined 4-dimensional subspace L(X) := span{X, IX, JX,KX} ⊂ TpM , where
{I, J,K} is a local quaternionic frame. The space L(X) is called the quaternionic line spanned
by X. We also introduce the 3-dimensional subspace Q(X) := span{IX, JX,KX} ⊂ TpM ,
which is in some sense the imaginary part of L(X). Note that the right hand side of the
inequality in (9) vanishes if Y is orthogonal to Q(X). If Y ∈ Q(X), we will call span{X, Y }
a quaternionic plane, and if Y is orthogonal to Q(X) (but not collinear with X), then
span{X, Y } is called a totally real plane.

Let X and Y be non-collinear tangent vectors and let prQ(X) denote the orthogonal pro-
jection of Y onto Q(X). Then the inequality (9) can be reformulated as

(11) κ(X, Y ) ≥ scal

8n(n+ 2)

|X|2g |prQ(X)(Y )|2g
|X ∧ Y |2g

,

where κ(X, Y ) is the sectional curvature of the plane spanned by X and Y . Since prQ(X)(Y ) =
Y for Y ∈ Q(X), we see that when (11) holds, the sectional curvature restricted to quater-
nionic planes is bounded from below by scal

8n(n+2)
.

The above considerations motivate the following:
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Definition 4.1. Let (M, g, E) be a quaternion-Kähler manifold of dimension 4n ≥ 8. For
every p ∈ M and non-collinear tangent vectors X, Y ∈ TpM , the quaternionic sectional
curvature κH(X, Y ) defined by

(12) κH(X, Y ) := κ(X, Y ) − scal

8n(n+ 2)

|X|2g |prQ(X)(Y )|2g
|X ∧ Y |2g

,

where Q(X) is the imaginary part of the quaternionic line generated by X and κ(X, Y ) is
the sectional curvature of the plane spanned by X, Y .

Note that the quaternionic sectional curvature κH coincides with the Riemannian sectional
curvature κ on totally real planes, whereas on quaternionic planes, κH is equal to κ− s

8n(n+2)
.

More generally, for every plane P and every basis X, Y of P , the quantity
|X|2g |prQ(X)(Y )|2g

|X∧Y |2g
is

equal to cos2(θP ), where θP is the angle between P and the quaternionic line spanned by any
of its non-zero vectors, whence

(13) κH(P ) = κ(P )− scal

8n(n+ 2)
cos2(θP ) ,

for every 2-plane P .

As a consequence of Theorem 3.10, we have the following:

Corollary 4.2. The quaternionic sectional curvature of compact Wolf spaces is non-negative.
In particular, the sectional curvature on quaternionic planes is bounded from below by scal

8n(n+2)
.

Proof. The twistor space ZM of a compact Wolf space M is a simply connected homoge-
neous strict nearly Kähler manifold and thus it is a compact naturally reductive 3-symmetric
space ZM = G/K equipped with its canonical complex structure and the adapted reductive
decomposition g = k ⊕ m (see [6], [21]). It is known hat the canonical connection of the
canonical almost Hermitian structure of a Riemannian 3-symmetric space coincides with its
canonical homogeneous connection (see [11, Prop. 4.1]). Moreover, the metric g on ZM is
then defined by the restriction to m of a bi-invariant product on g (see [12, p. 360] or [11,
Sec. 6]). Hence we can compute the sectional curvature of the connection ∇̄ on the twistor
space of a Wolf space by using [18, Thm. 2.6, Ch. X]. In the base point o and for tangent
vectors X, Y ∈ m ∼= ToG/K we find

g(R̄(X, Y )Y,X) = −g([[X, Y ]k, Y ], X) = g([X, Y ]k, [X, Y ]k) ≥ 0 .

It follows that the assumption in Theorem 3.10 is satisfied and we can conclude estimate (9),
which can be reformulated as (11). This finishes the proof. □

Remark 4.3. Q.-S. Chi proved in [7, Thm. 1] that the maximum of the sectional curvature
on a positive quaternion-Kähler manifold is obtained on quaternionic planes. Moreover, S.
Helgason proved in [15, Thm. 1.1] that on each compact irreducible Riemannian symmetric
space the maximum of the sectional curvature is given by the length of the highest restricted
root. This root coincides with the so-called Wolf root on all Wolf spaces except the quaternion
projective space. The length of the Wolf root was computed in [25, (4.1)]. It follows that the
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maximum of the sectional curvature on compact Wolf spaces different from HP n is scal
2n(n+2)

.

The length of all highest restricted roots can also be found in [22, Table 1, p. 175].

Remark 4.4. The quaternionic projective space HP n is a rank one symmetric space. In
particular it has positive sectional curvature. All other compact Wolf spaces are symmetric
spaces of higher rank. Hence the sectional curvature is non-negative and has zero as minimal
value. The minimum of the sectional curvature on HP n is scal

16n(n+2)
. The maximum is scal

4n(n+2)
,

which is the same value for all quaternionic planes. Indeed, the sectional curvature of HP n

on a plane spanned by an orthonormal basis {X, Y } is given by

κ(X, Y ) =
scal

16n(n+ 2)

(
1 + 3

3∑
α=1

gHPn

(JαX, Y )2
)
.

Thus the minimal value of the sectional curvature κ(X, Y ) is attained on totally real planes,
whereas the maximal value is realized on quaternionic planes.

Finally we can state the main result of this article, which can also be seen as a converse to
Corollary 4.2.

Theorem 4.5. Let (M4n, g, E) be a compact positive quaternion-Kähler manifold. If the
quaternionic sectional curvature κH is non-negative then M is symmetric, i.e. M is isometric
to a Wolf space.

Proof. From Corollary 3.10 it follows that κH ≥ 0 implies that the curvature of the canonical
connection on the nearly Kähler twistor space is non-negative. Hence by Theorem 2.7 the
twistor space ZM is homogeneous and it follows from Corollary 3.11 that the quaternion-
Kähler manifold M is symmetric, i.e. is a Wolf space. □
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