Topologie différentielle – Feuille 1 –

Tous les espaces vectoriels sont définis sur un corps K. On rappelle que tout espace vectoriel admet une base et que tout sous-espace vectoriel admet un supplémentaire.

- **1.** Soit $u: E \to F$ une application linéaire entre deux espaces vectoriels de dimension finie. Si $A \in M_{m,n}(K)$ est la matrice de u dans les bases (e_1, \ldots, e_n) et (f_1, \ldots, f_m) , quelle est la matrice de $u^*: F^* \to E^*$ dans les bases (f_1^*, \ldots, f_m^*) et (e_1^*, \ldots, e_n^*) ?
- **2.** Soit E un espace vectoriel.
- a) Si u_1, \ldots, u_n sont des éléments de E^* , on considère un supplémentaire F de $\bigcap_{1 \leq i \leq n} \ker u_i$. Montrer que F est de dimension finie, inférieure ou égale à n.
- b) Montrer que $v \in E^*$ est combinaison linéaire d'éléments u_1, \ldots, u_n de E^* si et seulement si

$$\ker v \supset \bigcap_{1 \le i \le n} \ker u_i.$$

- **3.** Soient E et F deux espaces vectoriels. L'application bilinéaire $\theta: E^* \times F \to L(E, F)$ définie par $\theta(u, y)(x) = u(x)y$ induit une application linéaire $\Theta: E^* \otimes F \to L(E, F)$ telle que $\Theta(u \otimes y)(x) = u(x)y$.
- a) Montrer que Θ est injective et que son image est l'ensemble des éléments de L(E,F) de rang fini.
- b) Montrer que le plus petit entier p nécessaire pour écrire un élément de $E^* \otimes F$ sous la forme $\sum_{1 \leq i \leq p} u_i \otimes y_i$ est le rang de l'image de cet élément par Θ . c) Montrer que la forme bilinéaire $e: E^* \times E \to K$ définie par e(u, y) = u(y) induit une forme
- c) Montrer que la forme bilinéaire $e: E^* \times E \to K$ définie par e(u, y) = u(y) induit une forme linéaire ε sur $E^* \otimes E$ telle que $\varepsilon(u \otimes y) = u(y)$. Dans le cas où E est de dimension finie, quelle est la forme linéaire $\varepsilon \circ \Theta^{-1}$ définie sur L(E, E)?
- d) Montrer qu'il existe une application linéaire injective canonique de $E^* \otimes F^*$ dans $(E \otimes F)^*$ et que cette application est surjective si et seulement si l'un des espaces vectoriels E ou F est de dimension finie.

e) Soit φ une forme bilinéaire sur $E \times F$. Montrer que si l'un des espaces vectoriels

$$E' := \{ x \in E \mid \varphi(x, y) = 0, \ \forall y \in F \}$$

ou

$$F' := \{ y \in E \mid \varphi(x, y) = 0, \ \forall x \in E \}$$

est de codimension finie, alors il en est de même pour l'autre et qu'ils ont la même codimension.

4. Soient $\varphi \in (\Lambda^p E)^*$ une forme p-linéaire alternée et $u \in E^*$ une forme linéaire. Montrer que $u \wedge \varphi$, vue comme forme (p+1)-linéaire alternée vérifie

$$u \wedge \varphi(x_1, \dots, x_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i-1} u(x_i) \varphi(x_1, \dots, \hat{x_i}, \dots, x_{p+1}), \quad \forall x_1, \dots, x_{p+1} \in E.$$

- **5.** Soient x_1, \ldots, x_n des éléments d'un espace vectoriel E. Montrer que $x_1 \wedge \ldots \wedge x_n = 0$ si et seulement si x_1, \ldots, x_n sont liés.
- **6.** Si (e_1, \ldots, e_n) et (e'_1, \ldots, e'_n) sont deux bases d'un espace vectoriel E de dimension n, quelle est la relation entre les éléments $e_1 \wedge \ldots \wedge e_n$ et $e'_1 \wedge \ldots \wedge e'_n$ de $\Lambda^n(E)$?
- 7. Soit $u \in L(E, F)$ une application linéaire et $k \ge 1$ un nombre entier. Montrer qu'il existe une application linéaire $\wedge^k u : \Lambda^k(E) \to \Lambda^k(F)$ telle que

$$\wedge^k(u)(x_1 \wedge \ldots \wedge x_k) = u(x_1) \wedge \ldots \wedge u(x_k), \quad \forall x_1, \ldots, x_k \in E.$$

8. Soit $(E_i)_{i \in I}$ une famille d'espaces vectoriels. Montrer que les espaces vectoriels

$$(\sum_{i \in I} E_i)^*$$
 et $\prod_{i \in I} E_i^*$

sont naturellement isomorphes. Montrer que l'espace vectoriel $\sum_{i \in I} E_i^*$ est naturellement isomorphe à un sous espace vectoriel de $(\prod_{i \in I} E_i)^*$.

- 9. Pour tout élément x d'un espace vectoriel E on note x^{**} l'élément du bidual E^{**} défini par $x^{**}(u) = u(x)$ pour tous $u \in E^*$.
- a) Montrer que l'application $x\mapsto x^{**}$ de E dans E^{**} est injective.
- b) Montrer que l'application précédente est surjective si et seulement si E est de dimension finie.