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Abstract. We show that conformal vector fields on compact locally confor-
mally product manifolds are orthogonal to the flat distribution and Killing with
respect to the Gauduchon metric.

1. Introduction

Locally conformally product (LCP) structures arise naturally in the theory of
Weyl connections. They consist in a closed non-exact Weyl connection D on a
compact conformal manifold (M, c) with (non-zero) reducible holonomy. LCP
structures are closely related to LCK structures, which can be defined in a similar
way, just by replacing the reducibility condition for the holonomy of D with the
existence of a D-parallel complex structure.

The study of LCP structures started with the Belgun-Moroianu conjecture
[3], which stated that they should not exist. However, the works of Matveev-
Nikolayevsky [10, 11] and Kourganoff [9] after them exhibited examples of such
manifolds, and also showed that their structure was very special. Indeed, when
lifted to the universal cover M̃ of M , D becomes the Levi-Civita connection of a
Riemannian metric h and (M̃, h) is isometric to (Rq, h0)× (N, hN), where (N, hN)
is an irreducible Riemannian manifold.

After the discovery of this result, LCP manifolds have been analyzed from var-
ious points of view by several authors. LCP structures on solvmanifolds [1] and
more generally on compact quotients of Lie groups [5] have been studied by An-
drada, del Barco and the second author, and their description under some ad-
ditional assumptions concerning their characteristic group has been given by the
first author in [7]. Obstructions to the existence of LCP structures on conformal
manifolds are also discussed in [2], where it is shown that the conformal class of
an LCP manifold cannot contain Einstein of Kähler metrics for example.

An important tool in conformal geometry is the Gauduchon metric [8], which
on a compact conformal manifold (M, c) endowed with a Weyl connection D is
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the unique (up to a multiplicative constant) Riemannian metric g ∈ c with the
property that the Lee form of D with respect to g is coclosed.

Recently, the second author together with Pilca Pilca [13] studied the behavior of
the Gauduchon metric of Weyl connections defining an LCP structure, and proved
that it is adapted. Recall that if (M, c,D) is an LCP manifold, a Riemannian
metric g in the conformal class c is called adapted if the lift to the universal cover
of the Lee form of D with respect to g vanishes on the flat distribution TRq.

In another recent work [12], the same authors generalized to the LCK setting the
well-known fact that all conformal vector fields on a compact Kähler manifold are
Killing, by proving that every conformal vector field on a compact LCK manifold
is Killing with respect to the Gauduchon metric.

It is thus natural to investigate the corresponding question in the LCP setting,
all the more that a classical result of Tashiro and Miyashita [14] states that on
complete non-flat Riemannian products, all complete conformal vector fields are
Killing.

This is precisely what we achieve in this paper, by proving the following:

Theorem 1.1. Let (M, c,D) be an LCP manifold. Then the conformal vector
fields of (M, c) are exactly the Killing vector fields of the Gauduchon metric of the
Weyl structure D.

The strategy of the proof is roughly as follows. Every conformal vector field ξ̄
on (M, c) can be lifted to a (complete) conformal vector field ξ of the Riemannian
product structure (Rq, h0) × (N, hN) on the universal cover of M . However, the
Tashiro-Miyashita result does not apply, since this product metric is not complete.
Nonetheless, we can show that the covariant derivative of ξ with respect to tangent
vectors to N , restricted to each flat leaf Rq × {y}, is a gradient conformal vector
field. Then using the explicit description of these vector fields and the fact the
ξ has bounded geometry, we obtain that ξ has to be the pull-back of a Killing
vector field on (N, hN). This implies in particular that ξ̄ is affine with respect
to the Weyl connection D, and we conclude by the uniqueness property of the
Gauduchon metric.

Acknowledgments. This work was partly supported by the PNRR-III-C9-
2023-I8 grant CF 149/31.07.2023 Conformal Aspects of Geometry and Dynamics
and by the Procope Project No. 57650868 (Germany) / 48959TL (France).

2. Preliminaries on LCP structures

We start by introducing the basic concepts of conformal geometry.

Definition 2.1. A conformal structure on a smooth manifold M is an equivalence
class of the equivalence relation defined on the space of Riemannian metrics on M
by g ∼ g′ if and only if there exists a smooth function φ such that g′ = e2φg.
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Conformal structures are usually denoted by c. There is no natural connection
on a conformal manifold as for the Riemannian case. However, one can consider a
class of connections, called Weyl connections, which extends in a certain way the
concept of Levi-Civita connection to the conformal case.

Definition 2.2. Let (M, c) be a conformal manifold. A Weyl connection on (M, c)
is a torsion-free connection D on TM which preserves the conformal structure, in
the sense that for any metric g ∈ c, there is a 1-form θg, called the Lee form of D
with respect to g, such that Dg = −2θg ⊗ g.

Clearly if g′ = e2φg then θg′ = θg − dφ, so the cohomological nature of the Lee
form is independent of the metric. This motivates the following definition:

Definition 2.3. A Weyl connection D on a conformal manifold (M, c) is called
closed if the Lee form of D with respect to one metric - and then to all metrics -
in c is closed. Similarly, D is called exact if the Lee form of D with respect to one
metric - and then to all metrics - in c is exact.

Note that every closed Weyl connection on a simply connected conformal man-
ifold is exact.

Let now D be a closed Weyl connection on a conformal manifold (M, c). Its pull-
back D̃ to the universal covering M̃ of M is a Weyl connection for the conformal
structure c̃ obtained by pulling-back c. This Weyl connection is exact since M̃ is
simply connected, thus there exists a metric h ∈ c̃, unique up to a multiplication
by a constant, such that ∇h = D̃, where ∇h is the Levi-Civita connection of h.

More precisely, if g is any Riemannian metric onM in the conformal class c, and
θg is the Lee form ofD with respect to g, then its pull-back θ̃g to the universal cover

M̃ is exact, so there exists a function φ ∈ C∞(M̃) such that dφ = θ̃g. Moreover,

θ̃g is also the Lee form of the pull-back Weyl connection D̃ on M̃ , so by the above

formula, the Lee form of D̃ with respect to the metric h := e2φg̃ vanishes, i.e. D̃
is the Levi-Civita connection of h. Note that the fundamental group π1(M) acts
on M̃ by h-homotheties, and this action preserves h if and only if D is exact.

LCP structures arise when one considers closed, non-exact Weyl connections
on a compact conformal manifold. In this situation, one has a remarkable result
proved by Kourganoff [9]:

Theorem 2.4. [9, Thm. 1.5] Let (M, c) be a conformal manifold endowed with
a closed, non-exact Weyl connection D. Let h be a metric on M̃ , the universal
cover of M , such that ∇h = D̃ where D̃ is the pull-back of D to M̃ . Then, one of
the three following cases occurs:

• (M̃, h) is flat;
• (M̃, h) is irreducible;
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• (M̃, h) is a Riemannian product (Rq, h0)× (N, hN) where q ≥ 1, (Rq, h0) is
the usual Euclidean space and (N, hN) is a non-flat, incomplete Riemann-
ian manifold.

The third case in Theorem 2.4 corresponds to LCP structures. More precisely,
we have the following:

Definition 2.5. An LCP manifold is a triple (M, c,D) where M is a compact
manifold, c is a conformal structure on M and D is a closed, non-exact Weyl
connection, which is non-flat and reducible (i.e. the representation of its restricted
holonomy group Hol0(D) is reducible).

With the notations above, (Rq, h0) is called the flat part of the LCP manifold,
while (N, hN) is called the non-flat part. The distributions TRq and TN descend
to D-parallel distributions on M , respectively called the flat distribution and the
non-flat distribution of the LCP manifold.

Definition 2.6. Let (M, c,D) be an LCP manifold. A Riemannian metric g ∈ c is
called adapted if the Lee form θg vanishes on the flat distribution (or equivalently,
if the primitive φ of the pull-back to the universal cover of θg is the pull-back of a
function defined on the non-flat factor N .

Remark 2.7. Adapted metrics always exist (see [6,13]). The above considerations
show that their lift to M̃ can be written g̃ = e−2αh, where α ∈ C∞(N).

3. Conformal vector fields on LCP manifolds

Let (M, c,D) be an n-dimensional LCP manifold. Let h be the Riemannian
metric on its universal cover whose Levi-Civita connection is the lift of D, so that
(M̃, h) = (Rq, h0) × (N, hN), where (Rq, h0) is the flat part and (N, hN) is the
non-flat part. We will denote the Levi-Civita connection of h by ∇.

Denoting by p1, p2 the projections from M̃ onto Rq and N respectively, the
tangent bundle of Rq × N can be identified with the direct sum π∗

1TRq ⊕ π∗
2TN .

Correspondingly, one can write every vector field ξ ∈ Γ(TM̃) as a sum

(1) ξ = ξ1 + ξ2,

where ξ1(·, y) ∈ Γ(TRq) for every y ∈ N , and ξ2(x, ·) ∈ Γ(TN) for every x ∈ Rq.

Let ξ̄ ∈ Γ(TM) be a conformal vector field, and let ξ ∈ Γ(TM̃) be its lift to M̃ .
In particular γ∗ξ = ξ for any γ ∈ π1(M). We decompose ξ = ξ1 + ξ2 as in (1).
The fact that ξ is a conformal vector field on M̃ is equivalent to the identity

h(∇Xξ, Y ) + h(X,∇Y ξ) = fh(X, Y ), (∀)X, Y ∈ TM̃,(2)

where f is a real-valued smooth function on M̃ . Applying (2) with X, Y ∈ TRq

shows that for any y ∈ N , ξ1(·, y) is a conformal vector field on Rq. In the same
way, we show that for any x ∈ Rq, ξ2(x, ·) is a conformal vector field on N .
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Let (e1, . . . , eq) be the canonical basis of Rq and denote by the same letters the

induced vector fields on M̃ constant along N . We also fix an arbitrary vector field
Z on N , identified with the induced vector field on M̃ constant along Rq. Then
∇eiZ = ∇Zei = 0 for every 1 ≤ i ≤ q.

Using (2) for X = ei and Y = Z we obtain

(3) h(ei,∇Zξ1) = −h(∇eiξ2, Z) = −∂ei(h(ξ2, Z)),

which implies that for every fixed y ∈ N , the vector field ∇Zξ1(·, y) on Rq is the
gradient in Rq of the function −h(·,y)(ξ2, Z).
Moreover, taking X = ei, Y = ej in (2), differentiating with respect to Z, and

using the commutation of ∇Z with ∇ei for 1 ≤ i ≤ q, shows that ∇Zξ1(·, y) is a
conformal vector field on (Rq, h0) for every y ∈ N .

Synthesizing the previous analysis, for any y ∈ N and Z ∈ TyN , ∇Zξ1(·, y) is a
gradient conformal vector field on (Rq, h0). These vector fields are well understood:

Lemma 3.1. Let X be a gradient conformal vector field on (Rq, h0). Then,
there exist real numbers b, b1, . . . , bq such that X = b

∑q
i=1 xiei +

∑q
i=1 biei, where

(e1, . . . , eq) is the canonical basis of R and xi is the i-th coordinate function.

Proof. In this proof, ∇ stands for the gradient in Rq and the usual scalar product
on Rq is denoted by ⟨·, ·⟩.
By assumption, there is a function ψ : Rq → R such thatX = ∇ψ =

∑q
i=1(∂eiψ)ei.

Since X is a conformal vector field one has

⟨∂eiX, ej⟩+ ⟨ei, ∂ejX⟩ = χ⟨ei, ej⟩, (∀)1 ≤ i, j ≤ q,

for some smooth function χ : Rq → R. This is equivalent to

∂ei∂ejψ = δjiχ, (∀)1 ≤ i, j ≤ q.

In particular, for any 1 ≤ i ≤ q, ∂eiψ is a function depending only on the i-th
coordinate, and thus χ has the same property. Consequently, χ is constant and ψ
belongs to the vector space

(4) E := {ϕ ∈ C∞(Rq) | ∃µ ∈ R, ∀i, j, ∂ei∂ejϕ = δjiµ}.

Now, we remark that

(5) E0 := {ϕ ∈ C∞(Rq) | ∀i, j, ∂ei∂ejϕ = 0}

is a hyperplane of E since it is the kernel of the linear form E ∋ ϕ 7→ ∂2e1ϕ.
Moreover, denoting by xi the i-th coordinate function, Span(

∑q
i=1(xi)

2) is a sup-
plementary of E0 in E, whence

E = Span(

q∑
i=1

(xi)
2)⊕ E0.
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Since E0 = Span(x1, . . . , xq), we obtain ψ = b
2

∑q
i=1(xi)

2 +
∑q

i=1 bixi for some
(b, b1, . . . , bq) ∈ Rq+1, and X = ∇ψ = b

∑q
i=1 xiei +

∑q
i=1 biei.

Conversely, any vector field of this form is a conformal gradient vector field. □

From Lemma 3.1 we conclude that there are functions b̃, b̃1, . . . , b̃q from TN to
R such that

(6) ∇Zξ1(x, y) = b̃(y, Z)

q∑
i=1

xiei +

q∑
i=1

b̃i(y, Z)ei,

for all (x, y) ∈ Rq × N , and Z ∈ TyN . Applying (6) to x = 0 and x = e1 shows
that

b̃i(y, Z) = h(0,y)(∇Zξ1, ei), b̃(y, Z) = h(e1,y)(∇Zξ1, e1)− b̃1(y, Z)(7)

for any y ∈ N , Z ∈ TyN and 1 ≤ i ≤ q, which implies that the functions

b̃, b̃1, . . . , b̃q are smooth, and linear in the variable Z.

We fix y0 ∈ N . Let y ∈ N and c : [0, 1] → N be a smooth path from y0 to y,
which exists by connectedness. One has, for any x ∈ Rq,

ξ1(x, y)− ξ1(x, y0) =

∫ 1

0

∇ċ(t)ξ1(x, c(t))dt

=

∫ 1

0

b̃(c(t), ċ(t))

q∑
i=1

xiei +

q∑
i=1

b̃i(c(t), ċ(t))eidt

=

(∫ 1

0

b̃(c(t), ċ(t))dt

) q∑
i=1

xiei +

q∑
i=1

(∫ 1

0

b̃i(c(t), ċ(t))dt

)
ei.

We define the smooth functions

b(y) :=

∫ 1

0

b̃(c(t), ċ(t))dt, bi(y) :=

∫ 1

0

b̃i(c(t), ċ(t))dt,(8)

which by the above computation do not depend on the chosen path. Then, writing
ξ1(·, y0) =:

∑q
i=1 βiei with βi ∈ C∞(Rq), we have

ξ1(x, y) =

q∑
i=1

(βi(x)ei + b(y)xiei + bi(y)ei), (∀)(x, y) ∈ Rq ×N.(9)

Using (3), one obtains for every Z ∈ Γ(TN) and 1 ≤ i ≤ q:

∂ei(h(ξ2, Z)) = −(Z(b)xi + Z(bi)),

which implies that there exists some vector field V ∈ Γ(TN) such that

(10) ξ2(x, y) = V (y)−
q∑

i=1

(
(xi)

2

2
∇Nb(y) + xi ∇Nbi(y)

)
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for all (x, y) ∈ Rq ×N , where ∇N denotes the gradient defined by the Levi-Civita
connection of hN .

Let g be an adapted metric on N (Remark 2.7) whose pull-back to M̃ can be
written as g̃ = e−2αh for some α ∈ C∞(N). Note that the function α is not
bounded from above or from below. Indeed, there exists an element γ ∈ π1(M)
which is a contraction with respect to h (i.e. ρ∗h = λh with λ ∈ (0, 1)), and since
π1(M) acts isometrically with respect to g̃, we get γ∗α = α + 1

2
lnλ.

Since M is compact, there exists a constant C > 0 such that

sup
M̃

∥ξ∥g̃ = sup
M

∥ξ̄∥g ≤ C.

Consequently,

∥e−αξ2∥2h = ∥ξ2∥2g̃ ≤ ∥ξ∥2g̃ ≤ C2,

whence for any y ∈ N , the estimate

(11) ∥ξ2(x, y)∥h ≤ eα(y)C

(independent on x) holds. Now, Equation (10) shows that for every fixed y0 ∈ N ,
the square norm ∥ξ2(x, y0)∥h is polynomial in (x1, . . . , xq). Clearly this norm is
bounded on Rq if and only if ∇Nb(y0) = ∇Nbi(y0) = 0 for every 1 ≤ i ≤ q
and for every y0 ∈ N , showing that the functions b, b1, . . . , bq are constant on N .

Consequently, ξ2(x, y) = V (y) is induced on M̃ by a conformal vector field of
(N, gN).

On the other hand, one also has ∥e−αξ1∥2h = ∥ξ1∥2g̃ = ∥ξ1∥2g̃ ≤ ∥ξ∥2g̃ ≤ C2. Since
b, b1, . . . , bq are constant, (9) shows that ξ1 depends only on the variable x of Rq.
Therefore, for every x ∈ Rq and y ∈ N one has ∥ξ1(x)∥h ≤ e−α(y)C. However,
we have seen that the function α is unbounded from above. We conclude that
∥ξ1(x)∥h = 0, so finally ξ1 = 0.

The conformal vector field ξ = ξ2 = V is thus tangent to N and constant in the
direction of Rq. Taking non-zero vectors X = Y ∈ TRq in Equation (3), one gets

fh(X,X) = 0,

which in turn implies f = 0, so ξ is a Killing vector field for h.

Altogether, we have proved the following result:

Theorem 3.2. Let (M, c,D) be an LCP manifold. Then the lift of any confor-
mal vector field of (M, c) to the universal cover of M endowed with its canonical
Riemannian decomposition (Rq, h0)× (N, hN) is a Killing vector field of (N, hN).

The last step in our analysis of conformal vector fields on LCP manifolds is to
link them to the Killing fields of the Gauduchon metric [8] of the Weyl structure
(M, c,D). We first recall the definition of this particular metric:
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Definition 3.3. If (M, c) is a compact conformal manifold of dimension larger
than 2, then for any Weyl connection D on (M, c) there exists a unique (up to a
positive multiplicative constant) Riemannian metric gG such that the Lee form of
D with respect to gG is coclosed. This metric is called the Gauduchon metric of
the Weyl structure.

We now return to our particular setting, with ξ̄ ∈ TM a conformal vector field
of (M, c). By Theorem 3.2, the lift ξ of ξ̄ to M̃ is a Killing vector field on N .
In particular, it is a Killing vector field for (M̃, h), so it preserves the Levi-Civita
connection ∇ of h. But ∇ is the lift of the Weyl connection D, and we deduce
that ξ̄ is an affine vector field for D, i.e. Lξ̄(D) = 0.

Let gG be the Gauduchon metric of the Weyl structure (M, c,D). We denote
by θG the Lee form of D with respect to gG, by ∇gG the Levi-Civita connection of
gG, and by (φt)t∈R the flow of ξ̄. Since ξ̄ is affine, we obtain for any t ∈ R:
(12) D(φ∗

tgG) = φ∗
t (DgG) = −2φ∗

t (θG ⊗ gG) = −2(φ∗
t θG)⊗ (φ∗

tgG),

and we get that φ∗
t θG is the Lee form of D with respect to φ∗

tgG. The Levi-Civita
connection of gG is φ∗

t∇gG , hence δφ
∗
t gG = φ∗

t δ
gG . We thus have:

(13) δφ
∗
t gGθφ∗

t gG
= (φ∗

t δ
gG)(φ∗

t θgG) = φ∗
t (δ

gGθgG) = 0.

Consequently, φ∗
tgG still is a Gauduchon metric of (M, c,D), so by the uniqueness

property there exists a constant λt > 0 such that (φt)
∗gG = λtgG. It follows that

there exists λ > 0 such that

(14) Lξ̄gG = λgG.

Taking the trace in (14) yields 2δξ̄ = −nλ. Integrating this equality over M and
using the divergence theorem, one obtains λ = 0, i.e.

(15) Lξ̄gG = 0,

thus showing that ξ̄ is a Killing vector field for gG.

Conversely, it is obvious that a Killing vector field for gG is a conformal vector
field of (M, c). This concludes the proof of Theorem 1.1.
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