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Abstract. We investigate four-dimensional Heterotic solitons, defined as a particular
class of solutions of the equations of motion of Heterotic supergravity on a four-manifold
M or, equivalently, as self-similar points of the renormalization group flow of the NS-
NS sector of the Heterotic world-sheet. Heterotic solitons depend on a parameter κ and
consist of a Riemannian metric g, a metric connection with skew torsion H on TM and a
closed 1-form ϕ on M satisfying a differential system that generalizes the celebrated Hull-
Strominger system. In the limit κ→ 0, Heterotic solitons reduce to a class of generalized
Ricci solitons and can be considered as a higher-order curvature modification of the latter.
If the torsion H is equal to the Hodge dual of ϕ, Heterotic solitons consist of either flat tori
or Ricci-flat Weyl structures on manifolds of type S1×S3 as introduced by P. Gauduchon.
We prove that the moduli space of such Ricci-flat Weyl structures is isomorphic to the
product of R with a certain finite quotient of the Cartan torus of the isometry group of
the typical fiber of a natural fibration M → S1. We also consider the associated space of
essential infinitesimal deformations, which we prove to be obstructed. More generally, we
characterize several families of Heterotic solitons as suspensions of certain three-manifolds
with prescribed constant principal Ricci curvatures, amongst which we find hyperbolic

manifolds, manifolds covered by S̃l(2,R) and E(1, 1) or certain Sasakian three-manifolds.
These solutions exhibit a topological dependence in the string slope parameter κ and yield,
to the best of our knowledge, the first examples of Heterotic compactification backgrounds
not locally isomorphic to supersymmetric compactification backgrounds.

1. Introduction

The goal of this article is to investigate a system of partial differential equations, which
we call the Heterotic soliton system, that occurs naturally as part of the equations of motion
of the bosonic sector of Heterotic supergravity in four dimensions [3, 4, 46]. The latter is
defined on a principal bundle P over a four-manifold M and involves a Riemannian metric
g on M , a pair (ϕ, α) of 1-forms on M and a connection A on P coupled through a system of
highly non-linear partial differential equations completely determined by supersymmetry.
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Paris-Saclay under the Deutsch-Französische Procope Mobilität program. C.S.S. would like to thank A.
Moroianu and this very welcoming institution for providing a nice and stimulating working environment.
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The bosonic sector of Heterotic supergravity generalizes the Einstein-Yang-Mills system
and contains, through its Killing spinor equations, the celebrated Hull-Strominger system
[34, 60]. Despite the fact that the four-dimensional supersymmetric solutions of Heterotic
supergravity have been fully classified in [24, 60], the classification of all possibly non-
supersymmetric solutions of the theory on a compact four-manifold seems to be currently
out of reach and in fact, and to the best of our knowledge, no non-locally supersymmet-
ric compactification background of Heterotic supergravity was known prior to this work.
On the other hand, in Euclidean dimensions higher than four, the existence, uniqueness
and moduli problems of Heterotic supersymmetric solutions remain wide open and have
attracted extensive attention in the physics as well as in the mathematics literature, see
for instance the reviews [14, 22, 30, 48, 61] and their references and citations for more de-
tails. In this regard, Yau’s conjecture on the existence of solutions to the Hull-Strominger
system on certain polystable holomorphic vector bundles over compact balanced complex
manifolds stands as an outstanding open problem in the field [19, 20, 62].

Given the complexity of the four-dimensional full-fledged Heterotic bosonic sector, in
this work we propose an educated truncation which is obtained by taking the structure
group of the gauge bundle P to be trivial, that is, P = M . With this assumption, the
bosonic sector of Heterotic supergravity reduces to a system of partial differential equations
for a Riemannian metric and a pair of 1-forms ϕ and α on a four-manifold M which we
call the Heterotic soliton system (see Definition 3.1) and which is given by:

Ricg +∇gϕ+ 1
2α⊗ α−

1
2 |α|

2
g g + κ v(R∇α ◦ R∇α) = 0 , dα = ϕ ∧ α

δgϕ+ |ϕ|2g + κ |R∇α |2g,v = |α|2g , δgα = κ (|R+
∇α |2g,v − |R

−
∇α |2g,v) ,

where ∇α denotes the unique metric connection on (M, g) with skew-symmetric torsion
−(∗gα) and v(−◦g−) is a bilinear algebraic operation introduced in Section 2.1. Solutions
of this system are by definition Heterotic solitons on M , see Definition 3.1. Heterotic
solutions depend on a non-negative constant κ ≥ 0, which corresponds physically to the
slope parameter of the Heterotic string to which the theory corresponds. In the limit
κ → 0, Heterotic solitons reduce to a particular class of generalized Ricci solitons as
introduced in [27]. The latter can be understood as stationary points of generalized Ricci
flow [45, 55, 56], which originates through the renormalization group flow of the NS-NS
string at one loop [51, Page 111] and in the Hamilton gauge [45]. In the same vein, Heterotic
solitons correspond to self-similar solutions of the generalized Ricci flow corrected by higher
loops in κ, which turn out to introduce higher curvature terms in the system of equations.
Therefore, Heterotic solitons can be understood as a natural extension of the notion of
generalized Ricci solitons in the context of Heterotic string theory. The investigation of flow
equations inspired by supergravity and superstring theories is an increasingly active topic
of research in the mathematics literature, see [15, 16, 17, 49, 50, 57] and references therein,
and the characterization of the renormalization group flow whose self-similar solutions are
Heterotic solitons is currently work in progress and has already produced a novel curvature
flow [43].



HETEROTIC SOLITONS ON FOUR-MANIFOLDS 3

Having introduced the notion of Heterotic soliton, which seems to be new in the liter-
ature, our first goal is to construct non-trivial examples and study the associated moduli
space of solutions in simple cases. Heterotic solitons (g, ϕ, α) with ϕ = α can be easily
proven to be manifolds of type S1 × S3 as introduced by P. Gauduchon in [28] (see Defi-
nition 3.5), which in turn leads us to revisit Reference [47] and reconsider the study of the
moduli space of such manifolds. Our first result in this direction is the following.

Theorem 1.1. Let Σ be a spherical three-manifold. The moduli space of manifolds of type
S1 × S3 and class Σ is in bijection with the direct product of R with a finite quotient of a
maximal torus T in the isometry group of Σ. In particular, the moduli space of manifolds
of type S1×S3 has dimension 1 + rk(Iso(Σ)), where rk(Iso(Σ)) denotes the rank of Iso(Σ),
that is, the dimension of any of its maximal torus subgroups.

The reader is referred to Theorem 3.10 for more details. The previous theorem characterizes
the moduli space of manifolds of type S1×S3 globally. Since such type of characterization
is relatively rare in differential-geometric moduli problems, we perform in addition a local
study of the moduli, characterizing its virtual tangent space T[g,ϕ]M

0
ω(M) of infinitesimal

deformations that preserve the norm of ϕ, chosen to be 1, and the Riemannian volume
ω form of g. This eliminates trivial deformations such as constant rescalings of ϕ and g,
and is also called the vector space of essential deformations, according to the terminology
introduced by N. Koiso [37, 38].

Theorem 1.2. There exists a canonical bijection:

T[g,ϕ]M
0
ω(M)→ K(Σ) ,

where the Riemannian three-manifold Σ is the typical fiber of the natural fibration structure
determined by (g, ϕ) on M and K(Σ) denotes the vector space of Killing vector fields of Σ.

In particular, the previous result implies that the infinitesimal deformations of manifolds
of type S1×S3 are in general obstructed. The reader is referred to Theorem 3.19 for more
details. The Heterotic solitons obtained by imposing ϕ = α are all locally isomorphic to a
supersymmetric solution, as a direct inspection of the classification presented in [24] shows.
In order to obtain Heterotic solitons not locally isomorphic to a supersymmetric solution
we consider instead Heterotic solitons such that ϕ = 0 (that is, the dilaton vanishes) and
α 6= 0. We obtain a classification result, which we summarize as follows.

Theorem 1.3. Let M be a compact and oriented four-manifold admitting a non-flat Het-
erotic soliton (g, α) with κ > 0, vanishing dilaton, and parallel torsion. Then the kernel
of α defines an integrable distribution whose leaves, equipped with the metric induced by
g, are all isometric to an oriented Riemannian three-manifold (Σ, h) satisfying one of the
following possibilities:

(1) There exists a double cover of (Σ, h) that admits a Sasakian structure determined by h
as prescribed in Theorem 4.9.

(2) (Σ, h) is isometric to a discrete quotient of either S̃l(2,R) or E(1, 1) (the universal
cover of the Poincaré group of two-dimensional Minkowski space) equipped with a left-
invariant metric with constant principal Ricci curvatures given by (0, 0,− 1

2κ).
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(3) (Σ, h) is a hyperbolic three-manifold.

The reader is referred to Theorem 4.9 for more details and a precise statement of the
result. The previous theorem can be used to obtain large families of Heterotic solitons
with vanishing dilaton and parallel torsion, as summarized for instance in Corollaries 4.12
and 4.13.

Due to the fact that Heterotic solitons constitute a particular class of Heterotic super-
gravity solutions, they are expected to inherit a generalized geometric interpretation on a
transitive Courant algebroid, as described in [1, 10, 21, 26] for the general bosonic sector of
Heterotic supergravity. Adapting the framework developed in Op. Cit. to Heterotic soli-
tons would yield a natural geometric framework, adapted to the symmetries of the system,
to further investigate Heterotic solitons and their moduli. The power of this formalism
is illustrated in [58, 59], where generalized Ricci solitons were thoroughly studied in the
framework of generalized complex geometry. The generalized geometry underlying Het-
erotic supergravity is also positioned to play a prominent role in the study of the T-duality
[5, 2, 23] of Heterotic solitons, which is a fundamental tool to classify the latter and to
generate new Heterotic solitons of novel topologies. In this context, a specially attractive
case corresponds to considering left-invariant Heterotic solitons on four-dimensional Lie
groups, where T-duality can be algebraically described [11]. We plan to develop these
ideas in future publications.

2. Four-dimensional Heterotic supergravity

2.1. Preliminaries. Let M be an oriented four-dimensional manifold and let P be a
principal bundle over M with semi-simple and compact structure group G. Denote by
g the Lie algebra of G. We fix an invariant and positive-definite symmetric bilinear form
c : g×g→ R on g, and we denote by c the inner product induced by c on the adjoint bundle
gP := P ×Ad g of P . We denote by AP the affine space of connections on P and for every
connection A ∈ AP we denote by FA ∈ Ω2(gP ) its curvature. For every Riemannian metric
g on M , we denote by Fg(M) the bundle of oriented orthonormal frames defined by g and
the given orientation of M , and we denote by sog(M) := Fg(M) ×Ad so(4) its associated
adjoint bundle of so(4) algebras, which we will consider equipped with the positive-definite
inner product v yielded by the trace in so(4). The curvature of a connection ∇ on Fg(M)
will be denoted by R∇ ∈ Ω2(sog(M)). Given (M,P, c) and a Riemannian metric g on M ,
we define the following bilinear map:

c(− ◦ −) : Ωk(gP )× Ωk(gP )→ Γ(T ∗M � T ∗M) ,

as follows:

c(α ◦ β)(v1, v2)
def.
=

1

2
((g ⊗ c)(v1yα, v2yβ) + (g ⊗ c)(v2yα, v1yβ)) ,

for every pair of vector fields v1, v2 ∈ X(M) and any pair of k-forms α, β ∈ Ωk(gP ) taking
values in gP . Here g ⊗ c(−,−) denotes the non-degenerate metric induced by g and c on
the differentiable forms valued in gP . In particular, for the curvature FA ∈ Ω2(gP ) of a
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connection A ∈ AP we have:

c(FA ◦ FA)(v1, v2)
def.
= (g ⊗ c)(v1yFA, v2yFA) , v1, v2 ∈ X(M) ,

where v1yFA denotes the 1-form with values in gP obtained by evaluation of v1 in FA,
and similarly for v2yFA. If {Ta} denotes a local orthonormal frame on gP satisfying
c(Ta, Tb) = δab and ei denotes a local orthonormal frame of (TM, g), then the expression
above reads:

c(FA ◦ FA)(v1, v2) =
∑
a,i

FaA(v1, ei)FaA(v2, ei) .

Therefore, in local coordinates
{
xi
}

, i, j, k,m = 1, . . . , 4, the previous equation corresponds
to:

c(FA ◦ FA)(v1, v2) =
∑
a

(FaA)im (FaA)jk g
mk .

Similarly, for a 3-form H ∈ Ω3(M) we define:

(H ◦H)(v1, v2)
def.
= g(v1yH, v2yH) , v1, v2 ∈ X(M) ,

which in local coordinates reads:

(H ◦H)ij = HilmH
lm
j .

Note that the inner product induced by g is to be understood in the sense of tensors (rather
than forms). The analogous bilinear map:

v(− ◦ −) : Ωk(sog(M))× Ωk(sog(M))→ Γ(T ∗M � T ∗M) ,

is defined identically to c(− ◦ −). In particular, in local coordinates we have:

v(R∇ ◦ R∇)ij = (R∇)iklm(R∇) klmj ,

where (R∇)iklm is the local coordinate expression of the curvature tensor of the connection
∇ on Fg(M).

Remark 2.1. For any Riemannian metric g and 3-form H on M we define the connection
∇H on the tangent bundle TM as the unique g-compatible connection on M with totally
antisymmetric torsion given by −H. The metric connection ∇H is explicitly given in terms
of the Levi-Civita connection ∇g associated to g as follows:

∇H = ∇g − 1

2
H] ,

where:

H](v1, v2) = H(v1, v2)
] = (v2yv1yH)] ∈ TM , ∀ v1, v2 ∈ TM ,

and ] : T ∗M → TM is the musical isomorphism induced by g.
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2.2. The equations of motion. We introduce the bosonic sector of Heterotic supergrav-
ity through its equations of motion, which also admit a local lagrangian formulation that
will not be relevant for our purposes.

Definition 2.2. Let κ > 0 be a positive real constant. The bosonic sector of Heterotic
supergravity on (M,P, c) is defined through the following system of partial differential
equations [3, 4, 25]:

Ricg +∇gϕ− 1
4H ◦H − κ c(FA ◦ FA) + κ v(R∇H ◦ R∇H ) = 0 ,

δgH + ιϕH = 0 , dA ∗ FA − ϕ ∧ ∗FA −FA ∧ ∗H = 0 , (2.1)

δgϕ+ |ϕ|2g − |H|2g − κ |FA|2g,c + κ |R∇H |2g,v = 0 ,

together with the Bianchi identity :

dH = κ(c (FA ∧ FA)− v(R∇H ∧R∇H )) , (2.2)

for tuples (g,H, ϕ,A), where g is a Riemannian metric on M , ϕ ∈ Ω1
cl(M) is a closed one

form, H ∈ Ω3(M) is a 3-form and A ∈ AP is a connection on P . Here the Hodge dual ∗ is
defined with respect to g and the induced Riemannian volume form.

The norms | − |g, | − |g,c and | − |g,v are all taken as norms on forms by interpreting
the curvatures FA and R∇H as 2-forms taking values on the adjoint bundle of P and
Fg(M), respectively. This convention is delicate for R∇H ∈ Ω2(sog(M)). In this case,
sog(M) ⊂ End(TM) is naturally isomorphic to Λ2T ∗M and R∇H can be interpreted as
a section of Λ2T ∗M ⊗ Λ2T ∗M . Within this interpretation, the norm induced by v is by
definition the form norm in the first factor Λ2T ∗M and the tensor norm in the second
factor Λ2T ∗M = sog(M). Hence:

|R∇H |2g,v =
1

2
Trg(v(R∇H ◦ R∇H )) ,

and, in local coordinates:

|R∇H |2g,v =
1

2
(R∇H )ijkl(R∇H )ijkl .

Alternatively, and as mentioned earlier, v can be defined as the norm induced by the form
norm on 2-forms and the trace norm for elements in sog(M) ⊂ End(TM).

Remark 2.3. Equations (2.1) and (2.2) are completely and unambiguously determined by
supersymmetry, see for instance [46] and references therein for more details. In particular,
these equations describe the low-energy dynamics of the massless bosonic sector of Heterotic
string theory. The first equation in (2.1) is usually called the Einstein equation, the second
equation in (2.1) is usually called the Maxwell equation, the third equation in (2.1) is
usually called the Yang-Mills equation whereas the last equation in (2.1) is usually called
the dilaton equation. The constant κ is the string slope parameter and has a specific
physical interpretation which is not relevant for our purposes.
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Suppose that M admits spin structures. Given a tuple (g, ϕ,H,A) as introduced above
and a choice of Spin(4) structure Qg, we denote by Sg the bundle of irreducible complex
spinors canonically associated to Qg. This is a rank-four complex vector bundle Sg which
admits a direct sum decomposition:

Sg = S+
g ⊕ S−g , S±g :=

1

2
(Id∓ νg)Sg ,

in terms of the rank-two chiral bundles S+
g and S−g . The symbol νg denotes the Riemannian

volume form on (M, g) acting by Clifford multiplication on Sg.

Definition 2.4. We say that a tuple (g, ϕ,H,A) solving Equation (2.1) is a supersymmetric
solution of Heterotic supergravity if there exists a bundle of irreducible complex spinors
Sg = S+

g ⊕ S−g on (M, g) and a spinor ε ∈ Γ(S+
g ) such that the following equations are

satisfied:

∇−Hε = 0 , (ϕ−H) · ε = 0 , FA · ε = 0 . (2.3)

Equations (2.3) are called the Killing spinor equations of Heterotic supergravity. For ease
of notation we denote with the same symbol the canonical lift of ∇−H (which has torsion
H) to the spinor bundle Sg.

Remark 2.5. The existence of solutions to equations (2.3) may depend on the choice of
spin structure on M , in the sense that a supersymmetric solution on M with respect to a
particular choice of spin structure may be non-supersymmetric with respect to a different
choice of spin structure, see [18] for more details and explicit examples of this situation.

Remark 2.6. By a theorem of S. Ivanov [36], a quintuple (g, ϕ,H,A, ε) satisfying the Killing
spinor equations and the Bianchi identity automatically satisfies all the equations of motion
of Heterotic supergravity if and only if the connection ∇H is an instanton.

The existence of Killing spinor equations compatible with the system (2.1) and (2.2), in
the sense specified in the previous remark, is a consequence of supersymmetry. More pre-
cisely, the Killing spinor equations are obtained by imposing the vanishing of the Heterotic
supersymmetry transformations on a given bosonic background. We refer the reader to
[29, 46] and references therein for more details.

There is a large amount of meat to unpack in the partial differential equations that
define Heterotic supergravity. In order to proceed further it is convenient to consider
a reformulation of Heterotic supergravity that profits from the fact that we restrict the
underlying manifold to be four-dimensional. For every tuple (g, ϕ,H,A), we define α :=
− ∗H ∈ Ω1(M).

Lemma 2.7. A tuple (g, ϕ,H,A) with H = ∗α satisfies the Bianchi identity if and only
if:

1

κ
δgα = |F−A |

2
g,c − |R−∇H |

2
g,v − |F+

A |
2
g,c + |R+

∇H |
2
g,v ,

where:

F+
A :=

1

2
(FA + ∗FA) , F−A :=

1

2
(FA − ∗FA) ,
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respectively denotes the self-dual and anti-self-dual projections of FA, and similarly for
R±∇H .

Proof. Using that F+
A ∧ F

−
A = 0 and R+

∇H ∧R
−
∇H = 0, we compute:

− 1
κδ

gα = 1
κ ∗ dH = ∗c(F+

A ∧ F
+
A ) + ∗c(F−A ∧ F

−
A )− ∗v(R+

∇H ∧R
+
∇H )− ∗v(R−∇H ∧R

−
∇H )

= ∗c(F+
A ∧ ∗F

+
A )− ∗c(F−A ∧ ∗F

−
A )− ∗v(R+

∇H ∧ ∗R
+
∇H ) + ∗v(R−∇H ∧ ∗R

−
∇H )

= |F+
A |2g,c − |F

−
A |2g,c − |R

+
∇H |

2
g,v + |R−∇H |

2
g,v ,

and hence we conclude. �

On the other hand, regarding the Maxwell equation in (2.1) we have:

δgH + ιϕH = ∗dα+ ιϕ ∗ α = ∗(dα− ϕ ∧ α) = 0 ,

whence it is equivalent to dα = ϕ∧α. The previous computation together with Lemma 2.7
proves that four-dimensional Heterotic supergravity, as introduced in Definition 2.2, can
be equivalently written as follows:

Ricg +∇gϕ+ 1
2α⊗ α−

1
2 |α|

2
g g + κ v(R∇α ◦ R∇α) = κ c(FA ◦ FA) , dα = ϕ ∧ α(2.4)

d∗AFA + ιϕFA − ια ∗ FA = 0 , δgϕ+ |ϕ|2g + κ|R∇α |2g,v = |α|2g + κ|FA|2g,c , (2.5)
1
κδ

gα = |F−A |2g,c − |R
−
∇α |2g,v − |F

+
A |2g,c + |R+

∇α |2g,v (2.6)

for tuples (g, ϕ, α,A), where by definition we have set ∇α := ∇H with H = ∗α. To every
solution (g, ϕ, α,A) of Heterotic supergravity we can associate a cohomology class σ in
H1(M,R) defined by σ := [ϕ] ∈ H1(M,R). We will call σ the Lee class of (g, ϕ, α,A).
If a solution exists, the Bianchi identity immediately implies the following equation in
H4(M,R):

p1(P ) = p1(M) ∈ H4(M,R) ,

that is, the first Pontryagin class p1(P ) of P needs to be equal to the first Pontryagin
class p1(M) of M with real coefficients. This gives a simple topological obstruction to the
existence of Heterotic solutions on a given triple (M,P, c).

Remark 2.8. As we will see later, see for instance Section 3, the topology and geometry of
compact four-manifolds admitting solutions of Heterotic supergravity depends crucially on
whether σ = 0 or σ 6= 0.

2.3. Relation to other formulations of Heterotic supergravity. The formulation
of the bosonic sector of Heterotic supergravity that we have considered in order to define
the system (2.1)–(2.2) corresponds to a direct truncation of the Heterotic supergravity
constructed in [3, 4]. Within this formulation of Heterotic supergravity, the higher order
terms of the theory are constructed through contractions of the curvature tensor R∇H
of the metric connection with torsion ∇H , sometimes called the Hull connection [34, 12].
It is however possible to obtain a consistent theory of Heterotic supergravity for which
the higher order terms are constructed through the curvature tensor of a different fixed
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metric connection. The ambiguities associated with this choice of connection have been
extensively discussed in the literature, both from the world-sheet perspective [35, 53], where
the change of such connection can be shown to correspond to a certain field redefinition,
and from the supergravity point of view [12, 34, 41], where the change of such connection
can be proven to correspond to a modification in the regularization scheme of the effective
action. Alternatively, and as explained in the introduction, solutions to the differential
system (2.1)–(2.2) can be understood as self-similar solutions of the renormalization group
flow of the NS-NS sector of the Heterotic world-sheet at first order in the string slope
parameter [43].

3. Heterotic solitons and the moduli of manifolds of type S1 × S3

This section introduces the notion of Heterotic soliton and develops the classification
of NS-NS pairs, introduced below, which will lead us to study the global moduli space of
manifolds of type S1 × S3 as defined by P. Gauduchon in [28].

3.1. Heterotic solitons. Assuming that P is the trivial principal bundle over M , that
is P = M , the triple (M,P, c) reduces to the oriented four-manifold M . In this case,
the configuration space of four-dimensional Heterotic supergravity, which we denote by
Confκ(M), consists of all triples of the form (g, ϕ, α), where g is a Riemannian metric on
M , ϕ is a closed 1-form and α is a 1-form. Four-dimensional Heterotic supergravity reduces
to:

Ricg +∇gϕ+ 1
2α⊗ α−

1
2 |α|

2
g g + κ v(R∇α ◦ R∇α) = 0 , dα = ϕ ∧ α (3.1)

δgϕ+ |ϕ|2g + κ |R∇α |2g,v = |α|2g , δgα = κ (|R+
∇α |2g,v − |R

−
∇α |2g,v) , (3.2)

for (g, ϕ, α) ∈ Confκ(M). In the limit κ→ 0, the previous system recovers the generalized
Ricci soliton system in four dimensions [27] and therefore can be considered as a natural
generalization of the latter in the context of Heterotic string theory corrections to the
effective supergravity action. We introduce now the following definition.

Definition 3.1. The (four-dimensional) Heterotic soliton system consists of equations
(3.1) and (3.2). Solutions of the Heterotic soliton system are (four-dimensional) Heterotic
solitons.

If we further impose α = ϕ the Heterotic soliton system (3.1)–(3.2) further reduces to:

Ricg +∇gϕ+ 1
2ϕ⊗ ϕ−

1
2 |ϕ|

2
g g + κ v(R∇ϕ ◦ R∇ϕ) = 0 , (3.3)

δgϕ+ κ |R−∇ϕ |2g,v = 0 , |R+
∇ϕ |2g,v = 0 , (3.4)

for pairs (g, ϕ) consisting on a Riemannian metric g on M and a closed 1-form ϕ ∈ Ω1
cl(M).

Equations (3.3) and (3.4) define, in physics terminology, the so-called NS-NS supergravity.
Consequently, we will refer to pairs (g, ϕ) solving (3.3) and (3.4) as NS-NS pairs.
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3.2. Compact NS-NS pairs. LetM be an oriented and connected four-manifold equipped
with a NS-NS pair (g, ϕ). Recall that the connection ∇ϕ is an anti-self-dual instanton on
the tangent bundle of M . We will say that a NS-NS pair is complete if (M, g) is a complete
Riemannian four-manifold.

Lemma 3.2. Let (g, ϕ) be a NS-NS pair on M . We have:

v(R∇ϕ ◦ R∇ϕ) =
g

2
|R−∇ϕ |

2
g,v ,

and (g, ϕ) satisfies:

Ricg +∇gϕ+
1

2
ϕ⊗ ϕ− 1

2
(|ϕ|2g + δgϕ)g = 0 , (3.5)

which is equivalent to the Einstein equation (3.3) for (g, ϕ).

Proof. Let Ta denote a local basis of sog(M) satisfying v(Ta, Tb) = δab and write R∇α =∑
aRa∇α ⊗Ta. Identifying each 2-form Ra∇α with a skew-symmetric endomorphism of TM

we have:
v(R∇α ◦ R∇α)(v1, v2) =

∑
a

g(Ra∇α ◦ Ra∇α(v1), v2).

Using that R∇α is anti-self-dual, the same holds for each component Ra∇α , and thus Ra∇α ◦
Ra∇α = 1

2 |R
a
∇α |2IdTM . Hence, we obtain:

v(R∇α ◦ R∇α) =
1

2
|R∇α |2g,vg .

The second part follows directly after substituting the first equation in (3.4) into equation
(3.3), upon use of the previous identity. �

Equation (3.5) can be naturally interpreted in the framework of conformal geometry and
Ricci-flat Weyl structures. Let C be the conformal class of Riemannian metrics on M
containing g, and assume that D is a Weyl structure with Lee form θ with respect to g,
i.e. a torsion-free connection satisfying:

Dg = −2θ ⊗ g .
The Ricci curvature RicD of D reads (cf. [28, §1, Eq. (18)]:

RicD = Ricg − 2(∇gθ − θ ⊗ θ) + (δgθ − 2|θ|2g)g . (3.6)

Using the previous expression, we readily conclude that (3.5) is equivalent to RicD = 0,
where D is the Weyl connection on (M, C) whose Lee form with respect to g is θ := −ϕ

2 .
Consequently (3.5) is conformally invariant, in the sense that, given a NS-NS pair (g, ϕ),
every other metric g̃ = efg in the conformal class of g satisfies:

Ricg̃ +∇g̃ϕ̃+
1

2
ϕ̃⊗ ϕ̃− 1

2
(|ϕ̃|2g̃ + δg̃ϕ̃)g̃ = 0 , (3.7)

for ϕ̃ := ϕ+ df . Recall that a Weyl structure D whose Ricci tensor RicD vanishes is said
to be Ricci-flat. By taking the skew-symmetric part in (3.6), we see that every Ricci-flat
Weyl structure has closed Lee form with respect to any metric in the conformal class.
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Lemma 3.3. Let (C, D) be a Ricci-flat Weyl structure on a compact four-manifold M .
Then the Lee-form θ associated to the Gauduchon metric of C is parallel.

Proof. Let (g, θ) be a Gauduchon representative of (C, D), that is, θ is coclosed with
respect to g. Hence, the pair (g, θ) satisfies:

Ricg − 2(∇gθ − θ ⊗ θ)− 2|θ|2gg = 0 .

Taking the trace in this equation and using the fact that θ is coclosed, we obtain that the
scalar curvature sg of g satisfies sg = 6|θ|2g. Since ∇gθ is orthogonal to g at any point of
M (θ being coclosed), and

〈∇gθ, θ ⊗ θ〉g =
1

2
〈θ,d|θ|2g〉g ,

we can compute the square norm of ∇gθ with respect to g as follows:

|∇gθ|2g = 〈∇gθ, 1

2
Ricg + θ ⊗ θ − |θ|2gg〉g = 〈∇gθ, 1

2
Ricg〉g +

1

2
〈θ,d|θ|2g〉g .

Using the contracted Bianchi identity (∇g)∗Ricg = −1
2dsg = −3d|θ|2g, integrating the above

relation over M , and using the divergence theorem then yields:∫
M
|∇gθ|2gνg = −3

2

∫
M
〈θ,d|θ|2g〉gνg +

1

2

∫
M
〈θ,d|θ|2g〉gνg = −

∫
M

(δgθ)|θ|2gνg = 0 ,

where νg denotes the Riemannian volume volume form on (M, g). Hence ∇gθ = 0. �

Proposition 3.4. Assume M is compact and admits a NS-NS pair (g, ϕ) ∈ Solκ(M), with
associated Lee class σ ∈ H1(M,R).

(1) If σ = [ϕ] = 0 ∈ H1(M,R) then (M, g) is flat and therefore admits a finite covering
conformal to a flat torus.

(2) If 0 6= σ = [ϕ] ∈ H1(M,R), then b1(M) = 1, and the universal Riemannian cover of
(M, g) is isometric to R×S3 equipped with the direct product of the standard metric of
R and the round metric on S3 of sectional curvature 1

4 |ϕ|
2
g, where |ϕ|g is the point-wise

constant norm of ϕ.

Proof. If (g, ϕ) is a NS-NS pair with σ = 0 then ϕ is exact and parallel whence ϕ = 0 and
(M, g) is a flat compact four-manifold, thus finitely covered by a torus. Assume now that
(g, ϕ) is a solution with σ 6= 0. Lemma 3.3 implies that ϕ is a non-zero parallel 1-form on

M . Therefore, by the de Rham theorem the universal Riemannian cover (M̂, ĝ) of (M, g)
is isometric to a Riemannian product (R×N, dt2 + gN ), where (N, gN ) is a complete and
simply connected Riemannian three-manifold, such that ϕ is a constant multiple of dt. The
Einstein equation for (g, ϕ) implies that gN is Einstein with positive sectional curvature
1
4 |ϕ|

2
g. Therefore, (N, gN ) is isometric to the round sphere S3 of constant sectional curvature

1
4 |ϕ|

2
g. A direct computation shows that the metric connection on (R × N, ĝ = dt2 + gN )

with torsion |ϕ|g∗ĝdt is flat and therefore both equations in (3.4) are automatically satisfied
and we conclude. �
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Reference [28] gives, using results of [8, 9], a detailed account of compact Riemannian
four-manifolds covered by the Riemannian product R × S3. These manifolds were called
in Op. Cit. manifolds of type S1 × S3. Manifolds of type S1 × S3 admit a very explicit
description, which we will review in the following. This description will be important in
order to construct globally the moduli space of NS-NS pairs.

3.3. Moduli space of manifolds of type S1 × S3. In this Section we construct the
global moduli space of NS-NS pairs with non-vanishing Lee class. This is possible due to
the fact that, as described in Proposition 3.4, NS-NS pairs with non-trivial Lee class yield
Ricci-flat Weyl structures on M . The deformation problem (around an Einstein metric) of
Einstein-Weyl structures with Gauduchon constant one has been studied in [47]. However,
the analysis of Op. Cit. does not cover the case we consider here, since the Weyl structure
associated to a NS-NS pair (g, ϕ) on M has zero Gauduchon constant and furthermore such
M , which corresponds to a manifold of type S1 × S3, does not admit positive curvature
Einstein metrics. Concerning the case of vanishing Gauduchon constant, [47, Remark 7]
states that the moduli space of manifolds of type S1×S3 is one-dimensional. We will show
in Theorem 3.10 that this is not correct, see also Corollary 3.13.

Definition 3.5. [28] A manifold of type S1×S3 is a connected and oriented Riemannian
manifold locally isometric to R × S3, where R is equipped with its canonical metric and
S3 is equipped with its round metric of sectional curvature 1

4 .

Remark 3.6. Reference [28] introduces manifolds of type S1×S3 by requiring the metric on
S3 to have sectional curvature 1. Our choice for the sectional curvature to be equal to 1

4 in
the above definition is motivated by the the fact that in this way NS-NS pairs correspond
directly to manifolds of type S1 × S3, without the need of rescaling the metric.

From its very definition it follows that the universal Riemannian cover of a manifold of
type S1 × S3 is R × S3, which we consider to be oriented and time oriented, the latter
meaning that an orientation on the factor R has been fixed. Manifolds of type S1×S3 are
determined by the embedding, modulo conjugation, of their fundamental group Γ into the
orientation-preserving isometry group Iso(R × S3) of R × S3. Since Γ acts without fixed
points, we actually have Γ ⊂ Iso(R)× Iso(S3), that is, elements of Γ act by translations on
R preserving the canonical 1-form on R as well as the orientation on S3. Every manifold
(M, g) of type S1 × S3 can be written as a quotient:

(M, g) = (R× S3)/Γ ,

where Γ ⊂ Iso(R) × Iso(S3) acts freely and properly on R × S3 through the action of the
isometry group of the latter. Elements of Iso(R) × Iso(S3) preserve the canonical unit
norm vector field on R. Consequently, every manifold of type S1 × S3 is equipped with a
canonical unit norm parallel vector field, whose musical dual corresponds with ϕ, modulo
a multiplicative positive constant. Alternatively, every manifold of type S1 × S3 can be
obtained from a direct product [0, a] × Σ, where a > 0 is a real constant and Σ is a
compact Riemannian three-manifold of constant sectional curvature equal to 1

4 , through
the suspension of Σ over [0, a] by an isometry ψ of Σ. Therefore, a manifold of type
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S1 × S3 is the total space of a fibration over the circle of length a with fiber Σ which
comes equipped with a connection of holonomy generated by ψ. Each fiber is isometric to
a quotient Σ = S3/Γ0, where Γ0 is a finite subgroup Γ0 ⊂ Iso(S3) = SO(4) acting freely
on S3 as an embedded subgroup of Γ which preserves each sphere {t} × S3 in R × S3.
Therefore, the group of isometries Iso(Σ) is identified canonically with N(Γ0)/Γ0, where
N(Γ0) is the normalizer of Γ0 in SO(4). Consequently, the fundamental group of a manifold
of type S1 × S3 is a semi-direct product of Γ0 with the infinite cyclic group Z which is
realized as a subgroup of R× SO(4) as follows:

n 7→ (na, [ψ]n) , γ 7→ (0, γ) , ∀n ∈ Z , ∀ γ ∈ Γ0 , (3.8)

where ψ ∈ Iso(Σ). In particular, given a closed three manifold Σ = S3/Γ0, a pair (λ, ψ)
consisting in a positive real number λ and an isometry ψ of Σ uniquely determines a
manifold of type S1 × S3 as the quotient:

(M, g) = (R× Σ)/〈(λ, ψ)〉 , (3.9)

where ψ is considered as an element of Iso(Σ) = N(Γ0)/Γ0 and 〈(λ, ψ)〉 is the infinite cyclic
group generated by the isometry (λ, ψ) of R × Σ acting as the translation by λ on R and
ψ on Σ.

Definition 3.7. A manifold of type S1 × S3 is of class Σ with respect to (λ, ψ) if it is
isometric to a quotient of the form (3.9).

Lemma 3.8. Let F : (M1, g1)→ (M2, g2) be an isometry between manifolds of type S1×S3

and of class Σ with respect to (λi, ψi), with λi ∈ R+ and ψi ∈ Iso(Σ). Then, λ1 = λ2 and:

f ◦ ψ1 ◦ f−1 = ψ2 ,

for an isometry f ∈ Iso(Σ).

Remark 3.9. We recall that, by definition, F̂ : R × Σ → R × Σ is a covering lift of
F : (M1, g1) → (M2, g2) if it fits into the following commutative diagram equivariantly
with respect to deck transformations:

R× Σ R× Σ

(M1, g1) (M2, g2)

p1

F̂ = F̂0 × f

F

p2

where p1 and p2 denote the cover projections and R × Σ is endowed with the product
metric. In particular, F̂ ∈ Iso(R× Σ) is an isometry and F̂0 acts by translations.

Proof. Since p1 : R×Σ→ (M1, g1) is a covering map and F is a diffeomorphism, the map:

F ◦ p1 : R× Σ→ (M2, g2) ,
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is also a covering map. Using the fact that covering maps induce injective morphisms at the
level of fundamental groups, it follows that (F ◦ p1)∗(π1(Σ)) ⊂ π1(M2) and (p2)∗(π1(Σ)) ⊂
π1(M2) are subgroups of π1(M2) abstractly isomorphic to π1(Σ). Since both (F◦p1)∗(π1(Σ))
and (p2)∗(π1(Σ)) contain all torsion elements of π1(M2) and are normal subgroups of
π1(M2), we conclude:

(F ◦ p1)∗(π1(Σ)) = (p2)∗(π1(Σ)) ,

in π1(M2). Therefore, standard covering theory implies that F ◦ p1 and p2 are isomorphic
covering maps (equivariantly with respect to deck transformations). Hence, there exists a

diffeomorphism F̂ : R× Σ → R× Σ fitting equivariantly in the commutative diagram 3.9.
This map can be shown to be an isometry with respect to the product metric on R × Σ.
The fact that F̂ is an isometry implies the decomposition F̂ = F̂0 × f where F̂0 acts by
constant translations on R. The equivariance of F̂ implies in turn:

F̂ ((r, s) · (λ1, ψ1)) = F̂ ((r, s)) · (λ2, ψ2)
n ,

where n is a natural number. The fact that F̂ is a diffeomorphism together with the fact
that the fibers of pa are torsors over 〈λa, ψa〉, a = 1, 2, implies that n = 1, since otherwise

F̂ would not be surjective. Therefore:

F̂ ◦ (λ1, ψ1) ◦ F̂−1 = (λ2, ψ2) ,

implying λ1 = λ2, as well as:

f ◦ ψ1 ◦ f−1 = ψ2 .

Since the lift F̂ we have considered is unique modulo conjugation by isometries in Iso(R)×
Iso(Σ), we conclude. �

Fix now an oriented and closed Riemannian three-manifold of the form Σ = S3/Γ0 and
define the set:

I(Σ) := Iso(Σ)/Ad(Iso(Σ)) .

to be the set of orbits of the adjoint action Ad: Iso(Σ) → Aut(Iso(Σ)), that is, the set of
conjugacy classes of Iso(Σ). Furthermore, denote by M(Σ) the set of manifolds of type S1×
S3 and of class Σ modulo the natural action of the orientation-preserving diffeomorphism
group via pull-back.

Theorem 3.10. There is a canonical bijection of sets:

R+ × I(Σ)
'−→M(Σ) .

Proof. To every element (λ, [ψ]) ∈ R+ ×I(Σ) we associate the element in M(Σ) given by
the isomorphism class of manifolds of type S1 × S3 defined by the following manifold of
type S1 × S3:

(M, g) = (R× Σ)/〈(λ, ψ)〉 ,
where ψ is any representative of [ψ] ∈ I(Σ). Changing the representative yields an isometric
manifold of type S1 × S3 and class Σ, whence the assignment is well defined. Conversely,
Lemma 3.8 implies that to any isomorphism class in M(Σ) we can associate a unique
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element in R+×I(Σ) and that this assignment is inverse to the previous construction and
thus we conclude. �

The set of conjugacy classes of a compact Lie group admits a very explicit description as
a polytope in the Cartan algebra of Iso(Σ). Fix a maximal torus T ⊂ Iso(Σ), with Lie
algebra t. We denote by:

W (Σ, T ) :=
N(T )

T
,

the Weyl group of Iso(Σ), where N(T ) denotes the normalizer of T in Iso(Σ). The expo-
nential map Exp: t→ T gives a surjective map onto T and its kernel is a lattice in t which
allows to recover T as:

T =
t

ker(Exp)
.

Every conjugacy class in Iso(Σ) intersects T in at least one point [33], unique modulo the
natural adjoint action of the Weyl group W on T . This fact can be used to prove that we
have a bijection:

I(Σ) =
T

W (Σ, T )
=

t

W (Σ, T ) n ker(Exp)
,

which gives an explicit description of I(Σ) in terms of the fundamental region of the action
of W (Σ, T ) n ker(Exp) on t.

Remark 3.11. The isometry groups of compact elliptic three-manifolds Σ = S3/Γ0 have
been classified in [40]. The Weyl group of most of the subgroups of SO(4) appearing as
isometry groups of elliptic three-manifolds can be directly computed, a fact that allows for
a direct construction of the corresponding moduli space of manifolds of type S1 × S3.

Let rk(Iso(Σ)) denote the rank of Iso(Σ), that is, the dimension of any of its maximal torus
subgroups. As a direct consequence of Theorem 3.10 we obtain the following result.

Corollary 3.12. The moduli space of manifolds of type S1 × S3 of class Σ has dimension
1 + rk(Iso(Σ)).

Returning to the problem of classifying NS-NS pairs, the previous discussion implies the
following classification result.

Corollary 3.13. The moduli space MNS(Σ) of NS-NS pairs on a manifold of the form
(3.9) admits a finite covering given by R2 × T , where T is a maximal torus of Iso(Σ). In
particular dim(MNS(Σ)) = 2 + rk(Iso(Σ)).

Proof. Every NS-NS pair (g, ϕ) defines a manifold of type S1×S3 given by (|ϕ|2g g, |ϕ|−2g ϕ).

Indeed, note that |ϕ|−2g ϕ has norm one with respect to the metric |ϕ|2g g and its dual defines

the canonical unit-norm parallel vector field that every manifold of type S1 × S3 carries.
Furthermore, it can be seen that the restriction of |ϕ|2g g to the kernel of |ϕ|−2g ϕ precisely

yields a metric of sectional curvature 1
4 (see Definition 3.5) by following the same steps as

in the proof of Proposition 3.4. Hence, the assignment:

(g, ϕ) 7→ (|ϕ|2g g, |ϕ|−2g ϕ, |ϕ|g) ,
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gives the desired bijection upon use of Theorem 3.10. �

Example 3.14. For Σ = S3 we have Iso(S3) = SO(4) and the space of conjugacy classes
I(S3) = T/W (S3, T ) admits a very explicit description. A maximal torus of SO(4) can be
conjugated to a group of matrices of the form:

cos(x) sin(x) 0 0
− sin(x) cos(x) 0 0

0 0 cos(y) sin(y)
0 0 − sin(y) cos(y)


where x, y ∈ [0, 2π]. Hence, T is a two torus and thus dim(M(S3)) = 3. Furthermore, the
Weyl group can be shown to be the group of even signed permutations of two elements.

3.4. Infinitesimal deformations of NS-NS pairs. We consider now the infinitesimal
deformation problem of NS-NS structures on a manifold M of type S1×S3 around a fixed
NS-NS pair (g, ϕ) modulo the action of the diffeomorphism group of M , with the goal of
obtaining the infinitesimal counterpart of the results obtained in the previous Section. As
we will see momentarily, the differential operator controlling the infinitesimal deformations
of a given NS-NS pair has a nice geometric interpretation when restricted to an appropriate
submanifold of M . Let M be a compact four-manifold and let ω be a fixed volume form on
M . We denote by Metω(M) ⊂ Γ(T ∗M�2) the space of Riemannian metrics on M whose
associated Riemannian volume form νg is equal to ω. Using the equations defining the
notion of NS-NS pair we introduce the following map:

E = (E1, E2, E3, E4) : Met(M)× Ω1(M) → Γ(T ∗M�2)× Γ(T ∗M�2)× Ω2(M)× C∞(M) ,

(g, ϕ) 7→ (Ricg +
1

2
ϕ⊗ ϕ− 1

2
|ϕ|2g g,Lϕ]g,dϕ, |ϕ|2g − 1) ,

where Lϕ] denotes Lie derivative along ϕ], the metric dual of ϕ. Using the fact that

∇gϕ = 0 if and only if Lϕ]g = 0 and dϕ = 0, it follows that the preimage E−1(0) of
0 by E is by construction the set of all NS-NS pairs (g, ϕ) on M with unit norm ϕ and
inducing ω as Riemannian volume form of g. We assume that both Metω(M) and Ω1(M)
are completed in the Sobolev norm Hs = L2

s with s large enough so Metω(M) × Ω1(M)
becomes a Hilbert manifold. The operator E admits a canonical extension to the Sobolev
completion of Metω(M)×Ω1(M), which we denote for ease of notation by the same symbol.
The tangent space of Metω(M)× Ω1(M) at (g, ϕ) is given by:

T(g,ϕ)(Metω(M)× Ω1(M)) =
{

(τ, η) ∈ Γ(T ∗M�2)× Ω1(M) | Trg(τ) = 0
}
,

which again is assumed to be completed in the appropriate Sobolev norm. The trace-
less condition appearing in the previous equation occurs due to the fact that Metω(M) is
restricted to those Riemannian metrics inducing Riemannian volume forms equal to ω. In
the standard deformation problem of Einstein metrics such condition follows automatically
simply from restricting to metrics of unit volume [6]. For every Riemannian metric g on
M , we introduce the linear map of vector bundles:

og : S2T ∗M → S2T ∗M , τ 7→ og(τ) ,
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where, given a local orthonormal frame {ei}, we define:

og(τ)(v1, v2) =
∑
i

τ(Rgv1,eiv2, ei) ,

for every v1, v2 ∈ TM . With this definition, the Lichnerowicz Laplacian restricted to
symmetric (2, 0) tensors is given by [6]:

∆g
Lτ = (∇g)∗∇gτ + Ricg ◦g τ + τ ◦g Ricg − 2 og(τ) ,

where (∇g)∗ is the adjoint of the Levi-Civita connection acting on (2, 0) tensors and the
contraction ◦g is defined analogously to its counterpart for forms as introduced in Section
2. In particular:

(Ricg ◦g τ)(v1, v2) = g(Ricg(v1), τ(v2)) , v1, v2 ∈ X(M) ,

and similarly for τ ◦g Ricg. Note that the 1-form ϕ of a NS-NS pair (g, ϕ) has constant
norm, so for definiteness we will assume in the following that such ϕ has in fact unit norm.

Lemma 3.15. Let (g, ϕ) be a NS-NS pair. The differential of E at (g, ϕ) reads:

d(g,ϕ)E1(τ, η) = 1
2∆g

L(τ)− 2δ∗gδgτ + 1
2(τ ⊗ ϕ+ ϕ⊗ τ)− 1

2τ , d(g,ϕ)E3(τ, η) = dη ,

d(g,ϕ)E2(τ, η) = Lη]g − L(ϕyτ)]g + Lϕ]τ , d(g,ϕ)E4(τ, η) = 2g(η, ϕ)− τ(ϕ,ϕ) ,

where δgτ denotes the divergence of τ and δ∗g denotes the formal adjoint of δg.

Proof. By definition, the (Gateaux) differential of the maps Ea, a = 1, . . . 4, at the point
(g, ϕ) and evaluated on (τ, η) ∈ T(g,ϕ)(Metω(M)× Ω1(M)) is given by:

d(g,ϕ)Ea(τ, η) = lim
t→0

Ea(g + t τ, ϕ+ t η)− Ea(g, ϕ)

t
.

On the other hand, recall that the differential of the map (g, ϕ) 7→ ϕ]g at (g, ϕ) along (τ, η)
is given by η]g − (ϕ]gyτ)]g . This immediately implies:

d(g,ϕ)E4(τ, η) = 2g(η, ϕ)− τ(ϕ,ϕ) .

Furthermore, a direct computation, using that ϕ has unit norm together with the previous
equation, shows that:

d(g,ϕ)E1(τ, η) = dgRic(τ, η) +
1

2
(τ ⊗ ϕ+ ϕ⊗ τ)− 1

2
τ ,

where dgRic denotes the differential of the Ricci map Ric : Metω(M)→ Γ(T ∗M�2). Com-
puting this differential explicitly, see [6, Equation (1.180a)] gives the result in the statement
upon use of Trg(τ) = 0. Similarly, computing for d(g,ϕ)E2(τ, η) we obtain:

d(g,ϕ)E2(τ, η) = Lη]g − L(ϕ]yτ)]g + Lϕ]τ ,

where we have used, as remarked above, that the differential of the map (g, ϕ) 7→ ϕ]g is
given by η] − (ϕ]yτ)]. The differential of E3 : Metω(M) × Ω1(M) → Ω2(M) follows easily
since E3 does not depend on g. �
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The kernel of d(g,ϕ)E : T(g,ϕ)(Metω(M) × Ω1(M)) → Γ(T ∗M�2) × Γ(T ∗M�2) × Ω2(M) ×
C∞(M) describes the space of infinitesimal deformations of (g, ϕ) that preserve the norm of
ϕ and the Riemannian volume form induced by g. These conditions eliminate the spurious
deformations given by constant rescalings of ϕ or homotheties of the metric. The group
of diffeomorphisms Diffω(M) that preserves the fixed volume form ω, again completed
in the Sobolev norm Hs, acts naturally on Metω(M) × Ω1(M) through pull-back. Recall
that the tangent space of Diffω(M) at the identity corresponds to the vector fields on
M that preserve ω. This action preserves E−1(0) and hence maps solutions to solutions.
The moduli space of NS-NS pairs (g, ϕ) with constant norm ϕ and associated Riemannian
volume form equal to ω is defined as:

M0
ω(M) := E−1(0)/Diffω(M) ,

endowed with the quotient topology. Define:

O(g,ϕ) := {(u∗g, u∗ϕ) | u ∈ Diffω(M)} ,

to be the orbit of the diffeomorphism group passing through (g, ϕ). The tangent space to
the orbit at (g, ϕ) ∈ O(g,ϕ) can be computed to be:

T(g,ϕ)O(g,ϕ) = {(Lvg,d(ιvϕ)) , v ∈ X(M) | Lvω = 0} ,

where L denotes the Lie derivative.

Lemma 3.16. The vector subspace T(g,ϕ)O(g,ϕ) ⊂ T(g,ϕ)(Metω(M) × Ω1(M)) is closed in

the Hilbert space T(g,ϕ)(Metω(M)× Ω1(M)).

Proof. Follows from the fact that the differential operator X(M) 3 v 7→ (Lvg,dιvϕ) has
injective symbol. �

By the previous lemma, the L2 orthogonal complement of T(g,ϕ)O(g,ϕ) is a Hilbert subspace

of T(g,ϕ)(Metω(M)× Ω1(M)), which is given by:

T(g,ϕ)O⊥(g,ϕ) =
{

(τ, η) ∈ T(g,ϕ)O(g,ϕ) | (∇g)∗τ = 0 , δgη = 0
}
.

By an extension of the celebrated Ebin’s slice theorem [13], for every pair (g, ϕ) the action
of Diffω(M) on Metω(M) × Ω1(M) admits a slice S(g,ϕ) whose tangent space at (g, ϕ) is

precisely T(g,ϕ)O⊥(g,ϕ). Therefore, by applying standard Kuranishi theory for differential-

geometric moduli spaces, the virtual tangent space of M0
ω(M) at the equivalence class [g, ϕ]

defined by (g, ϕ) ∈ E−1(0) in M0
ω(M), is given by:

T[g,ϕ]M
0
ω(M) := Ker(d(g,ϕ)E) ∩Ker((∇g)∗ ⊕ δg) .

Using the terminology introduced by Koiso [37, 38] in the study of deformations of Einstein
metrics and Yang-Mills connections, we will call elements of T[g,ϕ]M

0
ω(M) essential defor-

mations of (g, ϕ). Roughly speaking, essential deformations are infinitesimal deformations
of (g, ϕ) that cannot be eliminated via the infinitesimal action of the diffeomorphism group.
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Lemma 3.17. The pair (τ, η) ∈ Γ(T ∗M�2) × Ω1(M) is an essential deformation of the
NS-NS pair (g, ϕ) if and only if η = λϕ for a constant λ ∈ R and the following equations
are satisfied:

∆g
Lτ + 2λϕ⊗ ϕ− τ = 0 , L(ϕ]yτ)]g = Lϕ]τ , (∇g)∗τ = 0 , Trg(τ) = 0 . (3.10)

Proof. A pair (τ, η) ∈ Γ(T ∗M�2)× Ω1(M) is an essential deformation if and only if:

d(g,ϕ)E(τ, η) = 0 , (∇g)∗τ = 0 , δgη = 0 , Trg(τ) = 0 .

By Lemma 3.15, we have d(g,ϕ)E3(τ, η) = dη hence if (τ, η) is an essential deformation then

η is closed and co-closed whence harmonic. Since b1(M) = 1 and ϕ is parallel, in particular
harmonic, we conclude that η = λϕ for a real constant λ ∈ R. Plugging η = λϕ into the
explicit expression of d(g,ϕ)E(τ, η) = 0, given in Lemma 3.15, we obtain equations (3.10)
and hence we conclude. �

Since, by assumption, M admits NS-NS pairs (g, ϕ) with non-vanishing Lee class [ϕ],
Proposition 3.4 implies that (M, g) is a manifold of type S1 × S3 and, consequently, it is
a fibre bundle over S1 with fiber Σ = S3/Γ, Γ ⊂ SO(4), as described in Section 3. For
simplicity in the exposition, we will assume that (M, g) is isometric to:

(M, g) = (S1 × Σ, ϕ⊗ ϕ+ h) ,

where h is a Riemannian metric on Σ. Analogous results can be obtained in the general
case by using the integrable distribution defined by the kernel of ϕ. Given τ ∈ Γ(T ∗M�2)
we decompose it according to the orthogonal decomposition defined by g, that is:

τ = fϕ⊗ ϕ+ ϕ� β + τ⊥ ,

where the superscript ⊥ denotes projection along Σ and β is a 1-form along Σ.

Proposition 3.18. The pair (τ = fϕ ⊗ ϕ + ϕ � β + τ⊥, η = λϕ) ∈ Γ(T ∗M�2) × Ω1(M)
is an essential deformation of the NS-NS pair (g, ϕ) only if:

λ = 0 , f = 0 , ∇g
ϕ]
β = 0 , τ⊥ = 0 , Lβ]h = 0 .

Proof. A pair (τ, η) is an essential deformation if and only if conditions (3.10) hold. Given
the decomposition τ = fϕ⊗ϕ+ϕ�β+ τ⊥, we impose first the slice condition (∇g)∗τ = 0.
We obtain:

(∇g)∗τ = −df(ϕ])ϕ−∇g
ϕ]
β + ϕ δgβ + (∇h)∗τ⊥ = 0 ,

hence df(ϕ]) = δgβ and ∇gϕβ = (∇h)∗τ⊥. On the other hand, equation L(ϕ]yτ)]g = Lϕ]τ
reduces to:

df = 0 , ϕ�∇g
ϕ]
β + Lϕ]τ⊥ = Lβ]h ,

where we have used that ϕ]yτ = fϕ+β. Hence, isolating by type we obtain ∇g
ϕ]
β = 0 and

Lϕ]τ⊥ = Lβ]h. Note that since f is constant we have δgβ = 0. We decompose now the first
equation in (3.10). For this, we first compute:

Ricg ◦g τ + τ ◦g Ricg =
1

2
(h ◦ τ + τ ◦ h) =

1

2
ϕ� β + τ⊥ ,
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as well as:

(∇g)∗∇gτ = (∇g)∗∇g(fϕ⊗ ϕ+ ϕ� β + τ⊥) = ϕ� (∇g)∗∇gβ + (∇g)∗∇gτ⊥ ,
which in turn implies:

∆g
Lτ = ϕ� (∇g)∗∇gβ + (∇g)∗∇gτ⊥ + 1

2ϕ� β + τ⊥ − 2oh(τ⊥)

= ∆h
Lτ
⊥ + ϕ� (12β + (∇g)∗∇gβ) .

Hence, the first equation in (3.10) is equivalent to:

∆h
Lτ
⊥ + ϕ� ((∇g)∗∇gβ − 1

2
β) + 2λϕ⊗ ϕ− fϕ⊗ ϕ− τ⊥ = 0 .

Solving by type, we obtain:

∆h
Lτ
⊥ = τ⊥ , (∇g)∗∇gβ =

1

2
β , f = 2λ .

Solutions to the first equation above correspond to infinitesimal essential Einstein defor-
mations of (Σ, h), which by [39] are necessarily trivial since (Σ, h) is covered by the round
sphere. Hence τ⊥ = 0. This in turn implies Lβ]h = 0. The second equation above follows

automatically from β] being a Killing vector field on an Einstein three-manifold with Ein-
stein constant 1/2. Moreover, the third equation above uniquely determines f in terms of
λ. Putting all together, we obtain:

τ = 2λϕ⊗ ϕ+ ϕ� β .
With these provisos in mind, equation Trg(τ) = 0 is equivalent to λ = 0 whence:

τ = ϕ� β .
Conversely, such τ solves all equations in (3.10) with η = 0 and hence we conclude. �

The previous proposition shows that the 1-form β descends to a 1-form on Σ whose metric
dual is a Killing vector field of h. Denote by K(Σ, h) the vector space of Killing vector
fields on (Σ, h).

Theorem 3.19. There exists a canonical bijection:

T[g,ϕ]M
0
ω(M)→ K(Σ, h) , (τ, 0) 7→ β] ,

where, for every (τ, 0) ∈ T[g,ϕ]M(M) we write uniquely τ = ϕ� β.

Proof. By Lemma 3.17 and Proposition 3.18 a pair (τ, η) is an essential deformation, that
is, belongs to T[g,ϕ]M

0
ω(M) if and only if η = 0 and τ = ϕ⊗ β for a Killing vector field β].

This implies the statement of the theorem. �

Taking (Σ, h) to be the round sphere and assuming M = S1×S3 we have dim(K(Σ, h)) = 6
and thus dim(T[g,ϕ]M

0
ω(S1×S3)) = 6. On the other hand, in Section 3.3 we constructed the

full moduli space of manifolds of type S1×S3 and in the case in which (Σ, h) is the round
sphere we proved that it was two-dimensional after removing the spurious deformation
consisting in rescalings of ϕ. Since dim(T[g,ϕ]M

0
ω(S1×S3)) = 6, we conclude that the space
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of essential deformations is obstructed and there exist four directions in T[g,ϕ]M
0
ω(S1×S3)

which cannot be integrated and therefore do not correspond to honest deformations.

4. Heterotic solitons with parallel torsion

In this section we restrict our attention to Heterotic solitons with constant dilaton and
parallel non-vanishing torsion, that is, Heterotic solitons that satisfy ϕ = 0 and ∇gα = 0
with α 6= 0. These Heterotic solitons with constant dilaton, in the specific case of four
dimensions, can never be supersymmetric since the second equation in (2.3) is equivalent
to α = ϕ. Therefore, this class of Heterotic solitons provides a convenient framework to
explore non-supersymmetric solutions of Heterotic supergravity.

4.1. Null Heterotic solitons. Assuming ϕ = 0, the Heterotic soliton system (3.1)–(3.2)
reduces to the following system of equations:

Ricg + 1
2α⊗ α−

1
2 |α|

2
g g + κ v(R∇α ◦ R∇α) = 0 , (4.1)

dα = 0 , δgα = κ(|R+
∇α |2g,v − |R

−
∇α |2g,v) , κ|R∇α |2g,v = |α|2g , (4.2)

for pairs (g, α), where g is a Riemannian metric on M and α ∈ Ω1(M) is a 1-form.

Definition 4.1. The null Heterotic soliton system consists of equations (4.1) and (4.2).
Solutions of the null Heterotic soliton system are null Heterotic solitons.

In the following we will study a particular case of the null Heterotic soliton system that is
obtained by imposing α to be parallel. Assuming that ∇gα = 0, the null Heterotic soliton
system further reduces to:

Ricg + 1
2α⊗ α−

1
2 |α|

2
g g + κ v(R∇α ◦ R∇α) = 0 , (4.3)

|R+
∇α |2g,v = |R−∇α |2g,v , κ|R∇α |2g,v = |α|2g , (4.4)

Throughout this section, Confκ(M) will denote the set of pairs (g, α) as described above,
with α being a non-vanishing 1-form satisfying ∇gα = 0, and Solκ(M) will denote the
space of null Heterotic solitons (g, α) with parallel 1-form α. Also, we shall denote a vector
and its metric dual by the same symbol. A direct computation proves the following lemma.

Lemma 4.2. Let α be a parallel 1-form. The following formulas hold:

R∇αv1,v2 = Rgv1,v2 + 1
4(|α|2gv1 ∧ v2 + α(v2)α ∧ v1 − α(v1)α ∧ v2) ∈ Ω2(M) , ∀ v1, v2 ∈ TM ,

v(R∇α ◦ R∇α) = v(Rg ◦ Rg)− |α|2gRicg +
|α|2g
4 (|α|2gg − α⊗ α) ,

where the curvature tensor is defined by R∇αv1,v2 := ∇αv1∇
α
v2 −∇

α
v2∇

α
v1 −∇

α
[v1,v2]

.

Exploiting the fact that α is parallel, equations (4.3) and (4.4) can be further simplified.

Lemma 4.3. Let (g, α) ∈ Confκ(M). Then:

|R+
∇α |

2
g,v = |R−∇α |

2
g,v ,

whence the first equation in (4.4) automatically holds for every (g, α) ∈ Confκ(M).
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Proof. The equality |R+
∇α |2g,v = |R−∇α |2g,v holds if and only if:

〈R∇α , ∗R∇α〉g = 0 .

The fact that α is parallel implies αyR∇α = 0. Consequently, one can write:

∗R∇α = α ∧ r ,

for a certain sog(M)-valued 1-form r ∈ Ω1(M, sog(M)). Therefore:

〈R∇α , ∗R∇α〉g = 〈R∇α , α ∧ r〉g = 〈αyR∇α , r〉g = 0 ,

and we conclude. �

Remark 4.4. In the following we will use on several occasions the following identity:

Rhv1,v2 =
sh

2
v1 ∧ v2 + v2 ∧ Rich(v1) + Rich(v2) ∧ v1 , v1, v2 ∈ TN ,

which yields the Riemann curvature tensor of a Riemannian metric h on a three-dimensional
manifold N in terms of its Ricci curvature Rich and its scalar curvature sh. In particular,
using the previous formula it is easy to show that the contraction v(Rh ◦ Rh), defined
exactly as we did in four dimensions in Section 2, is given by:

v(Rh ◦ Rh) = −2 Rich ◦ Rich + 2shRich + (2|Rich|2h − (sh)2)h . (4.5)

where:

Rich ◦ Rich(v1, v2) = h(Rich(v1),Rich(v2)) , v1, v2 ∈ TN .

In particular, the norm of Rh is given by:

|Rh|2h =
1

2
Trh(v(Rh ◦ Rh)) = 2|Rich|2h −

1

2
(sh)2 .

Given a pair (g, α) ∈ Confκ(M) we denote by H ⊂ TM the rank-three distribution de-
fined by the kernel of α, which is integrable since the latter is parallel. We denote the
corresponding foliation by Fα ⊂M .

Lemma 4.5. Let (g, α) ∈ Confκ(M) be complete. Then, (g, α) ∈ Solκ(M) if and only
if the leaves of Fα endowed with the metric induced by g are all isometric to a complete
Riemannian three-manifold (Σ, h) satisfying:

−2κRich ◦ Rich + (1− 2κ|α|2g)Rich +
|α|2g
2 (1− κ |α|2g)h = 0 , sh = −1

2 |α|
2
g , (4.6)

for a certain κ > 0. In particular, |Rich|2h =
|α|2g
2κ (1− κ|α|2g

2 ).

Proof. If g is complete then standard results in foliation theory imply that Fα has no holo-
nomy and its leaves are all diffeomorphic. Furthermore, since α is parallel it is in particular
Killing and its flow preserves the metric, whence all leaves are not only diffeomorphic but
isometric to a Riemannian three-manifold (Σ, h) when equipped with the metric induced
by g. Using the fact that Equation (4.3) evaluated in α is automatically satisfied, it follows
that it is equivalent to its restriction to H⊗H. Since all the leaves are isometric, Equation
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(4.3) is satisfied if and only if its restriction to any leaf is satisfied. Denoting this leaf by
(Σ, h), where h is the metric induced by g, the restriction of Equation (4.3) to Σ reads:

(1− κ|α|2g)Rich − 1

2
|α|2g h+ κ (v(Rh ◦ Rh) +

|α|4g
4
h) = 0 .

where we have used Lemma 4.2 to expand v(Rh ◦ Rh). Plugging now Equation (4.5) into
the previous equation, we obtain:

−2κRich ◦ Rich + (1− κ|α|2g + 2κsh)Rich +

(
κ
|α|4g

4
− 1

2
|α|2g + 2κ|Rich|2h − κ(sh)2

)
h = 0 .(4.7)

Moreover, using Equation (4.5) and Lemma 4.2 it can be seen that the second equation in
(4.4), κ|R∇α |2g,v = |α|2g, is equivalent to:

4|Rich|2h − (sh)2 − |α|2gsh +
3

4
|α|4g =

2

κ
|α|2g .

Combining this equation together with the trace of the previous equation we can isolate
both |Rich|2h and sh. Upon substitution into Equation (4.7), we get Equations (4.6). �

Proposition 4.6. Let (g, α) ∈ Confκ(M) be complete and non-flat. Then, (g, α) ∈
Solκ(M) is a null Heterotic soliton with parallel torsion if and only if 2κ|α|2g ∈ {1, 2, 3} and
the leaves of Fα endowed with the metric induced by g are all isometric to a complete Rie-
mannian three-manifold (Σ, h) whose principal Ricci curvatures (µ1, µ1, µ2) are constant
and satisfy:

• µ1 = − 1
4κ , µ2 = 1

4κ if 2κ|α|2g = 1.

• µ1 = 0 , µ2 = − 1
2κ if 2κ|α|2g = 2.

• µ1 = − 1
4κ , µ2 = − 1

4κ if 2κ|α|2g = 3.

Proof. By Lemma 4.5, a pair (g, α) ∈ Confκ(M) is a solution of Equations (4.3) and
(4.4) if and only if Equations (4.6) are satisfied. The first equation in (4.6) gives a second-

degree polynomial satisfied by the Ricci endomorphism of h, whose roots are − |α|
2
g

2 and
1−|α|2g κ

2κ . Therefore, solving the algebraic equation we find that the principal Ricci curva-
tures (µ1, µ1, µ2) of h are constant and given by one of the following possibilities:

(µ1 = − |α|
2
g

2 , µ2 = − |α|
2
g

2 ) , (µ1 = − |α|
2
g

2 , µ2 =
1−|α|2g κ

2κ ) ,

(µ1 =
1−|α|2g κ

2κ , µ2 = − |α|
2
g

2 ) , (µ1 =
1−|α|2g κ

2κ , µ2 =
1−|α|2g κ

2κ ) ,

Imposing now that the scalar curvature of h is sh = 2µ1+µ2 and using the second equation
in (4.6), we obtain the cases and relations given in the statement of the proposition. �

Remark 4.7. Since α is by assumption parallel, if (g, α) ∈ Solκ(M) is complete then the

lift (ĝ, α̂) of (g, α) to the universal cover M̂ of M of is isometric to the following model:

(M̂, ĝ, α̂) = (R×N, dt2 + ĥ , |α|gdt) ,
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where N is a simply connected three-manifold, t is the Cartesian coordinate of R and ĥ is a
complete Riemannian metric on N whose principal Ricci curvatures satisfy the conditions
established in Proposition 4.6. Moreover, the foliation Fα ⊂M associated to α is induced
by the standard foliation of R×N whose leaves are given by {x} ×N ⊂ R×N , x ∈ R.

As stated in Proposition 4.6, the principal Ricci curvatures are constant and they can
take at most two different values, µ1 and µ2. Suppose µ1 6= µ2 and assume that µ2 is
the eigenvalue of simple multiplicity. The eigenvectors with eigenvalue µ2 define a rank-
one distribution V ⊂ TΣ, which may not be trivializable. Therefore, going perhaps to
a covering of Σ, we assume that V is trivializable and fix a unit trivialization ξ ∈ Γ(V),
whose metric dual we denote by η ∈ Ω1(Σ). We define the endomorphism C ∈ End(TΣ) as
follows:

C(v) := ∇hvξ , v ∈ TΣ ,

which we split C = A+ S in its antisymmetric A and symmetric S parts.

Lemma 4.8. Assume µ1 6= µ2. The following formulas hold:

∇hξ ξ = 0 , δhη = 0 , Tr(C) = 0 , ∇hξC = 0 , C2 = −µ2
2 IdH ,

LξC = 0 , LξA = −2SA , LξS = 2SA , Lξdη = 0 ,

where H is the orthogonal complement of V in TΣ.

Proof. The condition of h having a constant Ricci eigenvalue µ1 of multiplicity two and a
simple constant Ricci eigenvalue µ2 is equivalent to h satisfying:

Rich = µ1 h+ (µ2 − µ1) η ⊗ η , sh = 2µ1 + µ2 ,

where η is the metric dual of a unit eigenvector with eigenvalue µ2. Since µ1 6= µ2, the
divergence of the previous equation together with the contracted Bianchi identity yields:

∇hξ η = η δhη ,

which in turn implies, using that ξ is of unit norm, ∇hξ ξ = 0, δhη = 0 and consequently

Tr(C) = 0. Furthermore, for every vector field v orthogonal to ξ we compute:

dη(ξ, v) = −η(∇hξ v −∇hvξ) = −η(∇hξ v) = −h(ξ,∇hξ v) = 0 ,

implying Lξdη = 0. Since C is trace-free, its square satisfies:

C2 =
1

2
Tr(C2) IdH .

On the other hand, using Remark 4.4 we obtain:

Rhv,ξ =
µ2
2
η ∧ v , Rhv1,v2 =

µ2 − 2µ1
2

v1 ∧ v2 .

where v, v1, v2 ∈ X(Σ) are orthogonal to ξ. Taking the interior product with ξ in the first
equation above we obtain:
µ2
2
v = Rhv,ξξ = −∇hξ∇hvξ −∇h[v,ξ]ξ = −∇hξ (C(v)) + C(∇hξ v)− C2(v) = −(C2 +∇hξC)(v) .
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This shows that ∇hξC restricted to H is a multiple of IdH, whence it vanishes since it is
trace-free. We conclude:

∇hξC = 0, C2 = −µ2
2

IdH . (4.8)

Clearly (LξC)(ξ) = 0. For v ∈ H, we compute:

(LξC)(v) = Lξ(C(v))− C(Lξv) = ∇hξ (C(v))−∇hC(v)ξ − C(∇
h
ξ v) + C(∇hvξ) = 0 ,

upon use of ∇hξC = 0. Furthermore, we have:

(LξA)(v) = Lξ(A(v))−A(Lξv) = ∇hξ (A(v))−∇hA(v)ξ −A(∇hξ v) +A(∇hvξ)
= −C(A(v)) +A(C(v)) = −2SA(v) ,

where we have used ∇hξA = 0. A similar computation, using ∇hξS = 0 shows that LξA =
2SA whence LξC = 0. The last equation in the statement is a direct consequence of
Cartan’s formula for the Lie derivative of a form and hence we conclude. �

In the following result, we denote by t the Cartesian coordinate of R and we denote by H the
three-dimensional hyperbolic space equipped with a metric of constant negative sectional
curvature. Furthermore, we denote by E(1, 1) the simply connected group of rigid motions
of two-dimensional Minkowski space. This is a solvable and unimodular Lie group, see [42]
for more details.

Theorem 4.9. Let M be a compact and oriented four-manifold and κ > 0. A non-flat
pair (g, α) ∈ Confκ(M) is a null Heterotic soliton with parallel torsion if and only if:

(1) Relations κ|α|2g = 1 and (µ1 = − 1
4κ , µ2 = 1

4κ) hold. In particular, there exists a double
cover of (Σ, h) that admits a Sasakian structure (hS , ξS) determined by:

ξS :=

√
µ2
2
ξ , Rich(ξ) =

1

4κ
ξ , |ξ|2h = 1 , ξ ∈ X(M) ,

as well as:

hS(v1, v2) =



−2h(A ◦ C(v1), v2) if v1, v2 ∈ H

0 if v1 ∈ H, v2 ∈ Span(ξ)

µ2
2
h(v1, v2) if v1, v2 ∈ Span(ξ)

where (Σ, h) denotes the typical leaf of the foliation Fα ⊂M defined by α.

(2) Relation κ|α|2g = 1 holds and the lift (ĝ, α̂) of (g, α) to the universal cover M̂ of M

is isometric to either R× S̃l(2,R) or R× E(1, 1) equipped with a left-invariant metric
with constant principal Ricci curvatures given by (0, 0,− 1

2κ) and α̂ = |α|gdt.
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(3) Relation κ|α|2g = 3
2 holds and the lift (ĝ, α̂) of (g, α) to the universal cover M̂ of M is

isometric to R×H equipped with the standard product metric of scalar curvature − 3
4κ

and α̂ = |α|gdt.

Remark 4.10. Reference [42, Corollary 4.7] proves that both S̃l(2) and E(1, 1) do admit
Riemannian metrics with Ricci principal curvatures (0, 0,− 1

2κ).

Proof. Let (g, α) ∈ Solκ(M). To prove the statement it is enough to assume that M is
a simply connected four-manifold admitting a co-compact discrete group acting on (M, g)
by isometries that preserve α. In that case, (M, g) = (R× Σ, dt2 + h) and α = |α|gdt, see
Remark 4.7. Assume first that µ1 = µ2. Then, Proposition 4.6 immediately implies that
(Σ, h) is isometric to H equipped with the standard metric of scalar curvature − 3

4κ , whence
item (3) follows. Therefore assume that µ1 6= µ2 and, possibly going to a double cover,
denote by ξ a unit-norm eigenvector of Rich with simple eigenvalue µ2. Furthermore,
assume µ2 6= 0 since by Proposition 4.6, µ2 = 0 is not allowed. Using the notation
introduced in Lemma 4.8, consider the decomposition C = S + A into its symmetric and
skew-symmetric parts and let Σ0 ⊂ Σ denote a connected component of the open set of Σ
where S and A are both non-vanishing. Since A is skew and tr(S) = 0, there exist smooth
positive functions s and a on Σ0 with S2 = s2 IdH and A2 = −a2 IdH. By Lemma 4.8 we
obtain:

a2 = s2 +
µ2
2
. (4.9)

On Σ0 we can diagonalize S through a smooth orthonormal frame (u1, u2) satisfying
S(u1) = su1 and S(u2) = −su2. Moreover, by replacing u2 with its opposite if neces-
sary, we can assume that A(u1) = au2 and A(u2) = −au1. We have:

∇hu1ξ = su1 + au2 , ∇hu2ξ = −su2 − au1 . (4.10)

Moreover, by Lemma 4.8 we have ∇hξS = 0 and ∇hξA = 0, which, together with the
assumption µ2 6= 0 implies:

ξ(a) = ξ(s) = 0, ∇hξu1 = ∇hξu2 = 0 . (4.11)

Furthermore, Equation (4.10) implies h([u1, u2], ξ) = −2a, so there exist two smooth func-
tions a, b on M0 such that [u1, u2] = au1 + bu2 − 2aξ. The Koszul formula then gives:

∇hu1u2 = a u1−a ξ , ∇hu2u1 = −b u2+a ξ , ∇hu1u1 = −a u2−s ξ , ∇hu2u2 = b u1+s ξ . (4.12)

Using Lemma 4.8 as well as equations (4.10)–(4.12) we can compute the following compo-
nents of the Riemann tensor of h along Σ0, which must vanish as a consequence of Remark
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4.4. We obtain:

0 = Rhu1,ξu2 = −∇hξ (a u1 − a ξ)−∇hsu1+au2u2

= −ξ(a)u1 − s(a u1 − a ξ)− a (b u1 + s ξ) = −(ξ(a) + s a+ a b)u1 ,

0 = Rhu2,ξu1 = −∇hξ (−b u2 + a ξ) +∇hau1+su2u1

= ξ(b)u2 − a (a u2 + s ξ)− s (−b u2 + a ξ) = (ξ(b)− a a− s b)u2 ,

0 = Rhu1,u2ξ = −∇hu1(au1 + su2)−∇hu2(su1 + au2)−∇hau1+b u2−2a ξξ
= −u1(a)u1 + a(a u2 + s ξ)− u1(s)u2 − s (a u1 − a ξ)− u2(s)u1 − s (−b u2 + a ξ)

−u2(a)u2 − a (b u1 + s ξ)− a (su1 + au2) + b (au1 + su2)

= −(u1(a) + u2(s) + 2s a)u1 − (u1(s) + u2(a)− 2s b)u2 .

We thus have at each point of Σ0:

ξ(a) = −(s a+ a b), ξ(b) = a a+ s b , (4.13)

u1(a) + u2(s) + 2s a = 0 , u1(s) + u2(a)− 2s b = 0 . (4.14)

Note that by (4.9) we also have:

au1(a) = su1(s) , au2(a) = su2(s) . (4.15)

We consider now the cases µ2 < 0 and µ2 > 0 separately.
Case 1: µ2 < 0. From (4.9) we have s2 > 0 on Σ. In particular, u1 and u2 are smooth
vector fields on Σ, and a and b are smooth functions on Σ. Applying ξ to Equation (4.13)
and using Equation (4.11) we get:

ξ(ξ(a)) = −s ξ(a)− a ξ(b) = (s2 − a2) a = −µ2
2
a , (4.16)

and similarly ξ(ξ(b)) = −µ2
2 b. The assumption that (R×Σ, dt⊗ dt+ h) has a co-compact

discrete group Γ acting freely by isometries implies that a and b are bounded functions on
Σ. Indeed, each γ ∈ Γ preserves the Ricci tensor of (R × Σ,dt2 + h), so γ∗u1 = ±u1 and
γ∗u2 = ±u2. Thus a(x) = ±a(γ(x)) and b(x) = ±b(γ(x)) for every x ∈ R× Σ and γ ∈ Γ.
By co-compactness of Γ, this shows that a and b are bounded.

Let x ∈ Σ0 be some arbitrary point. Since ξ is a geodesic vector field and the curve
c(t) := expx(tξ) satisfies ċ(t) = ξc(t) for every t, then a is constant along c(t) and in
particular non-vanishing. Thus c(t) ∈ Σ0 for all t. By (4.16) the function f := a ◦ c
satisfies the ordinary differential equation f ′′ = −µ2

2 f . Thus f is a linear combination

of cosh(
√
−µ

2 t) and sinh(
√
−µ

2 t). Therefore, since f is bounded, it has to vanish. In

particular a(x) = 0, and since x was arbitrary, a = 0 on Σ0. Similarly, b = 0 on Σ0. By
(4.14) and (4.15), we obtain:

s2 u1(s) = s au1(a) = −s au2(s) = −a2u2(a) = a2u1(s) ,

whence u1(s) = 0. Similarly we obtain u2(s) = 0, thus showing that a and s are constant
on Σ0. In particular, Σ0 is open and closed in Σ, so either Σ0 = Σ and a is non-vanishing,
or Σ0 is empty and a = 0 on Σ. If Σ0 was empty, then C = 0 and µ2 = 0, which is not
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possible. Hence Σ0 = Σ and all equations above are valid on Σ. The orthonormal frame
(ξ, u1, u2) satisfies:

[ξ, u1] = −(su1 + au2), [ξ, u2] = su2 + au1, [u1, u2] = −2a ξ ,

hence Σ is an unimodular Lie group equipped with a left-invariant metric h. The Killing
form of its Lie algebra g can be easily computed to be:

B(ξ, ξ) = −µ2 , B(u1, u1) = B(u2, u2) = −4a2 , B(u1, u2) = 4as , B(u1, ξ) = B(u2, ξ) = 0 .

For a 6= 0, B is non-degenerate and has signature (2, 1), so g is isomorphic to sl(2,R). If
a = 0, g is solvable and isomorphic to a semi-direct product RnR2 that can be identified
with the Lie algebra of E(1, 1), the group of rigid motions of Minkowski two-dimensional
space. In both cases we can easily compute using (4.10) and (4.12):

Rhu1,u2u1 = ∇hu1(a ξ)−∇hu2(−s ξ)−∇h[u1,u2]u1
= a(su1 + au2)− s (au1 + su2) = (a2 − s2)u2 = µ2

2 u2 ,

which by Lemma 4.8 implies µ1 = 0, in agreement with Proposition 4.6. This proves item
(2).
Case 2: µ2 > 0. We define the following endomorphism Ψ ∈ End(TΣ) of TΣ:

Ψ(ξ) = 0 , Ψ(v) = −
√

2

µ2
C(v) , ∀ v ∈ H .

Define ξS =

√
2

µ2
ξ and ηS =

√
µ2
2
η. Clearly:

Ψ(ξS) = 0 , ηS(ξS) = 1 , Ψ2 = − Id2 +ξS ⊗ ηS .
Moreover, define the symmetric tensor hS ∈ Sym2(T ∗Σ) as follows:

hS(v1, v2) =


−2h(A ◦ C(v1), v2) if v1, v2 ∈ H

µ2
2
h(v1, v2) if v1, v2 ∈ Span(ξS)

we check that:

hS(Ψ(v1),Ψ(v2)) = hS(v1, v2)− ηS(v1) ηS(v2) , ∀ v1, v2 ∈ TΣ .

On the other hand:

hS(Ψ(v1), v2) = −2

√
µ2
2
h(A(v1), v2) = −dηS(v1, v2) , ∀ v1, v2 ∈ TΣ .

Furthermore, it can be verified that hS is non-degenerate since det(AC) > 0, which in
turn implies that hS is positive definite. In addition, by Equation (4.9), we observe that
a is nowhere vanishing, implying that A is nowhere singular. We infer that dηS 6= 0
everywhere on Σ and therefore (ξS , ηS ,Ψ) defines a contact structure on Σ compatible
with the Riemannian metric hS . By Lemma 4.8 the Lie derivative LξSΨ = 0 vanishes
whence (hS , ξS ,Ψ) is K-contact structure on Σ, a condition that in three dimensions is
well-known to be equivalent to (hS , ξS , ηS ,Ψ) being Sasakian and hence we conclude. �
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Remark 4.11. In the cases in which the leaves of Fα ⊂M are Sasakian three-manifolds, with
respect to an auxiliary metric as described in the previous theorem, their cone is a Kähler
four-manifold, and in particular of special holonomy, whence realizing the proposal made
in [31, 32] to geometrize supergravity fluxes. While the occurrence of Sasakian structures
in supersymmetric supergravity solutions is well-documented, see for instance [54] and
references therein, the natural appearance on these structures in a non-supersymmetric
framework, such as the one considered here, was highlighted only recently in [44].

Theorem 4.9 can be used to construct large families of solutions of the Heterotic soliton
system. These are, to the best knowledge of the authors, the first solutions in the literature
that are not locally isomorphic to a supersymmetric Heterotic solution. For example, as a
direct consequence of Theorem 4.9 we have the obtain the following corollaries.

Corollary 4.12. Every mapping torus of a complete hyperbolic three-manifold or a man-

ifold covered by S̃l(2,R) or E(1, 1) admits a null Heterotic soliton with parallel torsion.

Corollary 4.13. Let (hS , ξS) be a Sasakian structure on Σ with contact 1-form ηS satis-
fying:

RichS = −1

2
hS + ηS ⊗ ηS .

Then, the mapping torus of (Σ, c2hS) admits a null Heterotic soliton with parallel torsion
for c2 = 2κ.

Remark 4.14. The Sasakian three-manifolds occurring in the previous corollary are a par-
ticular type of η-Einstein Sasakian manifolds, a class of Sasakian manifolds extensively
studied in the literature, see for example [7] and its references and citations.

The topology of the Heterotic solitons constructed in the previous theorem depends rather
explicitly in the string slope parameter κ. Set |α|2g = 1/2 for simplicity, whence κ ∈ {1, 2, 3}
is discrete, and different values of κ will correspond in general with Heterotic solitons of
different topology. For example, if κ = 1, (M, g, α) can be the suspension of a Sasakian
three-manifold, if κ = 2 then (M, g, α) can become the suspension of a three-manifold

covered by E(1, 1) or S̃l(2,R), and if κ = 3 then (M, g, α) can become the suspension of a
hyperbolic three-manifold, which again results in a new topology change. We remark that
for the Heterotic solitons described in Theorem 4.9 the limit κ → 0 is not well-defined,
whence they can be considered as genuinely stringy.
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