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Abstract. We show that any conformal vector field on a compact lcK manifold is Killing
with respect to the Gauduchon metric. Furthermore, we prove that any conformal vector
field on a compact lcK manifold whose Kähler cover is neither flat, nor hyperkähler, is
holomorphic.

1. Introduction

It is well known that on a compact Kähler manifold every conformal vector field is Killing
[7, §90], and every Killing vector field is holomorphic. The aim of this paper is to extend
these two results to compact locally conformally Kähler (lcK) manifolds.

Recall that a (compact) lcK manifold [14] is a compact complex manifold (M,J) together
with a conformal class c of Riemannian metrics such that in the neighbourhood of each point
of M there exists a Kähler metric in c compatible with J . Equivalently, (M,J, c) is lcK if

the universal cover M̃ of M carries a Kähler metric gK in the induced conformal class c̃
compatible with the induced complex structure J̃ . The simply connected Kähler manifold

(M̃, J̃ , gK) will henceforth be referred to as the Kähler cover of (M,J, c).

The interest of this notion is that many complex manifolds which for topological reasons
do not carry Kähler metrics (like most complex surfaces with odd first Betti number [1], Hopf
manifolds S1 × S2n−1, some OT manifolds [11], etc.) have lcK structures instead.

Every compact lcK manifold (M,J, c) carries a distinguished metric g0 ∈ c, uniquely defined
up to a positive constant, called the Gauduchon metric [4]. Given a conformal vector field
ξ on (M, c), one cannot reasonably hope that it preserves any metric in the conformal class,
simply because if g ∈ c is preserved by ξ, then for any smooth function f non-constant along
the flow of ξ, the conformally equivalent metric g̃ := e2fg is no longer preserved by ξ. What
one can hope, however, is to show that ξ preserves the Gauduchon metric g0. Note that if ξ
were also holomorphic, this would be almost tautological. Indeed, since g0 is defined up to a
constant by c and J , the flow of ξ would be homothetic with respect to g0, and on a compact
Riemannian manifold every homothetic vector field is Killing.

Our first result (Theorem 5.1 below) says that this is indeed the case: every conformal
vector field on a compact lcK manifold preserves the Gauduchon metric. This result was
conjectured and proved under some more restrictive assumptions in [9].

We then move to the next natural question: is every conformal vector field on a compact lcK
manifold holomorphic? It turns out that in this generality the answer is negative. Indeed, one
can easily construct lcK metrics with non-holomorphic Killing vector fields on Hopf manifolds
S1 × S2n−1 and on products of S1 with 3-Sasakian manifolds (see [9, Remark 2.4 (ii)]).
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However, these are basically the only possible counterexamples: our second main result
(Theorem 6.2 below) states that if (M,J, c) is not a Hopf manifold or locally conformally
hyperkähler (that is, if the Kähler metric on the universal cover is not hyperkähler or flat),
then every conformal vector field is holomorphic.

Unlike the analogous result on Kähler manifolds, which is a simple consequence of Cartan’s
formula (see e.g. [8, Prop. 15.5]), this extension to lcK geometry is highly non-trivial, and
is based on a recent result by M. Kourganoff [6, Theorem 1.5.] which describes compact lcK
manifolds whose Kähler cover is reducible and non-flat.

Let us now explain in more detail the strategy of the proofs. We start by showing (in Prop.
3.1) that on a Kähler manifold (not necessarily compact), the divergence of any conformal
vector field is harmonic. Note that in the compact case, this already implies Lichnerowicz’ re-
sult mentioned above. We then consider a conformal vector field ξ on a compact lcK manifold

(M,J, c) and apply this result to the lift ξ̃ of ξ to the Kähler cover (M̃, J̃ , gK) of (M,J, c).
Using the theory of Weyl structures and the existence of Gauduchon metrics, we show in

Prop. 4.1 that ξ̃ has constant divergence on M̃ with respect to gK . We then interpret this
condition in terms of the Gauduchon metric on M and conclude by an integration argument,
using the compactness of M .

The proof of Theorem 6.2 goes roughly as follows. If ξ is a conformal vector field on
(M,J, c), then its lift ξ̃ is not only conformal, but even homothetic on the Kähler cover

(M̃, J̃ , gK), thanks to Theorem 5.1. In particular ξ̃ is affine, i.e. preserves the Levi-Civita
connection of gK . An easy argument [9, Lemma 2.1] shows that if gK is irreducible and not

hyperkähler, then ξ̃ is holomorphic.

In the case where gK is non-flat but has reducible holonomy, we make use of a deep result

by M. Kourganoff, stating that (M̃, gK) is a Riemannian product with a non-trivial flat

factor Rq. Using the fact that π1(M) acts on M̃ cocompactly and properly discontinuously

by similarities of the metric gK , preserving the homothetic vector field ξ̃, we then show in
Proposition 6.1 that the component of ξ̃ on Rq vanishes. This is the core of the argument
and uses the explicit form of homothetic vector fields on flat spaces.

The end of the proof uses a result by K.P. Tod [13, Prop. 2.2] involving Einstein-Weyl
structures, and the irreducibility of non-flat cone metrics over complete manifolds proved by
S. Gallot [3, Prop. 3.1].

Acknowledgments. This work was supported by the Procope Project No. 57445459
(Germany) / 42513ZJ (France).

2. Preliminaries

In this preliminary section we briefly recall the main definitions and collect a few known
basic results that will be needed throughout the paper.

Let M be a smooth n-dimensional manifold. For every real number r, the weight bundle Lr

is the real line bundle associated to the frame bundle of M with respect to the representation
|det| rn . Two Riemannian metrics g, g̃ on M are said to be conformally equivalent if there
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exists a function f such that g̃ = e2fg. A conformal structure on M is an equivalence class
of Riemannian metrics with respect to this equivalence relation.

If c is a conformal structure and g ∈ c is a Riemannian metric, its volume element volg
is a section of L−n. The volume element of a conformally equivalent metric g̃ = e2fg is
volg̃ = enfvolg, thus showing that (volg)

− 2
n ⊗ g is a section of L2 ⊗ Sym2(T∗M) which does

not depend on the choice of g. We will sometimes identify c with this section.

Let (M, c) be an n-dimensional conformal manifold. A vector field ξ on M is called con-
formal if its flow preserves the conformal class c, i.e. for any metric g ∈ c, its Lie derivative
with respect to ξ is proportional to g: Lξg = λg, for some function λ ∈ C∞(M).

We recall that on a given Riemannian manifold (M, g), the divergence of a vector field is
the trace of the endomorphism ∇gX of the tangent bundle: divgX := tr(∇gX), where ∇g

is the Levi-Civita connection of g. The divergence of a vector field is equal to the opposite
of the codifferential of its dual 1-form X[ := g(X, ·), i.e. divgX = −δg(X[), where the
codifferential δg is the formal adjoint of the exterior differential d and is expressed in terms

of a local g-orthonormal basis {ei}i as follows: δgα = −
n∑
i=1

eiy∇g
ei
α, for all forms α on M .

In the sequel we will drop the metric g in the notation each time the metric is clear from the
given context.

Taking traces in the defining equality of a conformal vector field, Lξg = λg, shows that
necessarily λ = − 2

n
δgξ[, for any metric g ∈ c. Thus, if ξ is a conformal vector field on (M, c),

then

(1) Lξg = − 2

n
(δgξ[)g, ∀g ∈ c.

In particular, a conformal vector field ξ on (M, c) is Killing with respect to some metric g ∈ c
if and only if δgξ[ = 0.

The condition that a vector field ξ is conformal is also equivalent to the fact that the
covariant derivative of ξ[ with respect to any metric g ∈ c has no trace-free symmetric
component, i.e.:

∇g
Xξ

[ =
1

2
Xydξ[ − 1

n
(δgξ[)X[, ∀X ∈ TM.

Definition 2.1. A Weyl structure on a conformal manifold (M, c) is a torsion-free linear
connection D which preserves the conformal class c. If D has reducible holonomy, then
(M, c,D) is called Weyl-reducible.

The condition that D preserves the conformal class c means that for each metric g ∈ c,
there exists a unique 1-form θg ∈ Ω1(M), called the Lee form of D with respect to g, such
that

(2) Dg = −2θg ⊗ g.

The Weyl connection D is then related to ∇g by

(3) DX = ∇g
X + θg(X)Id + θg ∧X, ∀X ∈ TM,
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where θg ∧X is the skew-symmetric endomorphism of TM defined by

(θg ∧X)(Y ) := θg(Y )X − g(X, Y )(θg)].

A Weyl connection D is called closed if it is locally the Levi-Civita connection of a (local)
metric in c and is called exact if it is the Levi-Civita connection of a globally defined metric in c.
Equivalently, D is closed (resp. exact) if its Lee form with respect to one (and hence to any)
metric in c is closed (resp. exact). Note that in the particular case when the Weyl structure
is exact, D = ∇g̃ with g̃ = e2fg, the Lee form θg of D with respect to g is given by θg = df .
This immediately follows from (2), since Dg = ∇g̃(e−2f g̃) = −2df ⊗ (e−2f g̃) = −2df ⊗ g.

If the manifold M is compact of dimension greater than 2, then for every Weyl connection D
on (M, c) there exists a unique (up to homothety) metric g0 ∈ c, called the Gauduchon metric
of D, such that its associated Lee form θ0 is co-closed with respect to g0, cf. [4].

The natural extension of (3) to the bundle of exterior k-forms reads:

(4) DXα = ∇g
Xα− kθ

g(X)α +X ∧ (θg)]yα− θg ∧ (Xyα), ∀X ∈ TM, ∀α ∈ Ωk(M).

The codifferential δD : Ωk(M) → L−2 ⊗ Ωk−1(M) associated to a Weyl structure D on
(M, c) is defined as follows:

δDα = −trc(Dα),

where trc denotes the conformal trace with respect to c. More precisely, if c = `2 ⊗ g, then
δD is related to δg by the following formula

(5) δDα = `−2(δgα− (n− 2k)θ]yα),

which directly follows by applying (4) to any k-form α and a local g-orthonormal basis {ei}i:

−
n∑
i=1

eiyDeiα = −
n∑
i=1

eiy∇g
ei
α + kθ]yα− nθ]yα + (k − 1)θ]yα + θ]yα

= δgα− (n− 2k)θ]yα.

An exterior form α satisfying δDα = 0 is called D-coclosed. According to (5), α is D-coclosed
if and only if for any metric g ∈ c, the codifferential of α verifies δgα − (n − 2k)θ]yα = 0,
where θ is the Lee form of D with respect to g.

The Weyl Laplacian ∆D : C∞(M)→ C∞(L−2) is defined by

∆Dϕ := δDdϕ = −trc(Ddϕ), ∀ϕ ∈ C∞(M).

For every metric g ∈ c written as g = `−2 ⊗ c, (5) applied to the 1-form α = dϕ yields

(6) ∆Dϕ = `−2(∆gϕ+ (2− n)g(θ, dϕ)), ∀ϕ ∈ C∞(M).

A function ϕ ∈ C∞(M) satisfying ∆Dϕ = 0 is called D-harmonic.

Lemma 2.2. On a Riemannian manifold (M, g) the commutator between the Lie derivative
and the codifferential acting on 1-forms satisfies the following equation:

(7) [δ,LX ]Y [ = δ((LXg)(Y ))− g(Y [, d(δX[)), ∀X, Y ∈ Γ(TM).
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Proof. We can assume that M is oriented, up to passing to a double cover. If volg denotes the
volume form of g, then using the well known formula LXvolg = −δX[ volg (see for instance
[5, Appendix 6]) we compute for all vector fields X and Y :

δ([X, Y ][) volg = −L[X,Y ]volg = −[LX ,LY ]volg = LX(δY [ volg)− LY (δX[ volg)

= X(δY [)volg − Y (δX[)volg,

and thus

(8) δ([X, Y ][) = X(δY [)− Y (δX[) = LX(δY [)− g(Y [, d(δX[)).

We now compute the commutator as follows:

[δ,LX ](Y [) = δ(LXY [)− LX(δY [) = δ([X, Y ][) + δ((LXg)(Y ))− LX(δY [)

(8)
= δ((LXg)(Y ))− g(Y [, d(δX[)).

�

Recall that a complex manifold (M,J, c) endowed with a conformal structure c is called
locally conformally Kähler (lcK) if around each point of M , every metric g ∈ c can be
conformally rescaled to a Kähler metric. Equivalently, (M,J, c) is lcK if every g ∈ c is
Hermitian with respect to J and the fundamental 2-form Ω := g(J ·, ·) satisfies dΩ = −2θ∧Ω
for some closed 1-form θ called the Lee form of (M, c, J) with respect to g.

If (M,J, c) is lcK, the universal cover π : M̃ → M , endowed with the induced complex
structure J̃ and conformal structure c̃, admits a Kähler metric in c̃ with respect to which
π1(M) acts by holomorphic homotheties.

Indeed, if g ∈ c is any metric on (M,J) with Lee form θ, then the pull-back θ̃ is exact on

M̃ , i.e. θ̃ = dϕ, for some function ϕ ∈ M̃ , and the metric gK := e2ϕg̃ is Kähler. Moreover,

π1(M) acts on (M̃, J̃ , gK) by holomorphic homotheties. Hence, the Levi-Civita connection
of gK projects to a closed, non-exact, Weyl connection D on M , the so-called standard Weyl
connection of the lcK manifold (M,J, c), whose Lee form in the sense of (2) is exactly θ.

3. Conformal vector fields on Kähler manifolds

In this section we show that the divergence of a conformal vector field on a (not necessarily
compact) Kähler manifold is a harmonic function with respect to the Kähler metric.

Let us first recall some well known results in Kähler geometry, whose proofs can be found
for instance in [8]. Let (M,J, g,Ω) be an n-dimensional Kähler manifold.

In the sequel {ei}i denotes a local orthonormal basis with respect to the metric g. Then

the Kähler 2-form can be written as Ω =
1

2

n∑
i=1

ei ∧ Jei, where here and in the sequel we

identify vectors and 1-forms using the metric g. We denote by L the wedge product with Ω:

L : Ωk(M)→ Ωk+2(M), L(α) = Ω ∧ α.
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The natural extension of J acting as a derivation on forms is given by

J : Ωk(M)→ Ωk(M), J(α) =
n∑
i=1

Jei ∧ eiyα.

The twisted differential dc is defined as follows:

dc : Ωk(M)→ Ωk+1(M), dc(α) =
n∑
i=1

Jei ∧∇eiα,

and its formal adjoint is

δc : Ωk+1(M)→ Ωk(M), δc(α) = − ∗ dc∗ = −
n∑
i=1

Jeiy∇eiα,

where ∇ denotes the Levi-Civita connexion of g. The twisted Laplace operator is then defined
by ∆c := dcδc + δcdc.

On a Kähler manifold, the following relations hold (for a proof see for instance [8, §14]):

(9) [J, d] = dc, [J, δc] = −δ,

(10) δcd + dδc = δcδ + δδc = dcδ + δdc = 0,

(11) [L, δc] = −d,

(12) ∆c = ∆.

After these preliminaries we can now prove the announced result:

Proposition 3.1. Let (M,J, g,Ω) be a (not necessarily compact) Kähler manifold of dimen-
sion n > 2. If η is a conformal Killing 1-form on (M, g), then its codifferential δη is a
g-harmonic function.

Proof. Let η be a conformal Killing 1-form on (M, g), i.e. the dual 1-form of a conformal
vector field on M . The covariant derivative of η in the direction of any vector field X is given
as follows (see [12]):

∇Xη =
1

2
Xydη − 1

n
(δη)X.

We thus compute using the above commutator relations:

dcη =
n∑
i=1

Jei ∧∇eiη =
1

2

n∑
i=1

Jei ∧ eiydη −
1

n
(δη)

n∑
i=1

Jei ∧ ei

=
1

2
Jdη +

2

n
(δη)Ω

(9)
=

1

2
dJη +

1

2
dcη +

2

n
L(δη),

hence dcη = dJη + 4
n
L(δη). Applying δc to this equality yields

δcdcη = δcdJη +
4

n
δcL(δη)

(10),(11)
= −dδcJη +

4

n
Lδc(δη) +

4

n
d(δη)

(9)
= −dδη +

4

n
d(δη),
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and thus δcdcη + n−4
n

d(δη) = 0. Applying now δ to this equality yields

0 = δδcdcη+
n− 4

n
δd(δη)

(10)
= δcdc(δη)+

n− 4

n
δd(δη) = ∆c(δη)+

n− 4

n
∆(δη)

(12)
=

2n− 4

n
∆(δη).

Since n > 2, it follows that ∆(δη) = 0, so δη is g-harmonic. �

Remark 3.2. In terms of vector fields, Proposition 3.1 can be reformulated as follows:
The divergence of a conformal vector field on a Kähler manifold of real dimension greater
than 2 is a harmonic function with respect to the Kähler metric.

Remark 3.3. If the manifold M is moreover assumed to be compact, a direct consequence of
Proposition 3.1 is the well-known result of A. Lichnerowicz [7, §90] stating that a conformal
vector field on a compact Kähler manifold of real dimension greater than 2 is necessarily
Killing with respect to the Kähler metric.

4. Weyl-harmonic functions

In this section we prove that harmonic functions with respect to a Weyl structure on a
compact conformal manifold are necessarily constant.

Proposition 4.1. Let (M, c) be a compact conformal manifold of dimension n > 2 endowed
with a Weyl structure D. Then any D-harmonic function on M is constant.

Proof. We consider the Gauduchon metric g0 ∈ c, which is (up to homothety) the unique
metric in c whose associated 1-form θ0 is g0-coclosed. If c = `2

0 ⊗ g0, then (6) yields:

∆Dϕ = `−2
0 (∆g0ϕ+ (2− n)g0(dϕ, θ0)), for all ϕ ∈ C∞(M).

Thus a function ϕ ∈ C∞(M) is D-harmonic if and only if

∆g0ϕ = (n− 2)g0(dϕ, θ0).

Multiplying this equality with ϕ and integrating over the compact manifold M yields∫
M

|dϕ|2g0vol0 =

∫
M

ϕ∆g0ϕvol0 =
n− 2

2

∫
M

g0(dϕ2, θ0)vol0 =
n− 2

2

∫
M

g0(ϕ2, δ0θ0)vol0 = 0,

which implies that dϕ = 0. Thus ϕ is constant, since M is compact. �

Remark 4.2. Let (Mn, c) be a conformal manifold of dimension n > 2 endowed with a Weyl
structure D. To each vector field ξ can be associated the following function

(13) fξ := div∇
g

ξ + nθ(ξ),

where g ∈ c and θ is its associated 1-form. Then fξ is independent of the choice of the metric

g ∈ c, as shown by a direct computation. Namely, if g̃ = e2fg, then θ̃ = θ − df . Taking a
local orthonormal basis {ei}i with respect to g, then {ẽi := e−fei}i is a local orthonormal
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basis with respect to g̃ and we obtain using [2, Thm. 1.159 a)]:

div∇
g̃

ξ + nθ̃(ξ) =
n∑
i=1

g̃(ẽi,∇g̃
ẽi
ξ) + n(θ − df)(ξ)

=
n∑
i=1

g(ei,∇g̃
ei
ξ) + n(θ − df)(ξ)

=
n∑
i=1

g(ei,∇g
ei
ξ + df(ei)ξ + df(ξ)ei − g(ei, ξ)gradf) + n(θ − df)(ξ)

= div∇
g

ξ + df(ξ) + ndf(ξ)− df(ξ) + n(θ − df)(ξ)

= div∇
g

ξ + nθ(ξ).

5. Conformal vector fields on lcK manifolds

We are now ready to prove the counterpart in lcK geometry of the above mentioned result
of A. Lichnerowicz for compact Kähler manifolds. More precisely, we show the following:

Theorem 5.1. Let (M,J, c) be a compact lcK manifold. Then every conformal vector field
on (M, c) is Killing with respect to the Gauduchon metric and the induced vector field on the
universal cover is homothetic with respect to the Kähler metric.

Proof. Let ξ be a conformal vector field on (M, c) and let η0 := g0(ξ, ·) be its dual 1-form
with respect to the Gauduchon metric g0. Then ξ is Killing with respect to g0 if and only if
δ0η0 = 0.

We consider the universal cover π : M̃ → M endowed with the pull-back (J̃ , g̃0, θ̃0) of the

lcK structure (J, g0, θ0), where θ0 is the Lee form defined by dΩ0 = −2θ0∧Ω0. If ϕ ∈ C∞(M̃)

is a primitive of θ̃0, i.e. θ̃0 = dϕ, then the metric gK := e2ϕg̃0 is Kähler.

We denote by ξ̃ the vector field induced by ξ on M̃ , i.e. π∗ξ̃ = ξ. Then ξ̃ is a conformal
vector field with respect to the conformal class [g̃0] = [gK ], and thus its dual 1-form ηK :=

gK(ξ̃, ·) is a conformal Killing 1-form on the Kähler manifold (M̃, J̃ , gK). The pull-back η̃0 of
η0 is related to ηK by η̃0 = e−2ϕηK .

We claim that δgKηK = −π∗fξ, where fξ is the function associated to the vector field ξ,
as defined by (13). Indeed, we compute using the formula for the conformal change of the
codifferential [2, Thm. 1.159 i)]:

δgKηK = e−2ϕ(δg̃0ηK − (n− 2)g̃0(ηK , dϕ)) = e−2ϕδg̃0(e
2ϕη̃0)− (n− 2)g̃0(η̃0, dϕ)

= δg̃0 η̃0 − 2g̃0(η̃0, dϕ)− (n− 2)g̃0(η̃0, dϕ) = δg̃0 η̃0 − ng̃0(η̃0, θ̃0)

= π∗(δg0η0 − ng0(η0, θ0)) = π∗(−div∇
g0
ξ − nθ0(ξ)) = −π∗(fξ).

Since by Proposition 3.1, the function π∗(fξ) = −δgKηK is gK-harmonic, it follows that fξ is
D-harmonic, where D is the standard Weyl structure of the lcK structure (M,J, c). Applying
Proposition 4.1 we obtain that fξ is constant, so fξ = C ∈ R. On the other hand, using the
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Gauduchon metric g0 with its associated 1-form θ0, we express fξ as follows:

C = fξ = div∇
g0
ξ + nθ0(ξ) = −δ0η0 + nθ0(ξ),

hence

(14) θ0(ξ) =
C

n
+

1

n
δ0η0.

By Cartan’s formula we further compute:

Lξθ0 = d(ξyθ0) + ξydθ0 = d(θ0(ξ)) =
1

n
d(δ0η0).

Applying now the codifferential δ0 to this equality and using Lemma 2.2, we obtain:

1

n
∆0(δ0η0) =

1

n
δ0d(δ0η0) = δ0 (Lξθ0)

(7)
= Lξ(δ0θ0) + δ0((Lξg)(θ]0))− g0(θ0, d(δ0η0))

(1)
= − 2

n
δ0((δ0η0)θ0)− g0(θ0, d(δ0η0))

= − 2

n
(δ0η0)δ0θ0 +

2

n
g0(θ0, d(δ0η0))− g0(θ0, d(δ0η0))

=
2− n
n

g0(θ0, d(δ0η0)),

since δ0θ0 = 0 by the definition of the Gauduchon metric. Thus, we obtain:

(15) ∆0(δ0η0) = (2− n)g0(θ0, d(δ0η0)).

Multiplying (15) with the function δ0η0 and integrating over the compact manifold M yields:∫
M

(δ0η0)∆0(δ0η0)volg0 =
2− n

2

∫
M

g0(θ0, d((δ0η0)2))volg0 ,

so we obtain: ∫
M

|d(δ0η0)|20volg0 =
2− n

2

∫
M

g0(δ0θ0, (δ0η0)2)volg0 = 0,

showing that d(δ0η0) = 0. As M is compact, it follows that the function δ0η0 is constant and

hence vanishes, since

∫
M

δ0η0 volg0 = 0. Thus δ0η0 = 0, so ξ is a Killing vector field with

respect to the Gauduchon metric g0.

In order to prove the last statement, we remark that

Lξ̃gK = Lξ̃(e
2ϕg̃0) = 2θ̃0(ξ̃)gK = 2θ̃0(ξ)gK ,

and θ0(ξ) is constant by (14) and the fact that δ0η0 = 0. �
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6. Holomorphicity of conformal vector fields

In this section we prove that on a compact lcK manifold, whose Kähler cover is neither flat
nor hyperkähler, every conformal vector field is holomorphic. We first show a more general
result about homothetic invariant vector fields on Riemannian products endowed with a
cocompact and properly discontinuous action of a group of similarities.

Let us introduce the notation needed in the sequel. We denote the group of similarities of
a Riemannian manifold (M, g) by

Sim(M, g) := {φ : M →M |φ is a diffeomorphism and φ∗g = λg, for some λ ∈ R>0}.

A vector field ξ on (M, g) is called homothetic if its flow consists of similarities. Equivalently,
ξ is homothetic if Lξg = kg for some real number k.

Proposition 6.1. Let (N, gN)×(Rq, gflat) be the Riemannian product of a non-flat incomplete
Riemannian manifold (N, gN) with irreducible holonomy and the Euclidean space (Rq, gflat).
We assume that there exists a subgroup Γ ⊂ Sim(N × Rq, gN + gflat) which acts cocompactly
and properly discontinuously on N × Rq. Then every Γ-invariant homothetic vector field on
(N × Rq, gN + gflat) is tangent to N and constant in the direction of Rq.

Proof. Let us denote in this proof by π : N × Rq → (N × Rq)/Γ the projection given by the
action of Γ. Let X be a Γ-invariant homothetic vector field on (N × Rq, gN + gflat). We
write X = X1 + X2, with X1 ∈ TN and X2 ∈ TRq. The flow (ψt)t of X preserves the
decomposition TN ⊕ Rq, because any similarity preserves the flat factor of the de Rham
decomposition. Thus, the following inclusions hold: ψt∗(TN) ⊂ TN and ψt∗(Rq) ⊂ Rq, so
[X,TN ] ⊂ TN and [X,Rq] ⊂ Rq, which further imply that ∇TNX ⊂ TN and ∇RqX ⊂ Rq,
where ∇ denotes the Levi-Civita connection of gN + gflat. Hence,

(16) ∇TNX2 = 0 and ∇RqX1 = 0,

showing that X1 and X2 are homothetic vector fields on the factors and are constant in the
direction of the other factor. Clearly X1 and X2 are Γ-invariant. We need to show that
X2 = 0.

Since X2 is a homothetic vector field on the Euclidean space Rq, there exists a skew-
symmetric matrix A ∈ M(q,R), a real number λ ∈ R and a vector v ∈ Rq such that
(X2)p = Cp + v at each point p ∈ Rq, where C := λIq + A and Iq ∈ M(q,R) denotes the
identity matrix.

We claim that by applying a translation in Rq one can assume that v ∈ Ker(C). In order
to prove this we distinguish the following two cases:
Case 1. If λ 6= 0, then C is invertible and (X2)p = C(p + C−1v), so choosing the origin of
the flat factor Rq at −C−1v, we may assume that v = 0.
Case 2. If λ = 0, then C = A is a skew-symmetric matrix. Considering the orthogonal
splitting Rq = Im(C) ⊕ Ker(C), we decompose correspondingly v = Cv1 + v2, with v2 ∈
Ker(C). Thus (X2)p = C(p+ v1) + v2, so choosing the origin of the flat factor Rq at −v1, we
may assume that v ∈ Ker(C).
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The flow of X2 is given as follows: ϕt(p) = etC
(
p+

∫ t

0

e−sCvds

)
. Since v ∈ Ker(C), this

further simplifies to ϕt(p) = etCp+ tv.

Now, for every element γ ∈ Γ, we write γ(x, y) = (γ′(x), γ′′(y)), for all (x, y) ∈ N × Rq,
with γ′′(y) = Bγy+wγ, Bγ ∈ CO(q) and wγ ∈ Rq. Since X2 is Γ-invariant, it follows that its
flow (ϕt)t commutes with γ′′, that is:

Bγ(e
tCp+ tv) + wγ = etC(Bγp+ wγ) + tv, ∀p ∈ Rq, ∀t ∈ R,

or, equivalently: {
[Bγ, e

tC ] = 0

t(Bγ − Iq)v = (Iq − e−tC)wγ.

Differentiating at t = 0 yields for all γ ∈ Γ:

(17)

{
[Bγ, C] = 0

(Bγ − Iq)v = Cwγ.

We claim that Cwγ = 0, for all γ ∈ Γ. We show this separately for the two cases introduced
above. In the first case, if λ 6= 0, then we have already seen that we may assume v = 0.
Hence, (17) directly implies that Cwγ = 0 for all γ. In the second case, if λ = 0, then C is
a skew-symmetric matrix and we have shown that one may assume v ∈ Ker(C). Therefore,
since Bγ and C commute, it follows that the left-hand side of the second equality in (17) also
belongs to the kernel of C, (Bγ − Iq)v ∈ Ker(C). The right-hand side belongs to Im(C) and
since Im(C) ⊥ Ker(C), because C is skew-symmetric, we conclude that both sides of this
equality vanish, so, in particular, Cwγ = 0.

Since Cwγ = 0 and there exists at least a strict homothety Bγ, it follows from the second
equality in (17) that v = 0. Thus, (X2)p = Cp, for all p ∈ Rq.

Assume, for a contradiction, that X2 6= 0, i.e. C 6= 0. Let us now fix some p ∈ Im(C) \ {0}
and x ∈ N and consider the sequence z̃n := (x, np) in N×Rq, as well as its image zn := π(z̃n)
in (N × Rq)/Γ. Since M := (N × Rq)/Γ is compact, there exists a convergent subsequence
of (zn)n, i.e. there exists a strictly increasing sequence (kn)n ⊂ N and z0 ∈ M such that

zkn → z0. Let V be a neighbourhood of z0, such that there exists Ṽ ⊂ N × Rq with

π|Ṽ : Ṽ → V diffeomorphism.

Let z̃0 := (π|Ṽ )−1(z0) and, for all n ∈ N sufficiently large in order to ensure that zkn ∈ V ,
define ỹn := (π|Ṽ )−1(zkn). Then the sequence (ỹn)n converges to z̃0. Since zkn = π(z̃kn) =
π(ỹn), there exists a sequence (γn)n ∈ Γ, such that ỹn = γn(z̃kn). We may now write according
to the results obtained above that γn(x, y) = (γ′n(x), γ′′n(y)), for all (x, y) ∈ N × Rq, where
γ′′n(y) = Bny + wn, with Bn ∈ CO(q) and wn ∈ Rq, such that [Bn, C] = 0 and Cwn = 0. The
equality ỹn = γn(z̃kn) thus yields

ỹn = γn(z̃kn) = (γ′n(x), γ′′n(knp)) = (γ′n(x), knBnp+ wn) −→
n→∞

z̃0.

Since knBnp ∈ Im(C) and wn ∈ Ker(C), one can write z̃0 = (x0, Cy0 + w0) for some y0 ∈ Rq

and w0 ∈ Ker(C).
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Using that Im(C)⊕Ker(C) = Rq, we deduce that γ′n(x)→ x0, knBnp→ Cy0 and wn → w0.
In particular, γn(x, 0) = (γ′n(x), wn) → (x0, w0). From this convergence and the fact that Γ
acts properly discontinuously on N ×Rq, it follows that the sequence (γn)n is stationary, i.e.
there exists n0 such that γn = γn0 , for all n ≥ n0. In particular, Bn = Bn0 , for n ≥ n0, so
from knBnp = knBn0p→ Cy0, with (kn)n ⊂ N strictly increasing, we conclude that Bn0p = 0,
so p = 0, which contradicts the fact that p ∈ Im(C)\{0}. Thus we conclude that X2 = 0. �

We are now ready for the second main result of this paper.

Theorem 6.2. Let (M,J, c) be a compact lcK manifold. If the Kähler cover (M̃, J̃ , gK) is
neither flat nor hyperkähler, then every conformal vector field on (M, c) is holomorphic.

Proof. Let ξ be a conformal vector field on (M, c). Then, according to Theorem 5.1, ξ is a
Killing vector field with respect to the Gauduchon metric g0 ∈ c.

If the Lee form θ0 of g0 vanishes identically, then (M, g0, J) is Kähler, and a standard
argument shows that ξ is holomorphic. Indeed, the Kähler form Ω0 of (g0, J) is harmonic
and so is its Lie derivative with respect to the Killing vector field ξ. On the other hand, since
dΩ0 = 0, Cartan’s formula shows that LξΩ0 = d(ξyΩ0) is also exact. A harmonic form which
is exact vanishes identically, so 0 = LξΩ0 = g0(LξJ ·, ·), whence ξ is holomorphic.

We thus assume for the rest of the proof that θ0 is not identically zero.

Let ξ̃ denote the vector field induced by ξ on M̃ , i.e. π∗(ξ̃) = ξ, where π : M̃ → M is

the projection of the universal cover. By the last part of Theorem 5.1, ξ̃ is homothetic with
respect to the Kähler metric gK . In particular, ξ̃ is affine with respect to the Levi-Civita
connection ∇gK . We distinguish the following two cases:

Case 1. If Hol(gK) is irreducible, then any transformation in the connected component
of the identity of the group of affine transformations of ∇gK is holomorphic, cf. [9, Lemma

2.1.], because (M̃, J̃ , gK) is assumed to be neither flat nor hyperkähler. Applying this result

to the flow of ξ̃, yields that ξ̃ is a holomorphic vector field on (M̃, J̃), which finishes the proof
in the first case.

Case 2. If Hol(gK) is reducible, then a result of M. Kourganoff, [6, Theorem 1.5.], implies

that the Kähler cover splits as a Riemannian product (M̃, gK) ' (N, gN)× (Rq, gflat), where
q is even and the metric gN is non-flat, incomplete and has irreducible holonomy. Applying

Proposition 6.1 to the action of Γ := π1(M) on (M̃, gK), we conclude that ξ̃ is tangent to N
and constant in the direction of Rq, i.e. there exists a homothetic vector field ζ on (N, gN)

ξ̃(x,y) = ζx, for all (x, y) ∈ N × Rq.

We argue by contradiction and assume that ζ is not holomorphic. Since gN has irreducible
holonomy, we conclude, applying again Lemma 2.1. from [9], that (N, gN) is hyperkähler,

so, in particular, gN is Ricci-flat. Thus also (M̃, gK) is Ricci-flat and, consequently, the
standard Weyl connection D on (M, c) is Weyl-Einstein. By a result of K.P. Tod [13, Prop.

2.2] it follows that the dual vector field T := θ]0 is Killing with respect to g0, which implies

that (M,J, g0) is Vaisman, i.e. ∇g0T = 0. Writing gK = e2ϕg̃0, with dϕ = θ̃0, yields

LT̃gK = 2g̃0(T̃ , T̃ )gK .
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Since g̃0(T̃ , T̃ ) is constant, the induced vector field T̃ is homothetic on (M̃, gK). By Propo-

sition 6.1 again, T̃ is tangent to N and is constant in the direction of Rq. Such a vector field

can only be homothetic if it is Killing. Thus g̃0(T̃ , T̃ ) = 0, so θ0 = 0, which was excluded.

Our assumption is thus false, showing that ζ is holomorphic on N , so ξ̃ is holomorphic on
N × Rq, and therefore ξ is a holomorphic vector field on (M,J). �

Remark 6.3. An alternative argument for the second case in the proof of Theorem 6.2 is the

following. Assuming that ξ is not holomorphic, and that (M̃, gK) has reducible holonomy, we

obtain as before that (M,J, g0) is Vaisman, so the universal cover (M̃, g̃0) carries a non-trivial

parallel 1-form θ̃0. Consequently, it splits as a Riemannian product (M̃, g̃0) = (R, dϕ2) ×
(S, gS), with θ̃0 = dϕ and (S, gS) complete. Then after the change of variable r := eϕ,

the Kähler metric on M̃ reads gK = e2ϕg̃0 = dr2 + r2gS. Thus (M̃, gK) is isometric to the
Riemannian cone of (S, gS), so it is irreducible by S. Gallot’s result [3, Prop. 3.1]. This
contradiction shows that ξ is holomorphic.
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[7] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
[8] A. Moroianu, Lectures on Kähler geometry, London Mathematical Society Student Texts 69, Cambridge

University Press, Cambridge, 2007.
[9] A. Moroianu, L. Ornea, Transformations of locally conformally Kähler manifolds, Manuscripta Math. 130

(2009), 93–100.
[10] A. Moroianu, U. Semmelmann, Twistor forms on Kähler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci.

(5) II (4) (2003), 823–845.
[11] K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst.

Fourier (Grenoble), 55 (1) (2005), 161–171.
[12] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), 503–527.
[13] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. (2) 45 (1992), 341–

351.
[14] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (2) (1979), 263–

284.
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