GENERALIZED KILLING SPINORS AND CONFORMAL
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Spin® geometry has become recently a field of active research with the advent of
Seiberg-Witten theory, whose applications to 4-dimensional geometry and topology are
already notorious (see [16] for example).

In the same time, the shift from classical spin geometry to Spin®-geometry has led to
many new questions and several results have now been proved (e.g. [13, 21]).

The first part of this paper is devoted to such a problem arising from spin geometry:
the study of generalized real Killing spinors on Spin® manifolds. These are natural gen-
eralizations of real Killing spinors, which are useful tools in Riemannian geometry (see
for example [4],[11],[19], [20]). It is well-known that generalized Killing spinors cannot
exist in the usual spin context without being in fact Killing spinors ([14]), whereas the
argument breaks down in the Spin® setting. We shall prove in this paper that such
spinors cannot exist on a Spin® manifold of dimension n > 4 either. Surprisingly, it
turns out that generalized Killing spinors do exist on low-dimensional Spin® manifolds.
We shall construct here explicit examples in small dimensions, and make a few steps
towards a complete classification in dimension 3.

In the second part of the paper, we present some applications of this result. We
focus on eigenvalues of the Spin® Dirac operator and we look at inequalities of the type
already considered by Th. Friedrich [10], O. Hijazi [14], J. Lott [18], Ch. Bér [3] and
H. Baum [6]. Our main contribution is a study of their equality cases, with special
attention to low dimensions.

The basic inequalities only involve the geometry of the associated line bundle L of
the Spin®-structure and the conformal structure of the base manifold, via the perturbed
conformal Laplace operator

1
(1) L£:4Z_;Ag+80alg—cn|w\g, Crp =2 [gr
(where g is the Riemannian metric, Scal? its scalar curvature, A, its Laplace operator
and w is the curvature form of L). The study of such an operator has some interesting
consequences on Einstein metrics and Yamabe invariants of 4-dimensional manifolds, as
shown by M. Gursky and C. LeBrun [13].
As a corollary, we get a lower bound for the first eigenvalue of the Spin® Dirac operator
for Spin® structures whose associated line bundles have self-dual curvature. This lower
bound only involves the conformal geometry of the manifold (via its Yamabe number)
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and the topology of the associated line bundle of the Spin®-structure (via its Chern
numbers).

1. PRELIMINARIES AND STATEMENT OF RESULTS

Consider an oriented compact Riemannian manifold M and denote by PsoM the
oriented frame bundle of M. A Spin®structure on M is given by the frame bundle
Psi M of some Hermitian line bundle L and a Spin{-principal bundle Psyiye M which is
a 2-fold covering of the bundle PsoM x Psi M compatible with the group covering

0 — Zy — Spin¢ = Spin,, x7,S* — SO, x S* — 0.

The bundle L is usually called the associated line bundle of the Spin®-structure.

We shall denote by V (or by VY if reference to the metric is necessary) the covariant
derivative of the Levi-Civita connection of g, and, if A is a Hermitian connection on L,
its (imaginary-valued) curvature will be denoted by F4, whereas we shall define a real
2-form Q) by Fq = ).

From now on, by a Spin® manifold, we will understand a set (M, g, L, A, o) where
M, g, L, A are as above and o is some Spin® structure.

If such data are given, one can canonically define a connection on any spinor bundle
Y (i.e. any vector bundle associated to Pspine M with respect to some complex repre-
sentation of Spin¢), which will be denoted by V (or V94 if full reference to metric and
connection is needed). We also get Dirac and Penrose operators

1
Doty =3 e VEN, PY =V + X Dy,

acting on sections of 3. We shall only consider here the standard spinor bundle associ-
ated with the fundamental representation of Spin¢ on C2"/*.

Recall that a spin structure can be seen as a Spin® structure with trivial line bundle L
and trivial connection A. Consequently, all statements or definitions concerning Spin®
manifolds have automatically a bearing on spin manifolds.

For later use, let us make the following definitions. We call normalized Sasaki manifold
any odd-dimensional manifold (M?**! g) whose cone (M xR, , g = t2g+dt?) is Kéhler.
Equivalently, M is a normalized Sasaki manifold iff there exists a Killing vector field £ of
unit length on M, such that the tensor field ¢ := V¢ satisfies the condition (Vx¢)(Y) =
9(&, X)Y —g(X,Y)¢ for all tangent vectors X, Y on M. In this paper, a Sasaki manifold
is any manifold homothetic to a normalized Sasaki manifold. With this definition, every
Sasaki manifold admits an unique normalized metric.

A generalized Killing spinor on a Spin or Spin® manifold is a spinor v satisfying

V= fX -9 VX €TM,

for some real function f. If f is a non-zero constant constant, 9 is called a Killing spinor.
Simply connected complete manifolds M admitting Killing spinors were classified by C.
Bér [4] for M spin and by the second author [21] for M Spin®. Next, one can easily
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show that generalized Killing spinors do not exist on Spin manifolds (see [14]), therefore
it is natural to consider the same problem in the Spin® context.

The first part of the paper is devoted to the proof of the following result :

THEOREM 1.1. There are no generalized Killing spinors on a Spin® manifold of dimen-
ston n > 4, except the usual Killing spinors.

In the same section we give examples of compact manifolds admitting generalized
Killing spinors in dimensions n < 3, and describe those admitting generalized Killing
spinors with never-vanishing Killing function f in dimension 3.

The second part of the paper consists in applications of this result to the study of
equality cases of conformal inequalities for the first eigenvalue of the Dirac operator on
Spin® manifolds. The basic inequality (similar to the classical Hijazi inequality [14] and
studied also by Ch. Bér [3]) is the following :

THEOREM 1.2. Let (M, g,L, A, 0) be a compact Riemannian Spin® manifold of dimen-
sion n > 3 and let i€) denote the curvature form of A. Then the first eigenvalue A1 of
the Dirac operator on the spinor bundle satisfies

2 2>
() 1 _4(71—1) M1,

where py is the first eigenvalue of the perturbed scalar curvature operator LY, defined by
(1).
Using this we then obtain

COROLLARY1.3. Let (M, g, L, A, o) be a compact Riemannian Spin® manifold of dimen-
ston 4 with self-dual curvature Fy. Then the first eigenvalue A1 of the Dirac operator
on the spinor bundle satisfies

vol(M, g2 X8 > < (VM. [g]) - 4nv2 Ver (P[] )

where Y (M, [g]) is the Yamabe number of the conformal structure of g and ci(L) is the
first Chern class of the associated line bundle.

Note that this inequality is similar to the one proved by H. Baum [6] for the Dirac
operator of a twisted spin bundle but ours extends to the case where \; vanishes, thus
providing a link between the Yamabe invariant of the conformal structure and the first
Chern class of the complex line bundle.

These inequalities are proved in Section 3 of the paper.

Equality cases are considered in Section 4. A large part of the equality case of
Theorem 1.2 relies on the non-existence of generalized Killing spinors. We will only
give some local results in the general case and the main part of this section is devoted
to the study of the equality cases in dimensions 3 and 4.

Since the precise statements of the equality cases are lengthy and somewhat technical,
we will only present below a rough view of our main findings. The reader is referred to
Section 4 for more precise results.
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In dimension 3, equality is attained in Theorem 1.2 if and only if one of the following
happens :

— (M, g) is isometric to (53, can) or to some of its quotients (precisely known) ;
— (M, g) is conformally equivalent to an Euclidean space-form ;
~ (M, g) is conformally equivalent to a S?-bundle over S* ;
— (M, g) is a Sasaki manifold and satisfies to some curvature conditions.
In dimension 4, the situation is somewhat simpler and the main allowable behaviors
are the following :
— (M, g) is isometric to (S*, can) ;
— (M, g) is conformally equivalent to a complex quotient of a flat complex torus or of a
K3 surface ;
— (M, g) is conformally equivalent to a Ké&hler-Einstein complex surface with ¢; > 0.
An interesting feature of the equality case of Corollary 1.3 is that it offers a charac-

terization of the complex projective plane with its standard Fubini-Study metric among
manifolds sharing the same Euler characteristic.

As a conclusion, we note that, in contrast to the spin case where the situation was
quite rigid, the equality case of (2) characterizes well the local geometry of the limit,
but, due to the freedom added by the auxiliary bundle in the Spin® case, many quotients
of a limiting manifold are themselves (in most cases) limiting manifolds.

2. GENERALIZED KILLING SPINORS ON Spin® MANIFOLDS

Let (M",g,L,A,0) be a Spin® manifold and suppose there exists a non-zero spinor
1 on M™ satisfying

(3) Vi =fX -y VX eTM,
for some real function f on M.

We shall prove Theorem 1.1 in two steps. We first settle the case of dimensions n > 4.
Then, after establishing in the Spin® case the analog of a classical relation between the
the Killing function f and the curvatures of the base manifold and the line bundle, we
present in a second step a proof for n = 4. Note that our proofs have a local character,
so that they apply to any Spin® manifold, complete or not.

The end of the section is then devoted to constructions of examples of manifolds
admitting generalized Killing spinors in low dimensions 2 and 3.

LEMMA 2.1. If (8) holds and n > 4, then f is constant.
Proof. For 0 < p < n we define the p-form w, on M by
(4) wp(X1, -+, Xp) =< Xi A ANXp-1h, 9 >

It is easy to check that wyi1 and wy o are imaginary-valued and wy3 and wy 4 are

real-valued forms for all allowable I. We let i€ = w}. For later use, we note that & is
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a Killing vector field. We also note that the norm || is a constant and we may thus
assume |1| = 1 for the remaining of this section.

The following computations will be done at an arbitrary point z of M; let X; denote
mutually orthogonal vector fields on M which are parallel at  and ¢ means cyclic sum
with respect to the subscripts 1,--- ,p+ 1. We first compute

(p+ Ddwp(X1, -+, Xp1) = oXi(wp(Xa, -+, Xpta))

= fo(< Xo A ANXpy1- X1 -9, ¢ >
+ < Xo A AN Xpp1 -, Xy - >)

= fo(< XaoAN- - ANXpp1 AN X1 -9, >
—<XiANXo AN ANXpy1 -0, >)
(1) =D fo(< Xa A A Xpy1 - 9,0 >)
(p+1((-1)" = ) fwpsr (X1, -+, Xpta),

thus showing that

(5) dwop, = 0

and

(6) dwopi1 = =2 f wopyo.
Taking the exterior differential in (6) and using (5) yields
(7) df N wa, =0, Vk > 1.

We now suppose that in a neighborhood U of some point z € M we have df # 0
and show that this implies n < 4, which will conclude the proof of the lemma. Let
{e1,...,e, 1} be an orthonormal frame spanning df* in T, M. From (7) it is clear that,
for 2k < mn — 1 and for each subset {iy,..., i3} of {1,...,n — 1}, we have

(8) Wak (eila sy eizk) = 07
thus showing that the spinors 9, e;, -€;, -9, ..., € -...-€i,, -1 are mutually orthogonal,
where m is the integral part of (n — 1)/2. Consequently, they span a complex vector

subspace of X, M of complex dimension ( n—1 > + ( " ; 1 ) + -+ ( n2;n1 >

Since the complex dimension of ¥, M equals 2[5! we obtain

[2] n—1 n—1 n—1
2020 > ( 0 ) + ( 9 ) +--- ( om
1
= ST
= 272
From that follows [§] > n —2,s0 n < 4. O

We now consider the 4-dimensional case. Let us first establish a relation between the
Killing function and the curvatures of the manifold and that of the line bundle, which
holds in any dimension.
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LEMMA 2.2. Fvery generalized Killing spinor i satisfies

1 .
9) E(Ric(X) —iX1Q) p=Vf-X-¢p+nX(f)y+ (2n—2)f>X 9.
Proof. Let {ey,...e,} be a local orthonormal frame. From (3) we easily obtain

(10) Ry =X )Y o -Y(HX -p+ (Y- X-X-Y)- ¢

A local computation shows that the curvature operator of the twisted connection on
the spinor bundle is given by the formula

(11) RA:R+%Q
where
1
(12) RX,Y = EZR(X’ Y, 6j,€k-)6j s €k
j<k

Using the first Bianchi identity for the curvature tensor one obtains ([7], p.16)
1.

(13) > et Reyx = 5 Rie(X),

so, by (11) and (13),

Zej . Rfj’)ﬂﬁ = Zej : (Rej,X"ﬁ + %Q(ejaX)¢)
J J
_ %quyw—%x_awa
On the other hand, from (10) we obtain
Y e REL =D e lej(NY - =Y (flej -1 — 22 (< Y,e; > +¢;- V) - ]
J J

=Vf-Y-p+nY(f)y+ (2n—2)fY -1,

so the lemma, follows. O

The next result, which will be of fundamental importance below, when considering
examples of generalized Killing spinors in low dimensions, also holds in any dimension :

LEMMA 2.3. With the previous notations, we have :
(14) £E1Q=-2(n—-1)df.
Proof. Take the real part of the scalar product of (9) with . This yields
% <&EX1Q>=(-1)X(f) VX € TM,
and the result follows. O

Using the two lemmas above we can now rule out the case n = 4, too.

LEMMA 2.4. There are no generalized Killing spinors in dimension 4.
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Proof. Define the real 2-form 7 on M by

(15) T(X,)Y) =< XAY - ,p >=Sm < X-Y -9, > .

It is straightforward to check that 7 = xw, (* denotes the Hodge adjoint), so (7) yields
(16) df 17 =0.

In (9) we now take the Clifford product with df and the scalar product with ¢ and
consider the imaginary part to obtain (using (16))

< X 1Q,df >< 1,9 >=0.
Taking X = ¢ and using (14) yields

0=Q(&df) <, ¢ >=2(n—1)|df > <, ¢ >,

so in the neighborhood U of the point x (where df # 0, by assumption) we have
< 1,9 >= 0. Differentiating this we obtain f < X - 1,4 >= 0 for all X € TM.
By restricting ourselves to a smaller neighborhood if necessary, we may suppose that f
does not vanish on U. Hence < X -1, 9 >= 0, which means that, at each point of U,
either ¢, = 0, or 9_ is perpendicular to the 4-dimensional real vector space T'M - ¢,
(with respect to the Euclidean scalar product e < .,. >), i.e. ¥_ = 0, for dimensional
reasons. As the norm of v is constant, we deduce that 1, = 0 or ¥_ = 0 on the whole
of U, which implies f = 0 on U, a contradiction. O

We can now conclude our study of generalized Killing spinors by constructing explicit
examples in the low dimensional cases.

THEOREM 2.5. In dimensions n = 2 and n = 3 there exist compact manifolds admitting
generalized Killing spinors satisfying (3) with non-constant f.

Proof. We will first treat the case n = 3.

a) 3-dimensional case. Let (M3, g) = (S®, can) be endowed with its unique spin struc-
ture and consider (see [4],[7]) a Killing spinor, say 1, with Killing constant 1/2 on M.
As the norm of 1 is constant, we may suppose that |¢)| = 1. Let £ be the Killing vector
field on M defined by

(17) 1<&EX>=< X, >.
We compute as before
(18) PdE(X,Y)==—< XAY -0 >

Recall that the Hodge operator is defined by < *w,7 > dvol; = w A 7. Since in odd
dimensions the volume form acts as the identity on the spinor bundle, we obtain from
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(18) that
i<d§,XANY > = i dé(X,Y)
= —<XAY -9, 9>
*(XAY) - %(XAY) 9

= <XAY-
|IX ANY|?

P>
1
= ——— <|[XAY[]Pdvol,-* (X AY)-
XAVE < | X AY|dvoly- % (X AY) -9, 9 >
<Kx(XAY) -9, >
i <EHXANY) >
= 1 <*x,XAY >,
so d¢ = x£. In particular £ has constant length, since
VI[P = —2Ve& = —2dE(€,.) =0
and
(19) dé - = — &- ¢, for any spinor field ¢.

For dimensional reasons, £ is non-zero (otherwise the real 3-dimensional vector space
T,M - ) would be orthogonal to ¢ with respect to the Hermitian product < .,. >,
contradicting the fact that ' has complex dimension 1). Let {£/[€],e1,e2} be an
oriented local orthonormal frame on M and let ¢ be a local section generating . By
the very definition of &, there exist never-vanishing complex functions a;, as such that
e =a;¢. Then -9 = —|{|e1 - ez = |£|as/ar v, i.e. there is a complex function
a with £ -9 = a. Then by (17) a = i|£|* (recall that we took || = 1) and the
fundamental identity of Clifford algebras

£-&-p=—[¢],
yields |€]? = €[4, so finally we have shown that |£| = 1, @ = i and
(20) - =1iv.

The idea is now the following : we first change the metric by multiplying it with an
arbitrary function (not depending on &) in directions orthogonal to . We compute
the covariant derivative of the Killing spinor in the new metric and obtain a spinor
satisfying an equation close to that of generalized Killing spinors. Finally we “recover”
the missing term by twisting the spinor bundle with a line bundle, i.e. by considering
some non-trivial Spin® structure.

Let h be a strictly positive non-constant function on M such that £(h) = 0. In fact,
if we consider the Hopf fibration S — S2 given by &, the above relation just means
that h is the pull-back of a positive function defined on S%2. We consider the metric ¢”
on M given by ¢g"(¢, X) = g(&, X) for all X € TM and ¢"(X,Y) = h72g(X,Y) if X|Y
are orthogonal to ¢. Let Z — Z" be the isomorphism of TM defined by

(a+X)'=aé+hX VX LE acR

If X is a unit vector for g, we then have X" = X/1/g"(X, X) = hX if X | £ and £" = £.
Since there is no risk of confusion, from now on we identify & and &". It is easy to see that
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¢ is a Killing vector field with respect to ¢", too (actually ¢" = h™2g+ (1 —h™2) £RE so
Leg" = 0). We choose an arbitrary point z € M and let u = {£, e1,e2} be a positive local
g-orthonormal frame defined in a neighborhood U of z as above and u" = {£,e?, eb}.
Using the Koszul formula
2<VxY, Z> = X<Y,Z>4+Y < X, Z>-Z<X,Y >
+<Z,[X,)Y]>-<Y[X,Z] >-< X,[Y,Z] >

we compute the covariant derivative V” of the metric g":

ViE= V£ =0
(th£7 ]) = d&( € ]) h2 (vezé-vej)

(V € g) = gh(e?a [65 6?]) - gh<e?a [65 6? ) - gh(é.a [6?, e;l])
= g(6j7 [57 el]) - g(ei7 [é-v ej]) - hzg(é-a [eia 6j])
= 29(Veei, ej) + (1= h*)g(&, [ei, ¢;])
= 2g(V§e,-, 6]‘) + 2(h2 — 1)d£(6,, ej)
9"(Vinei ef) = —g" (e} e}, €]])
= hg(ei, [ei, ej]) + ej(h) = hg(Ve,ei, e5) + ej(h).
The isomorphism Pso(M, g) — Pso(M, g") given by u — u” lifts canonically to an iso-
morphism Pspin(M, g) — Pspin(M, g™). We then consider a local section % of Pespin(M, g)

over u and the corresponding local section 4" of Psyin(M, g") over u”. This obviously
defines an isomorphism of vector bundles ¥ = [u, ¢] — " = [u", ¢] satisfying

(21) <y > = < PP Yl > and (X - ) = X"y, VX € TM.

Let J denote the almost complex structure of the bundle £+ given by orientation (thus
Jey = ey and Jes = —ep). We may extend J to TM by J¢ = 0. Recall now that
the covariant derivative of a spinor ¢ = [u, ¢| (where @ is a local section of the spin
structure projecting to a local orthonormal frame u = {eq, ..., e, }) is given by

» 1
VX¢: [U,X(¢)]+§;<Vxei,€j >ei-ej-1/1.

Applying this to our 9" and using the above formulas for the covariant derivative V*
on vectors, together with (19) and (20), yields

>
Vigl@bh = [ahaﬁ(@] + 1 (V§61, e2) (e1- ez - lb)h + d 9 ! (d€(e1,ea)er - ea - ¢)h
2
= (Ve + 2L gt
h2 2
= (Ve - ) = 0 et
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~ 1 1
Vau' = [@ (@) + 59" Vel ep)E - es - ¥t + 50" (Vaper, eh)er - 5 -y
2

= W (@) + S o(Vab ea) € e )

+5<hg<vele1, e2) + ea(h))(e1 - €2 - )"

= (Vo) + (T )€ er ) 4 sl e 0
= (Vo ds(el,ez)(s-e2-¢)h—3ez< Wy

= WVt + o) Lan( e

= Do+ B e g 4 Ly

= Do)+ Laameny

and similarly for the covariant derivative in direction of e?. These formulas can be
written in a homogeneous form as

(22) Vit = —X Y+ (hJ(dh) + (1= A")E)(X)y.

Let o be a 1-form on M. We may view 2o as a connection form on the trivial S* bundle
M x S'. Let L = M x R? be the induced oriented vector bundle of rank 2 over M and
V0 the covariant derivative on L induced by the above connection. Let o be a non-zero
constant section of L, i.e. of the form o(z) = (z,c) with ¢ € R? \ {0}. Tt then satisfies

(23) V%o =ia(X)o, VX € TM.
Taking a = —3J(dh) — (1 — h?)¢ and using (22) yields

2

(29 Vx(' ©0) = X (0 @0),

(where V = V" @ V°). But ¥ = 4" ® 5 is a section of ©M ® L which is, of course, the
spinor bundle associated to the Spin¢ structure with auxiliary line bundle L2, so ¥ is a
generalized Killing spinor with Killing function f = %-

b) 2-dimensional case. This one is somewhat similar, but the construction is more
involved. The idea is roughly to take a suitable spinor on the flat torus 72, to modify
the metric in both directions by multiplication with two different functions and then to
twist the spinor bundle with a trivial bundle (endowed with a non-trivial connection,
as before).

Consider the flat torus (72, g) = R?/(27Z)? and a global orthonormal frame {X,Y}
given by X = 9/0x and Y = 9/0y, where z,y are local coordinates on T? coming
from the standard Euclidean coordinates on R?. Let us fix the orientation on T? given
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by the above frame. We also consider a parallel positive half-spinor ¢, and define
¥ = X -1,. Then, since the volume form acts by multiplication with 7 on ¥, we
obtain Y -9, = —i4_.

Let a(x), b(z), c(z) be three positive periodic functions with period 27, which can
thus be considered as functions on T2. We define a new metric g on T? by requiring the
frame {aX,bY} be orthonormal, and let V be the covariant derivative corresponding
to g. If we consider the linear isomorphism of tangent spaces, denoted by Z —— Z ,
defined on the basis {X,Y} by X =aX and Y = bY, and ¢ the spinors on (T%,3)
corresponding to 1y with the ident/ifi\cition between spinwndles given as above,
then, as before, we have X- Ji = (X -14) and Y - Ji = (Y -¢q).

On (T?,9), let us compute the covariant derivative of the spinor field

¥ = cos(c(x))9y + sin(c(z)) .

Using the Koszul formula we first compute

(25) VX =0
(26) 3(VeX,Y)=3(Y,[Y,X]) = —%
Then, as before we obtain
(27) Vet =0,
~ ~ b o~
(28) Vs = Fig v,
so finally
(29) Vit = (= sin(c)ihy + cos(c)p-) = ¢ X -,
(30) %g—lﬁ = i;—g(— cos(c)ihy + sin(c)ip_).

We now consider the trivial complex line bundle L over T2, with connection form given
by an imaginary-valued form i& satisfying &(X) = 0 and &(Y) = a (where « is an
arbitrary function on T2). As before, twisting with L yields a Spin® structure on 772,
and for any constant section o of L we obtain a spinor ¥ ® ¢ associated with this Spin®
structure. By (29), (30) we obtain

(31) Vi(®o) =X (Y ®0),

~ b ~ ~
(82) Vi ®o)=ig (—cos(e) (s 8 0) +sin(0)(}- ©0)) +ia(y ® 0).
We now try to solve the equation %;1/1 ®o=cY - 1 ® o, which is equivalent to the
following system
{ —“2—%' cos(c) + acos(c) = —c’sin(c)

‘12—’;; sin(c) + asin(c) = —c cos(c)
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We can solve it by taking for instance

(33) b(z) = c(x) = g + % cos(z),
(34) a(z) = b(z)(tan(b(z)) — cot(b(z))),
(35) oz, y) = —%b’(x)(tan(b(x)) + cot(b(x))).

It is then clear that @ and b are positive functions (as required) and that the spinor

% ® o is a generalized Killing spinor on (7%, 3) with non-constant Killing function
f(e,y) = =5 sina),

which gives the desired example. O

Note that, doing all the computations of the 3-dimensional case backwards (a part
which we skip here), one also proves

THEOREM 2.6. Let M be a 3-dimensional Spin® manifold admitting a generalized Kil-
ling spinor with never-vanishing Killing function. Then M 1is obtained from a Sasakian
manifold (N, g,&) by multiplying the metric in directions orthogonal to & with a function
whose gradient is orthogonal to £&. The Spin® structure on M is obtained by twisting
the canonical Spin® structure on N (cf. [21]) with a trivial line bundle with non-trivial
connection, as in the proof of Theorem 2.5 a).

3. PROOF OF THE INEQUALITIES

The proof of Theorem 1.2 makes essential use of conformal geometry. It can be
obtained by following Hijazi’s proof [14] or by using an argument due to Ch. Bér [3].
We shall here present another proof, which is perhaps more appropriate to the conformal
character of our problem.

Given any Spin® manifold (M, g, L, A, o), we may consider its conformal Spin® frames,
i.e. the principal bundle with structure group CSpin, = R, X Spin{ that covers
PoorM x PsiM, where Pgo+M is the bundle of oriented conformal frames over the
conformal manifold (M, [g]). The covering is compatible with the group covering

0— Z, — R, x Spin® L4 R, x SO, x §* — 0.

where 6 is the 2-fold covering of SO,, x S by Spin¢. For any choice of k € Z and any
representation py of Spin{, on a linear space V', we get a bundle of weight £, denoted by
V&) M , associated to Pcgpinc M by the representation

P = Ak ® po
where ) is the representation of R, over R given by

M(a)uw =dfu, VaeR", ueR
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If (uo, V') is the standard Spin® representation, we get spinor bundles YE M of weight
k. If g is any choice of metric in [g], the usual Spin®-spinor bundle 3¢9 may be identified
to any of the ©(*) M’s (by restricting the frame bundle of the latter to Pspine M ). This
induces a family of isomorphisms

oW B — %7 [s,u] v [s6, ¢ Ful,

where § = ¢72¢g, s € Pg"pmcM and u is the expression of a spinor field in the spinor

frame s. It is easily checked that
36 d*Fp|2 = ¢~ 4|2 for any spinor .
( i g

Now, every choice of a Weyl structure on (M, [g]) induces Dirac and Penrose operators
which act on the weighted spinor bundles and lower the weights by 1. Moreover for
k = —(n—1)/2 the Dirac operator and for ¥ = 1/2 the Penrose operator are conformally
invariant (i.e. do not depend on the choice of the Weyl structure, cf. [12]). As a
consequence, this yields

(37) DA = (0 204y~ Lo pid o gl3(1-m) (P94) x = (B3) L o (PFA) 4 0 ®3.

Remark. The connection A on the assomated line bundle is here fixed. If A were
changed in the above process to A=A- c? for some constant ¢, the conformally

invariant weights have to be changed into (—m —1—¢)/2 and (1 — ¢)/2 respectively. We
shall nevertheless not use this freedom since any two choices of the constant ¢ would
lead to identical results.

The second main tool is the Schrodinger-Lichnerowicz formula for Spin® Dirac oper-
ators [23], [17]:

LEMMA 3.1. For any spinor field 1,
1 1
(DQ’A)*(Dg’A)w — (Dg,A)2¢ — (Vg’A)*(Vg’A)'gb + T Scal? ¢ + 5FA <.
This can be rewritten as

B (DoAY (DO —  Scall = ZFa - = (POAY (PO,

Integrating this formula, we get the

LEMMA 3.2. For any complex spinor ¢ on the Spin® compact manifold (M, g, L, A),
-1 1 1
/ <n—|D-‘]’A¢|2 — ~Scal! |[¢|> — = < Fa 1,9 >g> dvol, = / P94 ()| 2d vol, .
M n 4 2 M g

This holds for any metric g and any choice of the connection A It thus holds for
g = ¢ 2g, A= A and 7,b ® (1)), where @ is the isomorphism ®('3") above. We then

have
(38)  dvoly = p"dvol,, [DIAGIZ = GHIDIAYR,  |PIAGE = o PIA(pF )2,

and
n—2

(39) Scal? = n*%Lgn, where n =~ 2 .
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Thus,
n—1_zi7s 1 g2 L - GA (T2
—— | D9y —ZScal || —§<Fg-w,¢ >3 | dvoly = P2 () |5 d volg,
M n M
which can be rewritten as

-1 1 1
/ o [ L2 Doy 2 — S L (L) o)? ) d vol, — —/ o < Fy- 1,9 >, dvol,
M n 4 2J/m

_ /M P [P (o) 2 dvol,

We now use the following “Cauchy-Schwarz”-type inequality for the Clifford action
of 2-forms on spinors:

LEMMA 3.3. For any spinor field 1 and 2-form §2, we have the inequality
n

(40) <>z~ 2] 10l

where the norm on a 2-form A chosen here is
(41) AP=>" ()
i<j
in any orthonormal basis. Moreover, if equality holds in (40), then

(42) 0-p=i[2]" o

and furthermore either Q vanishes or Q has mazimal rank (n for n even and n — 1 for
n odd).

Proof of the lemma. Consider €2 as a skew-Hermitian operator on M ® C. Then ) is
Hermitian, so that all its eigenvalues are real, and 7'M ® C splits as a direct sum of the

corresponding eigenspaces. This easily shows that we may find an orthonormal basis
{e;} of TM such that

[n/2]
(43) 0= Z )‘j €251 VAN €2 -

j=1
But the Cauchy-Schwarz inequality shows that
(44) < gy 1 - egp - P, > Jieg; 1 - eg; - PP = [l

so the triangle inequality yields

[n/2] 1 [n/2]
. nia 1
(45) <>z = > Il > - 5] QoI

and (40) follows. If equality holds, then all the above inequalities must become equali-
ties. This yields

(46) < i)\jezj—1 - €95 ), >= _‘)‘j|‘¢|2a
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and
[n/2] 1 [n/2]
(47) >onl= 5] k.
j=1 j=1
It is clear that (46) implies (42), and, from (47), all the A;'s must have equal absolute
values, thus showing the last statement of the lemma. U

Remark. Here our result differs from the one obtained by Ch. Bér [3], since he considers
the operator norm |A| = sup ||~ A(z)| (with X seen as a skew-symmetric endomorphism
on spinors). Here we shall consider the Euclidean norm defined above, having in mind
the perturbed scalar curvature operator and Corollary 1.3. The reader interested in
what happens with Ch. Bar’s choice of norms may however have a look at Section 4.4.

We can now conclude that
n—1 1 n n
) [ o (U - R ) dvol, > [ Pt Rdvol,.
M M

The main inequality is then proven by evaluating the last formula against a spinor 4
and function 7 such that

(49) Dg’A¢ =\ 7, Lfﬂ? = 1.

Note that the positivity of n is guaranteed by the maximum principle. At the end we
get

2 n
>
as required. O

We now proceed to prove the corollary.

Proof of Corollary 1.3. It relies on the intermediate

LEMMA3.4. Let (M, g, L, A, o) be a compact Riemannian Spin® manifold. Then the first
etgenvalue Ay of the Dirac operator on the spinor bundle satisfies

" (Y(M.Ig) — ellQlls).

vol(M, )%™ A2 > =1

where Y (M, [g]) is the Yamabe number of the conformal structure of g and c,, = 2 [n/Q]%.

Proof. We first recall the Rayleigh quotient definition of the first eigenvalue p;, namely
n—1| 7,2 2

(51) i = inf S 45=3ldn| }M(:galg —cal Q)

Using the usual Holder inequality

(52) [wes(/[ \n\%)%zmw,g) ,

3w
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we obtain

42=L1dn|? + (Scal? —c,|Q])n?
(53 o > g Do o O Bl e

"0 (Julnl) T vol(M,g)

and finally (using Holder again)

2 42=1|dn[? + (Scal?)n? 2/n
(54) 1 -vol(M,g)s > inf Sy assldnl” + (Sealt)n” o)
n—2
n#£0 2n_ n M
(fur Inl7=)
Since the Yamabe number is defined as

47=1]dp[? + (Scal?)rp?
(55) Y (M, [g]) = ing 220 nzzldn+ Seal)o”

n#0 2\
(fur Inl7)

we get the required inequality. O

if 231 Z 01

3w

Corollary 1.3 follows directly from the lemma and the fact that, if n = 4 and € is
self-dual, then

(56) /M O = 82% (L) U [M]

is a topological invariant.

4. EQUALITY CASES

Using the notations of the previous section, the equality case in Theorem 1.2 is

n—2

characterized by the following equations (recall that § = ¢ 2gand n= ¢~ 2 ) :
(57) DIy = (M) ¢ and PP =0,
(58) n (L) =
nis
(59) <Faw >, = = [Z]7 1, 2

In particular, the spinor {/; is a generalized Killing spinor. Moreover, by Lemma 3.3,
(59) is equivalent to

1
.[nlz2
(60) Qy=i|z]”|ol,y
which may be written in terms of g as
1
~ . n Y ~
(61) Q-g=i|7]" 09,

We shall consider separately the cases where \; vanishes or not, studying in detail
the low dimensions 3 and 4.
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4.1. Non-zero first eigenvalue. The spinor field {/; is a generalized Killing spinor with
respect to g. Applying Theorem 1.1, we get, in dimension n > 4, that ¢ is a Killing
spinor, the (non-zero) function ¢ is a constant (identically equal to 1, say) and g = 7,
i.e. finally

A
(62) VW = - X

In dimension 3, Theorem 1.1 does not apply and we have seen that there are nontrivial
examples of generalized Killing spinors. We shall however prove that these spinor fields
cannot induce equality in our basic inequality (2).

LEMMA4.1. In dimension 3, the generalized Killing spinor inducing equality in (2) is a
Killing spinor.

Proof. From Formula (14) in Lemma 2.3,

(63) QE,.) =~ de,

where E is the Killing vector field defined by {l; in the usual way

(64) iGE,X) =< X -, > VX.
Mimicking the computations done in Theorem 2.5, part a), we also get
(65) d€ =2\ xE VP =0 and -4 = il
We can now write the curvature 2-form 2 as

(66) Q= F+& + ENa,

for some function F' and 1-form «. Actually o satisfies
(67) Q) = [€Pa = —4A de.

We shall now compare the Clifford product of 7,b by  with Formula (61). Recalling
that 5 7,0 and *f w are (complex) collinear to ¢, we deduce that

Q) = (Fx&+ Ena) 9
= —iFy —ilffa-¢
has to be collinear to 1:5 But, since

(68) de(§) = —4—/\19(5 &) =0,

(67) implies that « - 1; must be orthogonal to 1;, hence must vanish if we compare to
Formula (61). This implies that o = 0, so

(69) dp = 0.

The function ¢ is then constant and the spinor field J is a Killing spinor. O
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Remark. The previous proof is 3-dimensional in nature, since the expression of {2 relative
to & heavily depends on dimension. In higher dimensions, we still have to rely on the
general non-existence result for generalized Killing spinors.

¢From the second author’s classification of simply connected Spin® manifolds carrying
Killing spinors, we get that the universal Riemannian covering (M, g) of (M, g) is either
spin and admits Killing spinors, or Sasaki with its canonical Spin® structure (cf. [21]).

We now study the low dimensions 3 and 4 a bit further.

a) In dimension 3, if (M, g) is spin, it is then Einstein with positive scalar curvature
[14] and then isometric to the 3-sphere. Each Killing spinor on a quotient S*/T" induces
a parallel spinor on the flat cone R% x S3/I', which is itself a quotient of R* \ {0}.
It will be shown later (Lemma 4.5 below) that an oriented 4-dimensional Riemannian
manifold carries a Spin® structure with a parallel spinor iff it is Kahler. Consequently,
the quotients of R* \ {0} by a finite subgroup T' of SO, carry a parallel Spin® spinor iff
I’ C Us,, and we obtain that every quotient of S® by a finite fixed point-free subgroup of
U, carries a Killing (Spin®) spinor. Moreover, each of these cases may occur as equality
cases of our basic inequality since the constant curvature metrics are Yamabe metrics
in their conformal class.

If €2 is not identically zero, M is Sasaki. We remark here that M itself is Sasaki :
indeed, M carries a Killing spinor, so after renormalization of the metric, the cone over
M carries parallel spinors (see [21]), hence it is Kéhler (Lemma 4.5 below) i.e. M is
Sasaki. It remains to find which Sasaki manifolds are indeed limiting manifolds.

We shall normalize the metric such that the Killing vector of the Sasaki structure
satisfies

1
(70) Vi¢ = §d§ = *£.
It is then easily computed that the Ricci curvature obeys the following formula (see [9])
Scal? Scal?
(71) Ricg:< C; —1>g+(3— C; )g®g.

Since the curvature of the associated line bundle is the Ricci form of the cone over the
Sasaki manifold and is then related to the Ricci curvature of the manifold by the Gauss
equation, we can compute the expression Scal? —2|Q| for an arbitrary Sasaki manifold.
The Gauss equation implies that

Scal’ =2 Q| =6 at points where Scal’ > 6,
Scal’ +2 Q| =6  otherwise.

Since (57) and (61) are automatically satisfied on a Sasakian manifold (where ¥ is the
canonical Killing spinor [21]), M is a limiting manifold iff (58) holds, which amounts
here to say that the expression

(72) Scal? —2(Q|
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is a positive constant since 7 is a constant. Thus, if Scal? > 6 everywhere on M, then
M is automatically a limiting manifold.

Otherwise, the following equations have to be satisfied for the manifold to be a limit
case :

(73) Scal! 42| =6 and p; = Scal’ —2|Q| = const. > 0.

Moreover, the manifold is a limiting one if (73) holds, hence if Scal? is constant and lies
in the interval |3, 6].

Let us then define a Berger-type metric as follows : if V' is any left-invariant vector
field on the sphere, a metric will be said of Berger-type if it is obtained from the round
metric by distorting it only in the direction of V. Hence, any Berger-type metric g
satisfies :

g(V,X) = k*can(X,V) VX € TM,
for a never-zero function k£ and
9(X,)Y)=can(X,Y) VX,V L V.

This definition somewhat differs from the classical one since distortion of a Berger metric
is usually allowed only in the direction of the vertical vector field of the Hopf fibration.
Easy computations similar to that of the proof of Theorem 2.5 a) now yield the following

LEMMA 4.2. Any 3-dimensional Sasaki manifold with constant (normalized) scalar cur-
vature strictly larger than —2 is a rescaled Berger-type metric on the sphere (or a quo-
tient).

Proof. The main tools are the computations done in the proof of Theorem 2.5. They
show that the Levi-Civita connections of g and ¢" = h=2¢g+ (1 — h~2)é ® £ with h taken
constant are related by

(74) VL =V + (B2 —1) (n(X)® J+EATX),

where 7 is the 1-form dual to ¢ and J is the skew-symmetric endomorphism associated
to *& (with respect to g). Computation of the Ricci curvature of g" shows that there is
a constant h such that the metric

(75) g"=hg+(1-h)E ¢
is Einstein with positive scalar curvature. Hence, such a situation can occur only on a
spherical space-form. O

Remarks. In the last lemma we consider Sasaki manifolds whose Killing vector satisfies
Formula (70), i.e. normalized Sasaki manifolds. As already noticed in the introduction,
this last condition is not scale-invariant and the arguments comparing the scalar cur-
vature with some fixed constants make sense. Note also that the output of the lemma
implies a constraint on the metric of the Sasaki manifold, but also on the Killing vector
since the round sphere admits only standard Sasaki structures (i.e. given by a left-
invariant vector field). Moreover, the occurrence of —2 as a threshold for the scalar
curvature may be explained as follows : any 3-dimensional Sasaki structure is locally
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obtained from a circle bundle over a Riemann surface. O’Neill formulas then yield —2
as a threshold for the base manifold to be a sphere.

As a conclusion, we find that the limiting manifolds either have (normalized) scalar
curvature always no less than 6 or there is a region where it is strictly smaller than
the threshold and hence constant. But such a region must be open and closed in our
manifold, hence we are left on one hand with the Sasaki manifolds with Scal?! > 6
everywhere, and on the other hand with the constant scalar curvature Sasaki manifolds
(which are of Berger-type).

b) In dimension 4, the Sasaki case cannot appear, hence the curvature 2-form © must
always vanish and the universal Riemannian covering (M ,g) is spin and Einstein with
positive scalar curvature. By Theorem 6.4 of [14], we obtain that (]Tf , g) is isometric to
S4. As the only quotient of S* is not orientable, we deduce (M, g) = (S%, can), too, and
this obviously occurs as an equality case.

4.2. Vanishing first eigenvalue. In this case 9 is a parallel spinor for g. Because of
the conformal invariance of the Dirac operator and of the conformal Laplacian LY, if
1 = 0 and A\; = 0 for some metric g, the same relations hold for every conformally
equivalent metric g. A manifold (M, g) is thus a limiting manifold for our inequality iff
it is conformally equivalent to a Spin® manifold (M, g) which

e carries a parallel spinor QZ;
e satisfies (61);
e has y; = 0.

But the (Spin°) Lichnerowicz formula together with (61) imply that, if (M,g) carries
parallel spinors, then LY, = 42—:;A§, hence the condition p; = 0 is redundant, and may

be dropped out. Again by Lichnerowicz formula, since 1,3 is parallel, (61) is equivalent
to

(76) Scalf = 2 [%] 710,

The limiting manifolds are thus, up to a conformal change of the metric, exactly the
Spin® manifolds (M, g) with parallel spinors whose auxiliary curvature form satisfies
(76).

The classification of [21] shows that the universal Riemannian covering (M,9) is a
Riemannian product S x K where S is a spin manifold carrying parallel spinors and
K is a (non-Ricci flat) Kahler manifold endowed with its canonical Spin® structure (S
or K may be, of course, reduced to a point). Moreover, the form Q on M is just the
pull-back of the Ricci form on K. From Lemma 3.3, we deduce that, if (61) holds, then
only the following cases may occur:

e K is a point, so Mj S
e S is a point, and M = K is Kéhler-Einstein with positive scalar curvature (n

even);
e S =R and K is Kéhler-Einstein with positive scalar curvature (n odd).
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Moreover, relation (76) is automatically satisfied in each of these cases, so we have
obtained the

THEOREM 4.3. A Spin® manifold M™ is a limiting manifold for the inequality of Theorem
1.2 (with Ay = 0) iff it is conformally equivalent to one of the following:
1 - a Spin® manifold with flat auziliary connection carrying a parallel spinor;
2 - a Kdhler-Einstein manifold with positive scalar curvature (n even);
3 - a quotient of R X K by a freely acting group of isometries, where K is Kahler-
Finstein with positive scalar curvature (n odd).

We now obtain more precise informations for the small dimensions 3 and 4.

a) In dimension 3, (M ,g) is either spin, hence flat, when Q vanishes identically, or M
is a product R x N2 where N is the sphere S? with an arbitrary metric.

In the first case, (M, ) is a quotient of the Euclidean 3-space by a group preserving
at least one parallel spinor. From J. Wolf’s book [25, Theorem 3.5.5 and pages 123-124]
we know that compact orientable Euclidean space-forms are quotients of the flat R® by
a group I' whose linear part I', (quotient of the full group by its translation part) is
either a cyclic group of order between 2 and 6 or the Klein four-group Zsy x Zs. Any vy
in I induces an action

Vs - Tg:Rs — Ty(w)R?’

and the quotient is Spin® if there exists a lift T of T, acting on the principal bundle of
complex spin frames of R®, such that any element 7 of I" projects onto the corresponding
element v, through the standard projection

PSpinCM — PgoM X PslM — PsoM.

When identifying the spinor bundle of R® with a product bundle through parallel trans-
port, the spinors that are parallel on the quotient are simply fixed points of " (seen now
as a subgroup of Spin§ = SU, X7, S') acting on the fiber. But it is easily seen that any
of the above quoted groups has a lift in Spin§ that admits a fixed point. For example,
each of the cyclic subgroups I', = Z,, has a (one-to-one) lift in SU, x S of the type

0 z71/2

modulo the choice of a square-root. Note that this is not a subgroup of SU; x S but
it induces a subgroup of SUs xz, S* which is an isomorphic lift of the linear part of T
and leaves the first complex-coordinate line of the standard representation of Spin§ in
C? fixed.

Hence every compact orientable 3-dimensional Euclidean space-form is a limiting
manifold.

1/2 ok
(77) ( “ 0 > x 2 /2 where z = ¢'m with 0 <k <m —1.

In the second case, (M, q) has to be a quotient of (Rx S?, dt*+ g) (g arbitrary) having
a parallel spinor.

Let I' be the fundamental group of the manifold M. Since it acts by isometries
on R x S?, its tangent action preserves the eigenspaces of the Ricci tensor, hence the
subspaces of the tangent space of S? x R given by the R-leaves and the S2-leaves. As
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a consequence, any element of I' maps spheres to spheres and lines to lines. Moreover,
since I preserves a parallel spinor, it has to respect the Kihler structure of S2, hence
the orientations of S? and R. We may then write the action of any element, say vy, of T
on a point (g,t) as

(78) 7-(g,t) = (s(q),t +v) € S xR

where s belongs to the isometry group of (52, §) and v is a translation vector in R.

We conclude that M is an S?-bundle over S'. Recall that the only orientable S2-
bundle over S? is the trivial S? x S'. But, though all these bundles are diffeomorphic,
they may carry different non-isometric Riemannian structures (for details the reader is
referred to the examples given in [8, Remarks after Theorem 6.67]).

Moreover, any such bundle is built by identifying the fibers S? x {0} and S? x {1}
of the product S? x [0, 1] through an orientation preserving isometry of the fiber. Any
such transformation preserves its complex structure, hence a parallel spinor. As a
consequence, any such bundle has a parallel spinor.

b) In dimension 4, (]\7 ,g) is either spin (when ) vanishes), or Kéhler-Einstein with
positive scalar curvature (when € has maximal rank).

In the first case, (M, g) is Ricci-flat, hence locally hyperkéhler (for the bundle AT M
of self-dual 2-forms has vanishing curvature on Ricci flat Kéhler manifolds), hence it is
finitely covered by a K3-surface or a flat complex torus, by N. Hitchin’s work on the
equality case of the well-known Hitchin-Thorpe inequality [15].

If (M,g) itself is spin, we may sum up the result in the following lemma, which
is of independent interest. This is probably well-known but we include it for sake of
completeness and in lack of a precise reference:

LEMMA4.4. Let M* be a compact spin manifold admitting a parallel spinor 1. Then M
is isometric either to a K3 surface or to a flat torus.

Proof. We begin by recalling some well-known facts on parallel spinors in dimension
4 [1]. By taking the projection of 1 onto X*M and changing the orientation of M if
necessary, we may suppose that 1 is a section of X1t M. The equation

(79) iX - =1(X) -1

defines a parallel almost complex structure I on M, i.e. a Kéhler structure.

Recall that in dimension 4 the bundle XM carries a parallel quaternionic structure
commuting with the Clifford product; this just means a C-anti-linear automorphism
j satisfying j2 = —1. Since v is parallel, j3 is also parallel, and let J be the Kihler
structure defined by ¥ + ju. We can compute

JIX-(Yp+ij) = iIX-(W+ijY)=—-X- -9 +ijiX -
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and
IJX -(p+i) = iJX - —ihX - jp=10iJX (¢ —jy)

= —§JX - (Y +jY) = —ijiX - (¥ + )

= X-(—jy)=—-JIX (v +jy),
so IJ = —JI. Thus {I,J, K} defines a hyperkéahler structure on M, where K := IJ.
Consider now the universal covering M of M. Since M is hyperkahler, too, we deduce
from the Berger-Simons Holonomy Theorem that Hol (M ) is 0 or Sp;. In the first case
M = R* and in the second case M is a K3 surface. Since the only spin quotients of a
K3 surface - the Enriques surfaces - have non-trivial canonical bundle [5] and thus are
not hyperkahler, we deduce that if Misa K3 surface, then M = M.

__Suppose now that M =R ~and let I' be the group of isometries of M such that M =
M / I'. Then I' acts freely on M and preserves the hyperkahler structure induced by that
of M. We first remark that on R?* there exist only one hyperkihler structure, namely the
usual one, since A2R* has rank 3. Recall that the usual hyperkahler structure on R* is
given by left multiplication with ¢, j and k on each tangent space T,R* ~ R* ~ H. Let
us denote by Sp! resp. Sp} the images of Sp; in SOy acting on H by left, resp. right,
multiplication. Now, the fact that I' preserves the hyperkahler structure just means
that the linear part of any v € I' commutes with the action of Sp!, and thus lies in Spf
(since the centralizer of Sp| in SOy is Sp}). Let v = v + a be an arbitrary element of
[, where v € R*, a € Sp}, its action on R* ~ H being y(h) = ha + v, for all A in H.
Suppose that a # 1. Then v(1 — a)™' is a fixed point of y, thus contradicting the fact
that v acts freely. This shows that T' consists only of translations, so finally M = R*/T
is a flat torus. 0

If (M, g) is not Spin but only Spin®, we need the following result, which has already
been used in the characterization of limiting manifolds in dimension 3 before.

LEMMA4.5. A 4-dimensional Spin® manifold carries a parallel spinor iff it is Kdahler.

Proof. The necessity is given by the same argument as in the proof of the previous
Lemma. Conversely, every Kéhler manifold admits at least one Spin®-structure car-
rying parallel spinors, namely the canonical Spin®-structure whose spinor bundle A%*
obviously has the constant functions as parallel spinors. Il

For M = K 3, since M has a parallel spinor, it must admit a Kahler structure, hence
the only admissible quotients are the Enriques surfaces.

If M is Kéhler-Einstein of positive scalar curvature, then M = M by the theorem of
Kobayashi. It is then known that such a compact complex surface is CP! x CP!, CP?
or CP? with k points blown-up in general position, for 3 < k < 8 [8, 24]. Each of these
has a unique K&hler-Einstein metric [2] which is also the unique Yamabe metric in its
conformal class [22]. Hence, all these cases may occur.

Collecting all the results of the last two subsections gives the following

THEOREM 4.6. Fquality is attained in Theorem 1.2 if and only if :
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e in dimension 3,

— either (M, g) is isometric to (S®, can) or to any of its quotients by a finite fived point-
free subgroup of Us

—or (M, g) is conformally equivalent to a compact orientable Fuclidean space-form ;
—or (M, g) is conformally equivalent to an orientable S*-bundle over S* with a product-
type metric ;

—or (M, g) is Sasaki and either its (normalized) scalar curvature satisfies Scal’ > 6,
or g is a Berger-type metric on the sphere or one of its quotients.

e in dimension 4,

~ either (M, g) is isometric to (S*, can);

—or (M, g) is conformally equivalent to a quotient of a complex torus, a K3 surface or
a Enriques surface;

—or (M, g) is conformally equivalent to a Kdhler-Einstein complex surface with ¢; > 0.

4.8. A characterization of the complex projective plane. In view of the results of the
previous section, we shall here study the equality cases of Corollary 1.3 in order to get
the following:

THEOREM 4.7. Let (M, g,L,A,0) a compact Riemannian Spin® manifold with Fuler
characteristic x(M) = 3 and self-dual curvature on the auzxiliary bundle. If its first
etgenvalue Ay satisfies

vol(M, )2 X = = (Y(M.[g)) — V2 /e (EF])

then A\ = 0 and (M, g) is isometric to CP? with its standard Fubini-Study metric.

The proof of this last result goes through a thorough study of the equality cases of
Lemma 3.4 in dimension 4.

If equality is achieved in Lemma 3.4, the equality case of the classical Holder inequality
shows that the conformal factor ¢ is identically constant (equal to 1, say) so that g =g
and any conformal equivalence is an isometry.

In the case the first eigenvalue is non-zero, the round sphere is clearly a limiting
case. In the case \; = 0, all the proposed limiting metrics do also achieve the equality.
Obata’s theorem [22] shows they are the unique (up to rescaling) Yamabe metrics in
their conformal classes since they are Einstein.

Hence we finally get the

LEMMA 4.8. If equality is satisfied in Lemma 3.4, in dimension 4, then (M, g) is either
isometric to (S*, can) or (M,g) is isometric to a quotient of a complex torus, to a
K3 surface or a Enriques surface, or (M, g) is a Kéhler-Einstein complex surface with
c1 > 0.

A quick look at the possible Euler characteristics (computed for instance in [5]) implies
immediately Theorem 4.7.
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4.4. A remark on the choice of norms. The disappearance of the possible product
structures in the equality cases in Theorem 1.2 comes from our choice of norm on
2-forms : the equality case in

(80) A9l < ALY

is achieved only for 2-forms of maximal rank. If we consider Ch. Bar’s choice of the
operator norm on 2-forms, we may also study the equality case in dimension 4 (in
dimension 3 our previous study is not altered). The Kéhler case doesn’t really get more
intricate (it even stays exactly the same), and there is more wealth in the product case,
since Equation (61) above on the scalar curvature only implies that N has the topology
of a 2-sphere.

Recall first that the flat S?-principal bundles over T? are classified by the morphisms
p:m(T?) =Z* — PSO3; = SO; (we shall denote them by T%x ,52). The flat connection
induces a splitting of the tangent space of 7% x ,S? hence a canonical Riemannian metric.
As above, different morphisms p may define non isometric manifolds since they are not
isomorphic as flat bundles over 7?. We can now end the remark by proving the

LEMMA4.9. Let M* be a compact Kdihler manifold whose universal covering is isometric
to (52, can) x (R?, eucl). Then M is isometric to some T? x, S2.

Proof. Let I be the group of covering transformations, so that M = (S2xR?)/I". Choose
an arbitrary element vy € I" different from the identity. Since 7, commutes with the Ricci
tensor, it preserves the distributions tangent to S? and R? (where Ric = Id resp. 0).
Then v preserves the integral manifolds of these distributions, in other words, v maps

spheres to spheres and planes to planes. This means that we can find transformations
a:S5%— 5% and b:R? — R? such that

(81) v(p.x) = (a(p),b(z)), ¥(p,z) € S* xR
Since v preserves the metric and complex structure, it follows that a take values in SO3
and is a constant matrix A. The same reasoning shows that b is the semi-direct product
of a matrix B in SO, and a vector V on R?. So v(p,z) = (Ap, Bx + V). Now, every
A € SOs3 has a fixed point, so there exist py € S? with Apy = py. If the matrices B
were different from 1, we could find zy € R? such that Bzy + V = zg, so (po, o) would
be a fixed point of 7, a contradiction. The same is true if V and A — Id vanish at the
same time. This shows that each element of I has the form vy(p,z) = (Ap,z + V) with
V # 0 if A # Id; we make the notation v = (A, V). Since the translation parts of I'
behave additively, any of its elements is of infinite order.

The next step is to show that I' ~ Z2. First of all, if it had only one generator, M
would not be compact. Moreover, if we take v = (A4,V) and k = (B, W) two elements
of I', then

(82) v 'k = (AT'BTIAB, -V - W + V + W) = (A"'B7'AB,0)

and this shows that v and & commute. Hence I' ~ Z* and if we had k > 2, we would
have elements in I' with vanishing second component, which is impossible; thus I" ~ Z2.
We then define a homomorphism p: ' — SO3; by p(vy) = A for all y = (A,V) € T'. Let
A be the lattice of R? defined by the second components of the elements of I'. It is now
obvious that M ~ T2 x, S?, where T? = R?/A. O
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